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Abstract

Motivation: Genome-wide association studies (GWAS) summary statistics have popularized and accelerated genetic
research. However, a lack of standardization of the file formats used has proven problematic when running second-
ary analysis tools or performing meta-analysis studies.

Results: To address this issue, we have developed MungeSumstats, a Bioconductor R package for the standardiza-
tion and quality control of GWAS summary statistics. MungeSumstats can handle the most common summary stat-
istic formats, including variant call format (VCF) producing a reformatted, standardized, tabular summary statistic
file, VCF or R native data object.

Availability and implementation: MungeSumstats is available on Bioconductor (v 3.13) and can also be found on
Github at: https://neurogenomics.github.io/MungeSumstats.

Contact: a.murphy@imperial.ac.uk or n.skene@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) summary statistics are
used to distribute the most important outputs of GWASs in a man-
ner which does not require the transfer of individual-level personally
identifiable information from participants. Summary statistics from
past studies tend to become more valuable over time as it becomes
possible to meta-analyze and integrate them with new annotation in-
formation through approaches such as Linkage Disequilibrium
Score Regression (LDSC) (Bulik-Sullivan et al., 2015), Generalized
Gene-Set Analysis of GWAS Data, MAGMA (de Leeuw et al., 2015)
and multi-phenotype investigations (Aguirre et al., 2021; Tanigawa
et al., 2019). Summary statistics are also commonly integrated for
use in the meta-analysis of GWAS. However, these tools and this in-
tegration require a standardized data format which was historically
lacking from the field. The diversity of data formats in summary sta-
tistics has been a result of the phenotypes in question, for example
disease-control or quantitative trait, the software used to perform
the analysis, such as PLINK (Purcell et al., 2007) and GCTA (Yang
et al., 2011) or just the preference of the consortium in question.

There have been movements to standardize the summary statistic
file format such as the NHGRI-EBI GWAS Catalogue standardized
format (Buniello et al., 2019) and the SMR Tool binary format (Zhu
et al., 2016). More recently, the variant call format to store GWAS
summary statistics (GWAS-VCF) (Lyon et al., 2021) has been

developed which has manually converted over 10 000 GWAS to this
format. While GWAS-VCF offers a standardized format that future
GWAS consortium may adopt, there are still a multitude of past, pub-
licly available GWAS which have not been standardized (Jansen et al.,
2019; Lin et al., 2018; Luciano et al., 2021; McCormack et al., 2018).
For instance, although their summary statistics are publicly available,
the GWAS for Cerebral small vessel disease (Sargurupremraj et al.,
2020) is not yet available in VCF format via IEU GWAS. Furthermore,
as VCF is not yet the standard for sharing files between geneticists, un-
published GWAS shared internally within genetics consortia or pro-
vided by personal genetics companies are still found in a variety of
summary statistic formats. As such, there is a need for tools to move
between the various formats in which summary statistics are stored.

The standardization of GWAS summary statistics also requires
quality control to ensure cohesive integration. For example, check-
ing if the non-effect allele from the summary statistics matches the
reference sequence from a reference genome to ensure consistent dir-
ectionality of allelic effects across GWAS. In addition, downstream
analysis tools often require a degree of quality control which, in the
case of meta-analysis, must be applied across all GWAS. One such
example is the removal of all non-biallelic SNPs is a common re-
quirement of all downstream analysis (Lyon et al., 2021).

To address these issues, we introduce MungeSumstats a
Bioconductor R package for the rapid standardization and quality

VC The Author(s) 2021. Published by Oxford University Press. 4593

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(23), 2021, 4593–4596

doi: 10.1093/bioinformatics/btab665

Advance Access Publication Date: 2 October 2021

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/23/4593/6380562 by guest on 16 August 2022

https://orcid.org/0000-0002-2487-8753
https://orcid.org/0000-0001-5949-2191
https://neurogenomics.github.io/MungeSumstats
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab665#supplementary-data
https://academic.oup.com/


control of many GWAS summary statistics. MungeSumstats can
handle the most common summary statistic formats as well as
GWAS-VCFs to enable the integrative meta-analysis of diverse
GWAS. MungeSumstats also offers a comprehensive and tuneable
quality control protocol with defaults for common, best-practice
approaches. MungeSumstats capitalizes on R’s familiar interface, is
readily accessible through Bioconductor and utilizes an intuitive ap-
proach, running with a single line of input code.

