
RESEARCH ARTICLE

MUMmer4: A fast and versatile genome
alignment system

GuillaumeMarçais1,2*, Arthur L. Delcher3, AdamM. Phillippy4, Rachel Coston3, Steven

L. Salzberg3,5, Aleksey Zimin1,3*

1 Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United

States of America, 2Computational Biology Department, Carnegie Mellon University, Pittsburgh,
Pennsylvania, United States of America, 3Center for Computational Biology, Johns Hopkins School of
Medicine, Baltimore, Maryland, United States of America, 4National Human Genome Research Institute,

Bethesda, Maryland, United States of America, 5Departments of Biomedical Engineering, Computer
Science, and Biostatistics, Johns Hopkins University, Baltimore, Maryland, United States of America

* gmarcais@cs.cmu.edu (GM); alekseyz@ipst.umd.edu (AZ)

Abstract

The MUMmer system and the genome sequence aligner nucmer included within it are

among the most widely used alignment packages in genomics. Since the last major release

of MUMmer version 3 in 2004, it has been applied to many types of problems including align-

ing whole genome sequences, aligning reads to a reference genome, and comparing differ-

ent assemblies of the same genome. Despite its broad utility, MUMmer3 has limitations that

can make it difficult to use for large genomes and for the very large sequence data sets that

are common today. In this paper we describe MUMmer4, a substantially improved version

of MUMmer that addresses genome size constraints by changing the 32-bit suffix tree data

structure at the core of MUMmer to a 48-bit suffix array, and that offers improved speed

through parallel processing of input query sequences. With a theoretical limit on the input

size of 141Tbp, MUMmer4 can now work with input sequences of any biologically realistic

length. We show that as a result of these enhancements, the nucmer program in MUMmer4

is easily able to handle alignments of large genomes; we illustrate this with an alignment of

the human and chimpanzee genomes, which allows us to compute that the two species are

98% identical across 96% of their length. With the enhancements described here, MUM-

mer4 can also be used to efficiently align reads to reference genomes, although it is less

sensitive and accurate than the dedicated read aligners. The nucmer aligner in MUMmer4

can now be called from scripting languages such as Perl, Python and Ruby. These improve-

ments make MUMer4 one the most versatile genome alignment packages available.

This is a PLOS Computational Biology Software paper.

Introduction

Since the 2004 publication of the MUMmer3 sequence alignment package [1], the bioinfor-

matics landscape has changed dramatically. The cost of generating sequence data has decreased

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 1 / 14

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation:Marçais G, Delcher AL, Phillippy AM,

Coston R, Salzberg SL, Zimin A (2018) MUMmer4:

A fast and versatile genome alignment system.

PLoS Comput Biol 14(1): e1005944. https://doi.

org/10.1371/journal.pcbi.1005944

Editor: Aaron E. Darling, University of Technology

Sydney, AUSTRALIA

Received: August 15, 2017

Accepted: January 1, 2018

Published: January 26, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: The data used for this

paper is available from the NCBI SRA https://www.

ncbi.nlm.nih.gov/sra, and from the Cold Spring

Harbor Laboratory web site http://schatzlab.cshl.

edu/data/ectools/.

Funding: This research was supported in part by

the U.S. National Institutes of Health under grant

R01 GM083873 to Steven Salzberg, in part by the

Gordon and Betty Moore Foundation’s Data-Driven

Discovery Initiative through Grant GBMF4554 to

Carl Kingsford, and in part by National Science

Foundation Grants IOS-1238231 to Jan Dvorak,

https://doi.org/10.1371/journal.pcbi.1005944
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005944&domain=pdf&date_stamp=2018-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005944&domain=pdf&date_stamp=2018-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005944&domain=pdf&date_stamp=2018-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005944&domain=pdf&date_stamp=2018-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005944&domain=pdf&date_stamp=2018-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005944&domain=pdf&date_stamp=2018-02-07
https://doi.org/10.1371/journal.pcbi.1005944
https://doi.org/10.1371/journal.pcbi.1005944
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://schatzlab.cshl.edu/data/ectools/
http://schatzlab.cshl.edu/data/ectools/


rapidly, leading to an exponential increase in the number of assembled genomes and a prolifer-

ation of sequencing-based assays. Along with these increases came a corresponding increase in

the demand for efficient sequence alignment algorithms. Applications of alignment include

resequencing humans to discover single nucleotide polymorphisms (SNPs), sequencing and

comparison of different species to detect evolutionarily conserved elements, alignment to

detect large-scale chromosomal rearrangements, and more. Alignment algorithms are also

used to create and validate genome assemblies and to compare them from one version of a

genome to the next. These and other applications motivate the need for fast and reliable

sequence alignment techniques that are capable of handling large genomes and large volumes

of sequence data. Although raw computing speed has not kept pace with improvements in

sequencing efficiency, improvements in memory capacity and parallel processing can be used

to compensate; in particular, algorithms can demand larger amounts of random-access mem-

ory (RAM) and multiple cores to handle the challenges of larger genomes and data sets.

Many DNA and protein sequence alignment software packages are available today, includ-

ing BLAST [2], Bowtie [3], BWA [4], Blat [5], Mauve [6], LASTZ [7], and BLASR [8]. Some of

these systems target a particular type of alignment problem, e.g., BWA and Bowtie2 are best

suited for aligning large numbers of relatively short sequences (50-300 bp) to a reference

genome; and BLASR is designed to align long high-error-rate (15-20%) sequences to a refer-

ence. MUMmer and its sequence alignment component nucmerwere originally developed

[9] for alignment of whole bacterial genomes to other genomes, but they have evolved into

general purpose aligners that remain very widely used. In addition to aligning whole genomes,

MUMmer3 is capable of aligning short and long reads with variable error rates to a reference

genome, but it is inefficient in doing so. It is not restricted to DNA and can also align protein

sequences. MUMmer produces only pairwise genome alignments; i.e., it is designed to com-

pute alignments of pairs of DNA sequences as opposed to multi-alignments of many genome

sequences. The very large data sets produced by current sequencing technology, though,

sometimes exceed MUMmer3’s limitations on the maximum length of its input sequences,

and the scope of these data also require ever-longer run times. To address the runtime chal-

lenge, one can use wrapper scripts to break long sequences into smaller ones and run multiple,

parallel MUMmer3 jobs in batches. However, such ad hoc parallelization is both inefficient

and inconvenient, requiring additional steps to combine and process the resulting multiple

outputs.