2 Heterogeneity in GWAS formats

To demonstrate the diversity in summary statistics across GWAS,
we analyzed a public repository of over 200 publicly available
GWAS (Gloudemans, 2021). From this, the most common summary
statistics were derived (see Fig. 1 for the 12 most common file head-
er formats).

A total of 327 summary statistic files were derived from the ana-
lysis which corresponded to 127 unique formats. Thus, on average,
every 2.5 summary statistic files had a unique format, showing the
clear disparity across GWAS. The 12 most common formats, shown
in Figure 1, accounted for approximately 47% all summary statis-
tics. MungeSumstats has been tested on these 12 most common for-
mats and is able to standardize their summary statistics.

3 Implementation

MungeSumstats was implemented using the R programming
language (v 4.0) and Bioconductor S4 data infrastructure (v 3.13)
enabling the full analysis of summary statistics within the R environ-
ment. The package removes the need for external software to
perform the standardization and quality control steps.

MungeSumstats’ implementation ensures both memory and
speed efficiency through the use of R data.table (v.1.14.0) (Dowle
and Srinivasan, 2021), which can take advantage of multi-core
parallelization. Moreover, MungeSumstats benefits from
Bioconductor’s infrastructure for efficient representation of full
genomes and their SNPs, using BSgenome (v 1.59.2) SNP reference
genomes (Pagès, 2021). Either Ensembl’s GRCh37 or GRCh38 are
queried dependent on the build for the particular GWAS. Numerous
of MungeSumstats’ quality control steps for summary statistics re-
quire the use of a reference genome. For example, an allele flipping
test is run (see Table 1) to ensure consistent directionality of allelic
effect and frequency variables. The effect or alternative allele is

always assumed to be the second allele (A2), in line with the ap-
proach for GWAS-VCF (Lyon et al., 2021). Moreover,
MungeSumstats can impute any missing, essential information like
SNP ID, base-pair position and effect/non-effect allele.

Using these two infrastructures, MungeSumstats conducts more
than 30 checks on the inputted summary statistics file (see Table 1
for a description of their use). MungeSumstats is also written to en-
sure the ease of addition of further checks so if users have summary
statistics which can’t currently be handled in MungeSumstats,
these can be incorporated easily in future releases. Finally,
MungeSumstats returns a reformatted, tabular summary statistics
file, a VCF or an R native data object (data.table, VRanges or
GRanges) with standardized columns for the information necessary
for downstream analysis.

The quality control and standardization checks conducted. Most
checks are optional and can be set by the user. Here, CHR is
chromosome, BP is Base-pair position, A1 is the non-effect allele, A2
is the effect allele, N is the sample size, INFO is imputation informa-
tion score, FRQ is the minor allele frequency (MAF) of the SNP,
SNP ID is the single nucleotide polymorphism reference ID, P is the
unadjusted P-value, Z is z-score, OR is odds ratio, LOG_ODDS is
the log odds ratio, BETA is the effect size estimate relative to the al-
ternative allele and SIGNED_SUMSTAT is the directional effect size
estimate for the summary statistics.