In this paper, we describe MUMmer4, a major new release that has been re-engineered

and extended based on MUMmer3, providing full backward compatibility of inputs, outputs

and options. The biggest changes affect the nucmer sequence aligner that is part of MUM-

mer4, and most of our discussion will focus on these. Although the executables in both

MUMmer3 and MUMmer4 are called “nucmer”, for clarity we will use nucmer3 to refer to

the nucmer program in MUMmer3, and nucmer4 to refer to the MUMmer4 version. Unlike

nucmer3, which has limits of*500 Mb on the reference sequence size and*4 Gb on the

query sequence size, nucmer4 can process sequences of essentially any size, with a theoretical

limit of 141 trillion bases (Tbp), due to its use of a new 48-bit long suffix array instead of a

32-bit suffix tree. It is unlikely that this limit, which is 1000 times larger than the largest

known genome, will be exceeded in any current practical scenario. Furthermore, nucmer4

can use multiple cores on the same computer, resulting in much faster run times. In addition,

while nucmer3 computes the suffix tree on the fly–at the time the program is invoked–and

discards it after each use, nucmer4 offers a more efficient two-step mode of operation, similar

to short read aligners, where the suffix array of the reference can be created and saved to

disk, and then loaded repeatedly to align sets of query sequences. Nucmer4 produces output

that is identical to nucmer3, except for the order in which the alignments are output. In the

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 2 / 14

IOS-144893 to Herbert Aldwinckle, Keithanne

Mockaitis, Aleksey Zimin, James Yorke and

Marcela Yepes. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005944


results below, we demonstrate nucmer4’s improvements in speed by comparing it to nuc-

mer3 and to other aligners, showing that this multi-purpose sequence aligner compares

favorably even with aligners that have been optimized to handle more specialized alignment

tasks.

The input and output formats of nucmer4 have also been changed to make it compatible

(optionally) with software pipelines that are designed to operate on next-generation sequenc-

ing (NGS) reads. On the input side, nucmer4 now accepts both FASTA and FASTQ sequence

formats. On the output side, nucmer3 only provided output in a custom format known as a

delta file, which can be used by other MUMmer utilities to produce alignments, SNP reports,

and plots. Nucmer4 can now produce either a delta file or a SAM file, the most common out-

put format for short read aligners. SAM output is compatible with many other packages,

including SAMtools [10].

Design and implementation

MUMmer3 implementation

The main pipeline of MUMmer is NUCmer, to align nucleotide sequences. The NUCmer

pipeline consists of 4 main programs driven by the nucmer Perl program: (1) preprocessing

of the input sequences (the prenuc program), (2) finding exact seed matches (the mummer
program), (3) clustering of matches (the mgaps program), and (4) extending and joining

matches (the postnuc program).

The prenuc program transforms the multi-fasta file of the reference sequence into a valid

format for the mummer program: a single string using x characters as a separators.

The mummer program finds exact matches between pair of sequences that are maximal in

length and at l bases long. By default, mummer finds all matches between a query sequence

and a reference sequence that are unique in the reference, called Maximal Unique Matches

(MUMs). A command-line option allows mummer to instead find all matches that are unique

in both the query and the reference, or to find all Maximal Exact Matches (MEMs) regardless

of uniqueness. The “MEM” option should be used with care, as it can produce very large

amounts of output when the input sequences contain numerous repeats. In MUMmer3 and

earlier versions, this exact match step is accomplished using a suffix tree data structure [9].

The MUMs or MEMs are then piped into the mgaps program which groups the exact

matches into clusters based on their proximity to one another. In a typical alignment run,

many of these exact matches will become part of longer inexact matches, which will be com-

puted in the next step. mgapswrites its output to a file.

Finally, the postnuc program computes longer alignments from the clustered exact

matches. It first re-reads the reference sequence to record the names as well as the beginning

and ending positions of the original reference subsequences in S.

Then the postnuc program uses a banded Smith-Waterman alignment algorithm [11] to

find alignments between consecutive exact matches within each cluster and to extend the ends

of the first and last matches of each cluster. It writes the resulting alignments to disk, after

translating the coordinates from positions in the string S back to positions in the reference

subsequences.

If this implementation has the advantage of being modular, it suffers from a number of inef-

ficiencies and limitations: (1) the reference sequence is read twice, which creates more I/O,

duplicated work, and prevents streaming in the reference; (2) multiple intermediary steps

write their results to disk, creating extra I/O; (3) the pipeline is hard to use from another pro-

gram, written in C or script language.

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 3 / 14

https://doi.org/10.1371/journal.pcbi.1005944


MUMmer4 implementation

We have designed the nucmer4 program to overcome many of the limitations of the nucmer3

pipeline. It avoids the redundant work done by both prenuc and postnuc, parsing the ref-
erence sequence only once, thus allowing it to take input from a pipe. It also avoids the use of

the file system or pipes to pass information between stages by instead passing C++ objects rep-

resenting the matches and clusters. This re-design not only provides speed advantages, but it

makes it far easier to incorporate nucmer4 into other software packages.

In nucmer4, we implemented the primary computational steps of each component program

into a C++ library, named libumdmummer. Each step in the original nucmer3 pipeline is

now represented by a C++ class. Although the individual programs from the pipeline are still

available in the MUMmer4 software distribution, the nucmer program is now a unified,

multi-threaded C++ binary that uses the MUMmer library.

The biggest internal change to MUMmer4 is the use of a suffix array instead of a suffix tree

to index the reference sequences. Although both suffix trees and suffix arrays require a linear

amount of memory to represent the reference sequences, the constant factors are smaller with

(carefully implemented) suffix arrays, reducing the total memory requirement. To make the

switch, we utilized the essaMEM program [12], which was designed as a drop-in replacement

for MUMmer. The MUMmer4 code includes a wrapper around the essaMEM code that

replaces the original suffix tree-building code.

In addition, we replaced the qsufsort [13] suffix array construction code in essaMEM
by the faster library divsufsort [14]. After building the suffix array, we then parse the

query sequences (nucmer allows the query to be a multi-fasta or multi-fastq file containing any

number of sequences) and pass them one by one to worker threads using a lock-free first-in

first-out (FIFO) queue. Each worker thread computes the exact alignments, clusters them, and

runs the banded Smith-Waterman alignment routine (performed by postnuc in nucmer3)

for its single query sequence.

The results are output to disk or to stdout, again using a lock-free FIFO queue to syn-

chronize writing by the different threads. The default output appears in delta format and is

designed to be identical to the output of Nucmer3. Because of the multi-threaded operation,

the order of the sequences in the output file is not strictly preserved, and may be different from

run to run. Thus, although the alignments of nucmer4 and nucmer3 are identical, the order in

which they appear in the output files might differ.

Query parallelism

One of the most common alignment tasks today is to align many sequences against a reference

genome; e.g., aligning a large set of reads to the human genome. In MUMmer4, we introduce

parallelism at the level of these query sequences, allowing many of them to be aligned simulta-

neously against a reference. When aligning large numbers of query sequences, nucmer can

achieve a high level of concurrency, limited only by the number of processing cores. On the

other hand, if the query contains a small number of large sequences (e.g., entire chromo-

somes), the concurrency is limited by the number of sequences in the query. In the limiting

case of aligning a single query to the reference, query parallelism provides no benefit.

Changes to built-in size limits

One of the built-in limitations in MUMmer3 is a strict upper bound on the lengths of the

input sequences. The implementation limits the total reference sequence—i.e., the length of

the concatenated string S—to*536 Mb. This is large enough for all bacterial genomes and

for some small eukaryotes, such as Drosophila melanogaster; however, it is not sufficient for

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 4 / 14

https://doi.org/10.1371/journal.pcbi.1005944


larger plant and animal genomes, which often exceed 1 Gb and can be as large as 32 Gb as

seen, for example, in the sugar pine, Pinus lambertiana [15]. MUMmer3 also limits the total

size of the query sequences to 232 − 1� 4 Gb.

MUMmer4 significantly raises these size limits, making it possible to align even the largest

genomes. The length of the reference sequence for each alignment job is limited in principle to

247 − 1� 141 Tb. The available computer hardware provides a more practical limit; MUM-

mer4 uses 15 bytes per base of the reference sequence to store the index. Thus for example, if

the reference sequence were 66 Gb (equal to 22 human genomes), the suffix array would

require about 1Tb of computer RAM. To accommodate computers with limited RAM, MUM-

mer4 includes a new “--batch X” option that automatically splits long reference sequences

and processes them in smaller batches. Specifically, it loads X bases of reference sequence,

matches all query sequences against the first batch, then loads the next X bases of reference

and so on. In practice this eliminates any restrictions on the size of the input reference

sequence and also allows the user to tune the alignment runs to the total available computer

memory. MUMmer4 has no absolute limit on the total query sequence size. Also, as a minor

improvement, MUMmer4 removes the previous 128-character limit on the length of the

names of reference and query sequences.

Saving a large index to disk

MUMmer4 now includes options to save and load the suffix array for a given reference. The

most popular systems for aligning reads to a reference genome, Bowtie2 [16] and BWA [4],

both assume that their index (a Burrows-Wheeler transform using the FM index) has been

pre-computed and stored in a file, which allows the alignment step to run much faster. Suffix

array construction is primarily a single-threaded task that can take about 36 minutes for a 3

Gb genome. Many large genomes—e.g., the human genome, the mouse genome, and other

model organisms—are essentially static, with periodic updates and controlled versions. Thus

there is no need to build the suffix array on the fly (at the time of alignment) if one intends to

use the same reference repeatedly, e.g., to align Illumina data to a human reference genome.

Using the newMUMmer4 option, the suffix array can be built once, saved and then loaded for

each run.

For a large reference genome, MUMmer4 uses approximately 13-14 bytes/base for the

index (6 bytes per base for the suffix array, another 6 for the inverse suffix array, and 1 byte for

the LCP array). For example, the size of the suffix array for the human genome is approxi-

mately 39 GB. Loading the suffix array from memory is much faster than constructing it from

scratch, and on a typical server with 200 MB/sec input speed, a 39 GB suffix array will load in

approximately 3 minutes.

Nucmer4 requires additional memory in scenarios when running with multiple threads

on query sequences that are large. Our parallelization routine distributes multiple query

sequences into multiple threads, one sequence per thread, and query sequences have to be

loaded into memory. The step of loading multiple query sequences into memory at the same

time increases peak memory usage in such scenarios, proportional to the number of threads

used. With only one thread, memory usage is similar between nucmer3 and nucmer4.

The original output format of nucmer, the delta format, contains only the minimum infor-

mation necessary to quickly recreate the alignment. It contains the name of the matching

sequences, the length of the match, number of errors and positions of indels. An important

addition in MUMmer4 is option to produce output in SAM format, one of the most widely

used formats for alignments of NGS data [10]. This also allows the MUMmer4 output to be

used in any of the numerous tools that require SAM files as input. Nucmer4 supports two

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 5 / 14

https://doi.org/10.1371/journal.pcbi.1005944


different options for SAM format output. With --sam-short, nucmer4 reports only the

name of the matching sequence, length, and CIGAR string (which reports the indel positions).

With --sam-long, it additionally reports the MD string (which specifies the mismatching

positions), the sequence and, if applicable, the quality values of the matching sequence. The

long format is more expensive to compute and it generates larger output files, but this option

allows nucmer4 to match the behavior of other aligners such as Bowtie2 or BWA.

We transformed the global variables in the original code to object instance variables. As a

result, it is possible for an application using libumdmummer to instantiate multiple aligner

objects concurrently, for example in a multi-threaded program. The new library is also usable

from the scripting languages Python, Perl or Ruby, making MUMmer4 much more flexible.

We used the SWIG [17] tool to generate the script bindings, allowing developers to create

bindings to the many other languages supported by SWIG with little extra work. This binding

allows a user to align a pair of sequences directly from the scripting languages, returning an

array of the alignments. Examples of how to use the library in a C++ program or in a script are

provided in the supplementary material (S1 File).

Results

The enhancements in MUMmer4 allow it to align (1) a pair of genomes to each other, (2) two

large sets of sequences to one another, or (3) a set of reads to a reference genome. This func-

tionality stands in contrast to specialized NGS alignment tools such as Bowtie2, BWA or

BLASR, which are designed for aligning reads to a reference genome. BWA and Bowtie2 are

designed primarily for alignment of short Illumina sequences, while BLASR is designed for

alignment of long high-error-rate sequences, such as those produced by the Pacific Biosciences

SMRT and Oxford Nanopore MinION technologies. MUMmer4’s suffix array data structure

ensures that alignment time is a linear function of the read length and is independent of the

size of the reference genome, similar to NGS aligners that use the Burrows-Wheeler transform

as their principal data structure.

Although specialized read aligners are more accurate and sensitive (and thus likely prefera-

ble) for that task, we show below that when run with default settings, the speed of MUMmer4

is comparable to Bowtie2, BWA and BLASR for the alignment of both short low-error-rate

(Illumina) and long high-error-read (PacBio) sequences to a reference genome. MUMmer4 is

much faster than Mauve [6] and LASTZ [7] aligners, built using similar data structures.

Table 1 shows detailed feature comparison between MUMmer4 and the other aligners. MUM-

mer4 is a significant upgrade over MUMmer3 in terms of features. MUMmer4 is the only

aligner that can be called from Perl, Python or C++. Unlike Mauve, LASTZ or Blat, it is multi-

threaded. It is only available for Linux and users looking for Windows-compatible aligner with

a nice GUI (Graphical User Interface) may be better off using Mauve. MUMmer4 does not

compute P-values or E-values for its alignments, and thus Blast, LASTZ or BLASR are pre-

ferred over MUMmer4 if they are needed.

We also show substantial improvements in speed and versatility compared to the MUM-

mer3 package. In the Supplementary material, we report all settings and command line param-

eters used for generating the results shown here. All timings were measured on a dual-CPU,

32-core AMDOpteron 6276 computer with 256 GB of DDR3 PC3-12800 RAM.

Data used

For the comparisons shown here, we used two different organisms as reference genomes. For

mapping reads to a genome, we used the Arabidopsis thaliana Col-0 reference genome [18]

and the human reference genome, version GRCh38.p7 [19]. We removed all alt sequences

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 6 / 14

https://doi.org/10.1371/journal.pcbi.1005944


from the human reference sequence, because they could skew our human—chimpanzee

genome to genome comparison statistics.

As a test of MUMmer’s performance on aligning large genomes, we aligned the reference

assemblies of the human genome and the chimpanzee (Pan troglodytes) genome [20] (release

PanTro4, GenBank accession GCF_000001515.6) to one another. To compare MUMmer4’s

performance to MUMmer3 on aligning whole genomes, we provide the timing results for

aligning the Arabidopsis lyrata assembly 1.0 [21] to the A. thaliana reference. Below we

describe MUMmer4’s performance statistics on these tasks as well as summaries of the result-

ing alignments.

To benchmark MUMmer4’s performance on aligning reads to a reference genome, we per-

formed two sets of experiments. First, we aligned PacBio SMRT and Illumina reads from A.

thaliana Ler-0 [22], data available from [23], to the A. thaliana Col-0 reference [18]. Second,

we aligned a subset of about 20x coverage Illumina and a subset of 10x coverage PacBio reads

from the publicly available Ashkenazi data set (available from the Genome in a Bottle project

[24], NCBI SRA accession SRX847862) to the human genome reference GRCh38.p7. Detailed

information about these data sets is shown in Table 2.

Genome-to-genome alignment

The primary usage scenario for nucmer3 was to align two genome assemblies or two reference

genomes. In this section we demonstrate improvements in timings for such alignments due to

parallelization in nucmer4. We use several pairs of plant and animal genomes. Table 3 summa-

rizes the timings and memory usage for the alignments that we ran. In addition to nucmer ver-

sion 3 & 4, we ran the Mauve [6] and LASTZ [7] whole genome aligners that utilize data

structures similar to MUMmer. We aborted all runs after 2 days, and if an aligner took longer,

Table 1. Comparison of aligner features. A checkmark means the feature is present and usable, otherwise the feature is absent or its use is impractical. Features that are
absent by design are marked with a dash.

Aligner Graphical User
Interface

Multi-platform
Windows/Linux

Multi-
threaded

Callable from C++,
scripting languages

Whole
genome aln.

Short read
aln.

Long read
aln.

SAM format
output

P-value
output

MUMmer4 ✔ ✔ ✔ ✔ ✔ ✔

MUMmer3 ✔

Blast ✔ ✔ ✔ ✔ ✔

Blat ✔ ✔

Mauve ✔ ✔ ✔

LASTZ ✔ ✔ ✔

bwa-mem ✔ - ✔ ✔ ✔

Bowtie2 ✔ - ✔ - ✔

BLASR ✔ - - ✔ ✔ ✔

https://doi.org/10.1371/journal.pcbi.1005944.t001

Table 2. Description of the data sets used for aligner comparisons. The Illumina and PacBio data for A. thaliana is available from [23]; the human Illumina and PacBio
reads are from the Ashkenazi child data set (available from the Genome in a Bottle project [24], NCBI SRA accession SRX847862). The reference genomes are the Arabi-
dopsis thaliana Col-0 reference genome [18], the human reference genome version GRCh38.p7 [19], and the chimpanzee (Pan troglodytes) genome [20] (release PanTro4,
GenBank accession GCF00001515.6).

Reference Genome size Illumina PacBio

number of reads bases in reads average read size number of reads bases in reads average read size

Arabidopsis 120 Mb 23 M 6919 M 300 bp 481 K 2748 M 5713 bp

Human 3.09 Gb 264 M 39.1 G 300 bp 3.9 M 30.5 G 7821 bp

Chimp 3.31 Gb

https://doi.org/10.1371/journal.pcbi.1005944.t002

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 7 / 14

https://doi.org/10.1371/journal.pcbi.1005944.t001
https://doi.org/10.1371/journal.pcbi.1005944.t002
https://doi.org/10.1371/journal.pcbi.1005944


we list the run time as> 2 days. Since it is not straightforward to measure aligner’s accuracy

in whole genome alignment, we instead measured sensitivity, which is computed as the pro-

portion of the sequence in the alignments between reference and query, not counting the

indels. We found that when using default settings, LASTZ is more sensitive than Nucmer4, but

runs much more slowly (“LASTZ default” in the table). Thus, in a second experiment, we

adjusted the parameters of LASTZ to approximately match the sensitivity of Nucmer4 with

default settings (“LASTZ match”). Nucmer3 was unable to align the chimp reference to the

human reference due to limitation in the size of the reference sequence (max 500 Mbp). Nuc-

mer4 peak memory usage is higher both due to its 48-bit index, and due to loading 32 large

query sequences at a time for parallel processing, but it runs significantly faster than Nucmer3.

Below we provide details on the nucmer4 alignments.

Human versus chimp. First we aligned the current assemblies of human and chimpanzee,

using the default nucmer4 options with 32 parallel threads. The alignment took 3 hours and 6

minutes on our 32-core Opteron system, and it used a maximum of 66 GB of RAM. Note that

Nucmer3 cannot perform an alignment this large unless one first breaks both genomes into

smaller pieces. We used human as the reference and chimpanzee as the query sequence. The

human GRCh38 assembly contains 3.088 Gb of sequence while chimpanzee assembly, with

3.31 Gb, contains 7% more DNA. (Note that the chimpanzee genome is far less polished than

human, and much of the extra DNA might be explained by haplotype variants or incompletely

merged regions; thus the two genomes might be much closer in size than these numbers

indicate.)

MUMmer had 2.782 Gb of the sequence in mutual best alignments, where each location in

the chimp was aligned to its best hit in human and vice versa, with an average identity of

98.07%. The 1.93% nucleotide-level divergence found here is higher than the 1.23% reported

in the original chimpanzee genome paper [25]. Our higher divergence is likely due to two fac-

tors: first, the 2005 report was based on 2.4 Gb of aligned sequence from older versions of both

Table 3. Timing andmemory usage to align two genome sequences for nucmer3 and nucmer4 compared to Mauve and Lastz aligners built using similar data struc-
tures.We list both wall clock time and CPU time to show how effective is the code in utilizing multiple cores. Nucmer 4 is the fastest, but not the most memory efficient
aligner. Nucmer3 failed to align human to chimp assembly due to the restriction on the size of the reference sequence. LASTZ andMauve runs on human to chimp align-
ments took over two days, and we stopped them after that. LASTZ defaults are optimized for high sensitivity, resulting in slow performance. Thus for fairness of timing
comparisons we ran LASTZ twice: once with default settings and once with parameters that result in sensitivity matching that of nucmer4 with default settings. We list the
parameters in the supplement.

Arabidopsis Tardigrade Human/Chimp

nucmer3 Wall time (min) 17.5 19.6 fail

CPU time (min) 17.1 19.2 fail

Memory (GB) 2.1 2.3 fail

nucmer4 Wall time (min) 3.7 4.0 207

CPU time (min) 22 26 2897

Memory (GB) 4.6 4.9 66

Mauve Wall time (min) 41 273 > 2 days

CPU time (min) 38.6 268 > 2 days

Memory (GB) 3.3 4.0 > 2 days

LASTZ default Wall time (min) 1122 > 2 days > 2 days

CPU time (min) 1113 > 2 days > 2 days

Memory (GB) 1.3

LASTZ match Wall time (min) 66 77 > 2 days

CPU time (min) 66 76 > 2 days

Memory (GB) 0.6 0.4

https://doi.org/10.1371/journal.pcbi.1005944.t003

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 8 / 14

https://doi.org/10.1371/journal.pcbi.1005944.t003
https://doi.org/10.1371/journal.pcbi.1005944


genomes, while ours is based on 2.782 Gb (16% more sequence) aligned between the current,

more-complete versions of both genomes. Second, the original report used different methods,

and may have counted fewer small indels than were counted in our alignments. Approximately

306 Mb (9.91%) of the human sequence did not align to the chimpanzee sequence, while 138

Mb (4.15%) of the chimpanzee sequence did not align to human. We detected 390 Mb in align-

ments where multiple sequences from chimpanzee aligned to the same location in human

sequence and thus only one was chosen as the best alignment based on alignment identity.

The genomes are very similar across all chromosomes, with the percent identity varying only

slightly, from 97.5% to 98.2% for chromosomes 1-22 and X. Chromosome Y was an outlier at

96.6% identity over 84.6% of its length; however this is likely due to the fact that the chimpan-

zee Y chromosome is much less complete than the human Y.

Two Arabidopsis species. The alignment of the 207 Mb A. lyrata genome to the 120 Mb

A. thaliana reference genome with nucmer4 took 3m43s on our test system with default

parameters using 32 threads. The same alignment performed with nucmer3—which is single

threaded— took 17m32s, about 4.7 times slower. These times include the time taken to build

the suffix tree or array. We checked the alignments and they were identical between the two

programs, as expected. The alignment determined that there are 68.3 Mb in 48,852 1-to-1 best

alignments between these two genome sequences with average identity of 88.2%. Overall there

are 83 Mb of sequence in 70,044 many-to-many alignments with the same average identity of

88.2%.

Two assemblies of a tardigrade genome. A pair of recent studies [26, 27] described the

assembly of a microscopic animal, the tardigrade (Hypsibius dujardini). The first study

described a 212 Mb assembly (here designed Hd-Boothby) and used the results to argue for

extensive horizontal gene transfer from unrelated species [26]. The second study, which

appeared a few months later, contradicted the first and described a 135 Mb assembly (Hd-

Blaxter) that showed little or no evidence for horizontal gene transfer. We aligned the

two assemblies using nucmer4, which took 4 minutes, and compared the results using the

dnadiff program, which is part of the MUMmer package (see Table 3).

The alignment results showed that 66.5 Mb in Hd-Boothby, the larger assembly, failed to

align to Hd-Blaxter. Conversely, 15.9 Mb in Hd-Blaxter failed to align to Hd-Boothby. Given

that contamination was an issue of concern for both assemblies, as explained in detail in [27],

the nucmer4 output immediately points out which contigs deserve further scrutiny. The results

here are consistent with the hypothesis from [27] that Hd-Boothby has far more contamina-

tion than Hd-Blaxter. Nucmer also revealed that 109 Mb from Hd-Blaxter aligned to 167 Mb

from Hd-Boothby, suggesting that the larger assembly contains many duplicated sequences as

compared to the smaller one. While the nucmer alignments do not prove that one assembly is

superior to the other, they do allow investigators to quickly identify the regions where assem-

blies disagree, which enables further analyses to determine which one is correct.

Alignment of reads to a reference

We can also use nucmer4 to align raw reads to a genome, by providing the genome as a refer-

ence and building the suffix array index on that. For optimal speed, one can build the index

once and save it as a file (explained above), a new feature in MUMmer4. The suffix array is

considerably larger than the compressed Burrows-Wheeler transform used by Bowtie2 and

BWA, but the alignment speed is comparable and sometimes faster.

Table 4 compares nucmer4’s performance to several state-of-the-art NGS aligners on the

task of aligning both Illumina and PacBio reads to the 120 Mb Arabidopsis thaliana genome.

Timings were measured on the 32-core AMDOpteron system mentioned above. Default

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 9 / 14

https://doi.org/10.1371/journal.pcbi.1005944


parameters were used for most alignments, except that “-x pacbio” was used for BWAmem

with PacBio data (as instructed by the BWA-MEM documentation), and “-l 15 -c 31” was
used for nucmer4. We recommend these modifications to the default nucmer4 parameters for

long reads with error rates above 10%.

To align 481,000 PacBio reads to the Arabidopsis genome, nucmer4 took 24 minutes versus

49 minutes for BWA-MEM and 95 minutes for BLASR (Table 4), although nucmer4 required

more memory, 5.7 GB versus 4.1 GB (BLASR) and 2.1 GB (BWA-MEM). Nucmer4 aligns

about 4% fewer bases than BLASR and about 12% fewer than BWA-MEM, suggesting that

BWA-MEM and BLASR are slightly more sensitive, although for this data set we cannot evalu-

ate the correctness of these alignments. To verify the correctness of the alignments, we had to

rely on simulated data, in which we know precisely where each read originated. In Table 5 we

show results on simulated 1x human genome coverage and 10x Arabidopsis thaliana genome

coverage, both generated using the pbsim software [28]. We list the command line that we

used to simulate the reads in the Supplementary material. We aligned the faux reads with

BLASR, nucmer4 and BWA to the corresponding reference genomes. We found nucmer4 is

indeed less sensitive, primarily due to its default behavior of using only unique seeds in the ref-

erence. This behavior can be modified with the “--maxmatch” switch at the expense of run

time. Nucmer4 also has marginally higher false alignment rate. The sensitivity numbers are

consistent with the results on real data.

For aligning Illumina reads to Arabidopsis (Table 4), nucmer4 was about 30 times faster

than Nucmer3 and slightly faster than BWA, but about 20% slower than Bowtie2. Nucmer4

aligned more reads and more sequence than Bowtie2 but about 10% fewer than BWA. For

each program, the time reported in Table 4 is the sum of the time to create the index and to

align the reads. Because this is a small reference genome (*120 Mbp) with about 100x Illu-

mina coverage, the amount of time to create the suffix array or the Burrows-Wheeler index

was negligible compared to the time to create the alignments. Nucmer4 used about twice as

much memory (1.3 GB) as Bowtie2 (0.69 GB), but less than half as much as BWA (3.4 GB).

The creation of a Burrows-Wheeler index or a suffix array is costly for a large genome such

as the 3 Gb human genome. Thus it is common practice to precompute the index and simply

Table 4. Timing andmemory usage to align PacBio and Illumina reads to the Arabidopsis thaliana reference genome. Timings reported here include the time used to
build the genome index. The alignments reported by nucmer3 and nucmer4 for the Illumina data were identical. Nucmer3 experienced a reproducible crash when aligning
PacBio reads to the A. thaliana reference.

PacBio Illumina

time (min) memory (MB) aligned (Mbp) aligned reads time (min) memory (MB) aligned (Mbp) aligned reads

blasr 95 4065 1780 435888

bwa-mem 49 2162 1944 420912 30 3360 6112 21874366

bowtie2 24 686 5580 18716070

nucmer3 fail fail fail fail 334 4688 5651 19873013

nucmer4 24 5743 1713 424271 29 1283 5651 19873013

https://doi.org/10.1371/journal.pcbi.1005944.t004

Table 5. Performance of Nucmer4, BLASR and BWAMEM on data simulated by pbsim from human and Arabidopsis reference genomes. All numbers are percent-
ages from the total of bases that are in the reads aligned correctly, missed, or aligned incorrectly. The numbers may not add to exactly 100 due to rounding.

Arabidopsis Human

Aligned Correctly Missed Aligned Incorrectly Aligned Correctly Missed Aligned Incorrectly

nucmer4 94.0 3.5 2.5 84.4 10.9 4.6

blasr 98.2 0.2 1.7 91.8 5.0 3.2

bwa-mem 98.7 0.5 0.8 91.6 5.9 2.5

https://doi.org/10.1371/journal.pcbi.1005944.t005

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 10 / 14

https://doi.org/10.1371/journal.pcbi.1005944.t004
https://doi.org/10.1371/journal.pcbi.1005944.t005
https://doi.org/10.1371/journal.pcbi.1005944


load it into memory at the time of alignment. For alignments of reads to the human genome,

therefore, we report separately the time to create the index and to align the reads.

Table 6 shows, not surprisingly, that nucmer4 uses much more memory (45.1 GB) than either

BWA-MEM (11.2 GB) or Bowtie2 (4.0 GB). However, the 45 GB required for nucmer4 is readily

available on contemporary server-class computers. For these data sets (264 M Illumina reads and

3.9 M PacBio reads), Nucmer4 was the fastest program for aligning both Illumina and Pacbio

reads, about 10% faster than Bowtie2 and 30% faster than BWA-MEM. Thus by using more

memory, nucmer4 makes a trade-off that results in substantially increased speed. Nucmer4 is less

sensitive, it aligns 3-5% fewer reads than BWA or Bowtie2, likely due to two reasons. First, it uses

relatively long exact matches to seed its alignments. With its default setting used here, nucmer4

used 20-base (or longer) exact matches to seed the alignments, while Bowtie2 and BWA-MEM

use shorter seed lengths. Second, by default, the seeds must be unique in the reference sequence,

thus no seeds will be found in sub-sections of the reference sequence longer than the seed length,

that are present in multiple copies. This behavior can be changed with the “--maxmatch”
switch, which will force nucmer4 to use all seeds at the cost of longer run times.

Parallelization. Fig 1 shows that Nucmer4’s alignment speed scales almost linearly from 2

to 16 parallel computing threads, and becomes sublinear at about 32 threads or more. The

deviation from linear performance is likely due to the inherent randommemory access for the

suffix array where multiple threads start competing, saturating the memory bandwidth in our

AMDOpteron system.

Availability

The MUMmer4 software including source code is available under an open source license at

http://mummer4.github.io.

Future directions

In this paper we described MUMmer4, the successor to MUMmer3, a versatile and efficient

genome alignment system. Nucmer4, the primary DNA sequence aligner in the MUMmer4

package, can be used for a variety of tasks ranging from simple alignment of two genome

sequences to alignment of large, complex draft genomes with thousands of contigs. With the

performance enhancements in this new system, Nucmer4 can align two mammalian genomes

in about three hours on a 32-core server; we illustrated this by using it to compute that almost

90% of the human genome is about 98% identical to the chimpanzee genome.

Table 6. Timing andmemory usage to align Illumina and PacBio reads to human reference.

Illumina reads to Human reference

build index align result

time (min) memory (GB) time (min) memory (GB) aligned bases (Gbp) aligned reads

bwa-mem 96 4.5 197 11.2 38.46 263155221

bowtie2 51 18.6 163 4.0 38.00 258560571

nucmer4 36 45.1 146 45.5 36.71 250689492

PacBio reads to Human reference

build index align result

time (min) memory (GB) time (min) memory (GB) aligned bases (Gbp) aligned reads

blasr 40 29.4 1680 47.9 24.41 3836927

bwa-mem 96 4.5 1473 7.7 25.86 3820163

nucmer4 36 45.1 850 50.1 23.02 3784039

https://doi.org/10.1371/journal.pcbi.1005944.t006

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 11 / 14

http://mummer4.github.io
https://doi.org/10.1371/journal.pcbi.1005944.t006
https://doi.org/10.1371/journal.pcbi.1005944


Our future plans include support and maintenance of the software and improvements to

other useful parts of MUMmer such as Promer, the protein sequence aligner.

Supporting information

S1 File. Supplemental information.

(DOCX)

Acknowledgments

We thank Michael Schatz of Johns Hopkins University for testing the software and reporting

errors.

Author Contributions

Conceptualization: Guillaume Marçais, Aleksey Zimin.

Data curation: Guillaume Marçais, Arthur L. Delcher, AdamM. Phillippy, Aleksey Zimin.

Formal analysis: Rachel Coston.

Funding acquisition: Steven L. Salzberg, Aleksey Zimin.

Investigation: Guillaume Marçais, Aleksey Zimin.

Methodology: Guillaume Marçais, Steven L. Salzberg, Aleksey Zimin.

Project administration: Aleksey Zimin.

Software: Guillaume Marçais, Arthur L. Delcher, AdamM. Phillippy, Aleksey Zimin.

Supervision: Aleksey Zimin.

Validation: Guillaume Marçais, Arthur L. Delcher, AdamM. Phillippy, Rachel Coston, Steven

L. Salzberg, Aleksey Zimin.

Fig 1. Scaling of nucmer4’s performance when aligning Illumina reads to the A. thaliana genome with 1–32
threads. All tests were run on a 32-core AMDOpteron computer.

https://doi.org/10.1371/journal.pcbi.1005944.g001

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 12 / 14

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005944.s001
https://doi.org/10.1371/journal.pcbi.1005944.g001
https://doi.org/10.1371/journal.pcbi.1005944


Visualization: Aleksey Zimin.

Writing – original draft: Guillaume Marçais, Aleksey Zimin.

Writing – review & editing: Guillaume Marçais, Arthur L. Delcher, AdamM. Phillippy, Ste-

ven L. Salzberg, Aleksey Zimin.

References
1. Kurtz S, Phillippy A, Delcher AL, Smoot M, ShumwayM, Antonescu C, et al. Versatile and open soft-

ware for comparing large genomes. Genome Biology. 2004; 5(2):R12. https://doi.org/10.1186/gb-2004-
5-2-r12 PMID: 14759262

2. Altschul SF, GishW, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of
Molecular Biology. 1990; 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID:
2231712

3. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biology. 2009; 10(3):R25–R25. https://doi.org/10.1186/gb-
2009-10-3-r25 PMID: 19261174

4. Li H, Durbin R. Fast and accurate short read alignment with Burrowsâ€“Wheeler transform. Bioinfor-
matics. 2009; 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168

5. Kent WJ. BLATâ€”The BLAST-Like Alignment Tool. Genome Research. 2002; 12(4):656–664. https://
doi.org/10.1101/gr.229202 PMID: 11932250

6. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: Multiple Alignment of Conserved Genomic
SequenceWith Rearrangements. Genome Research. 2004; 14(7):1394–1403. https://doi.org/10.1101/
gr.2289704 PMID: 15231754

7. Harris RS. Improved pairwise alignment of genomic DNA [Ph.D.]. The Pennsylvania State University.
United States—Pennsylvania; 2007.

8. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with
successive refinement (BLASR): application and theory. BMC Bioinformatics. 2012; 13(1):238. https://
doi.org/10.1186/1471-2105-13-238 PMID: 22988817

9. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL. Alignment of whole genomes.
Nucleic Acids Research. 1999; 27(11):2369–2376. https://doi.org/10.1093/nar/27.11.2369 PMID:
10325427

10. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format
and SAMtools. Bioinformatics (Oxford, England). 2009; 25(16):2078–2079. https://doi.org/10.1093/
bioinformatics/btp352

11. Smith TF, WatermanMS. Identification of commonmolecular subsequences. Journal of Molecular Biol-
ogy. 1981; 147(1):195–197. https://doi.org/10.1016/0022-2836(81)90087-5 PMID: 7265238

12. VyvermanM, Baets BD, Fack V, Dawyndt P. essaMEM: finding maximal exact matches using
enhanced sparse suffix arrays. Bioinformatics. 2013; p. btt042. https://doi.org/10.1093/bioinformatics/
btt042 PMID: 23349213

13. Larsson NJ, Sadakane K. Faster suffix sorting. Theoretical Computer Science. 2007; 387(3):258–272.
https://doi.org/10.1016/j.tcs.2007.07.017

14. Mori Y. libdivsufsort: A lightweight suffix-sorting library, 2010; 2010. Available from: https://github.com/
y-256/libdivsufsort/.

15. Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, et al. Sequence of the Sugar Pine
Megagenome. Genetics. 2016; 204(4):1613–1626. https://doi.org/10.1534/genetics.116.193227 PMID:
27794028

16. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012; 9
(4):357–359. https://doi.org/10.1038/nmeth.1923 PMID: 22388286

17. Beazley DM, others. SWIG: An easy to use tool for integrating scripting languages with C and C++. In:
Proceedings of the 4th USENIX Tcl/Tk workshop; 1996. p. 129–139. Available from: https://www.
usenix.org/legacy/publications/library/proceedings/tcl96/full_papers/beazley.

18. Kaul S, Koo H, Jenkins J, Rizzo M, Rooney T, Tallon L, et al. Analysis of the genome sequence of the
flowering plant Arabidopsis thaliana. Nature. 2000; 408(6814):796–815. https://doi.org/10.1038/
35048692

19. Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA, et al. Evaluation of GRCh38
and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly.
Genome Research. 2017; 27(5):849–864. https://doi.org/10.1101/gr.213611.116 PMID: 28396521

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 13 / 14

https://doi.org/10.1186/gb-2004-5-2-r12
https://doi.org/10.1186/gb-2004-5-2-r12
http://www.ncbi.nlm.nih.gov/pubmed/14759262
https://doi.org/10.1016/S0022-2836(05)80360-2
http://www.ncbi.nlm.nih.gov/pubmed/2231712
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/19261174
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1101/gr.229202
https://doi.org/10.1101/gr.229202
http://www.ncbi.nlm.nih.gov/pubmed/11932250
https://doi.org/10.1101/gr.2289704
https://doi.org/10.1101/gr.2289704
http://www.ncbi.nlm.nih.gov/pubmed/15231754
https://doi.org/10.1186/1471-2105-13-238
https://doi.org/10.1186/1471-2105-13-238
http://www.ncbi.nlm.nih.gov/pubmed/22988817
https://doi.org/10.1093/nar/27.11.2369
http://www.ncbi.nlm.nih.gov/pubmed/10325427
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1016/0022-2836(81)90087-5
http://www.ncbi.nlm.nih.gov/pubmed/7265238
https://doi.org/10.1093/bioinformatics/btt042
https://doi.org/10.1093/bioinformatics/btt042
http://www.ncbi.nlm.nih.gov/pubmed/23349213
https://doi.org/10.1016/j.tcs.2007.07.017
https://github.com/y-256/libdivsufsort/
https://github.com/y-256/libdivsufsort/
https://doi.org/10.1534/genetics.116.193227
http://www.ncbi.nlm.nih.gov/pubmed/27794028
https://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/full_papers/beazley
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/full_papers/beazley
https://doi.org/10.1038/35048692
https://doi.org/10.1038/35048692
https://doi.org/10.1101/gr.213611.116
http://www.ncbi.nlm.nih.gov/pubmed/28396521
https://doi.org/10.1371/journal.pcbi.1005944


20. Mikkelsen T, Hillier L, Eichler E, Zody M, Jaffe D, Yang SP, et al. Initial sequence of the chimpanzee
genome and comparison with the human genome. Nature. 2005; 437(7055):69–87. https://doi.org/10.
1038/nature04072

21. Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, et al. The Arabidopsis lyrata genome
sequence and the basis of rapid genome size change. Nature genetics. 2011; 43(5):476–481. https://
doi.org/10.1038/ng.807 PMID: 21478890

22. Lee H, Gurtowski J, Yoo S, Marcus S, McCombie WR, Schatz M. Error correction and assembly com-
plexity of single molecule sequencing reads. bioRxiv. 2014;

23. ECtools and data;. http://schatzlab.cshl.edu/data/ectools/.

24. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, et al. Extensive sequencing of seven human
genomes to characterize benchmark reference materials. bioRxiv. 2015; p. 026468.

25. Mikkelsen TS, Hillier LW, Eichler EE, Zody MC, et al. Initial sequence of the chimpanzee genome and
comparison with the human genome. Nature. 2005; 437(7055):69. https://doi.org/10.1038/nature04072

26. Boothby TC, Tenlen JR, Smith FW,Wang JR, Patanella KA, Nishimura EO, et al. Evidence for exten-
sive horizontal gene transfer from the draft genome of a tardigrade. Proceedings of the National Acad-
emy of Sciences. 2015; 112(52):15976–15981. https://doi.org/10.1073/pnas.1510461112

27. Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, et al. No evidence for extensive
horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proceedings of the
National Academy of Sciences. 2016; 113(18):5053–5058. https://doi.org/10.1073/pnas.1600338113

28. Ono Y, Asai K, HamadaM. PBSIM: PacBio reads simulatorâ€”toward accurate genome assembly. Bio-
informatics. 2012; 29(1):119–121. https://doi.org/10.1093/bioinformatics/bts649 PMID: 23129296

MUMmer4 genome alignment system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005944 January 26, 2018 14 / 14

https://doi.org/10.1038/nature04072
https://doi.org/10.1038/nature04072
https://doi.org/10.1038/ng.807
https://doi.org/10.1038/ng.807
http://www.ncbi.nlm.nih.gov/pubmed/21478890
http://schatzlab.cshl.edu/data/ectools/
https://doi.org/10.1038/nature04072
https://doi.org/10.1073/pnas.1510461112
https://doi.org/10.1073/pnas.1600338113
https://doi.org/10.1093/bioinformatics/bts649
http://www.ncbi.nlm.nih.gov/pubmed/23129296
https://doi.org/10.1371/journal.pcbi.1005944