4 Usage

Once MungeSumstats is installed, usage involves a single line of
code or one function call (format_sumstats) with the path to the
summary statistics file of interest. Then, the path to the reformat-
ted, standardized summary statistic file is returned.
MungeSumstats also offers adjustable parameters to manage the
quality control steps. These include options to adjust the imput-
ation information score (INFO) cut-off threshold, the number of
samples (N) outliers cut-off threshold and whether to remove
mitochondrial SNPs or SNPs on the X or Y chromosome (see
Table 1). Quality control steps which use a reference genome can
also be adjusted such as whether to filter SNPs based on their RS
ID’s presence on the reference genome, whether to check for allele
flipping and whether to remove multi-allelic or strand-ambiguous
SNPs. These parameters ensure MungeSumstats can be adjusted to
the user’s analysis pipelines.

5 Conclusion

Here, we presented MungeSumstats, a Bioconductor package for the
standardization and quality control of GWAS summary statistics.
This package enables integration of summary statistics of vastly dif-
ferent formats, simplifying meta-analysis and summary statistics use
in other secondary research applications. The package provides an
efficient, user-friendly R-native approach, returning a standardized,
tabular format file, VCF or R native data object. This ensures that
the summary statistics are accessible to the average user. Moreover,
MungeSumstats is written to permit future development of addition-
al standardization steps if users encounter issues with their specific
GWAS.
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Table 1. MungeSumstats implemented checks

jSj MungeSumstats check Description

1 Check VCF format If the input file is in variant call format (VCF), if so import

2 Check tab, space or comma delimited If input is space or comma delimited convert to tab delimited. Can han-

dle .tsv, .txt, .csv, .tsv.gz, .txt.gz, .csv.gz, .tsv.bgz, .txt.bgz, .csv.bgz,

.vcf, .vcf.gz, .vcf.bgz files.

3 Check for header name synonyms If any alternative names are found for SNP, BP, CHR, A1, A2, P, Z, OR,

BETA, LOG_ODDS, SIGNED_SUMSTAT, N, N_CAS, N_CON,

NSTUDY, INFO or FRQ convert them to a standard name. Robust

conversion approach with 176 unique mappings

4 Check for multiple models or traits in GWAS If multiple, user must specify one to analyze

5 Check for uniformity in SNP ID Ensure no mix of RS ID, missing ‘rs’ prefix and/or CHR: BP

6 Check for CHR: BP: A2: A1 all in one column Split into separate columns if found

7 Check for CHR: BP in one column Split into separate columns if found

8 Check for A1/A2 in one column Split into separate columns if found

9 Check if CHR and/or BP is missing If so, infer from the chosen reference genome

10 Check if SNP ID is missing If so, infer from the chosen reference genome

11 Check if A1 and/or A2 are missing If so, infer from the chosen reference genome

12 Check that vital columns are present Check for the necessary columns; SNP, CHR, BP, P, A1, A2

13 Check for one signed/effect column Effect columns Z, OR, BETA, LOG_ODDS, SIGNED_SUMSTAT

14 Check for missing data If data is missing from any entry, remove the SNP

15 Check for duplicated columns If there are any remove one

16 Check for P-values lower than 5e-324 These are not recognized in R and cause issues with downstream analysis

software like LDSC/MAGMA. User can convert to 0.

17 Check N column Ensure it is an integer and check if the sample size for a SNP isn’t greater

than mean multiplied by five times the standard deviation. Removes

SNPs that have substantial more samples than the rest.

18 Check SNPs are RS ID’s Checks validity of SNP IDs as RS IDs, other IDs can still be used

19 Check for duplicated rows, based on SNP ID Duplicates are removed

21 Check for duplicated rows, based on base-pair position Duplicates are removed

22 Check for SNPs on reference genome Correct any missing from reference genome using BP and CHR

23 Check INFO score Remove SNPs with imputation score less than 0.9

24 Check for strand-ambiguous SNPs Remove strand-ambiguous SNPs if found

25 Check for non-biallelic SNPs (infer from reference genome) Infer from chosen reference genome and remove any if found

26 Check for allele flipping The effect/alternative/minor allele is assumed to be A2. The allele flip-

ping function checks A1 against a reference genome. For a given SNP,

if A1 doesn’t match the reference genome sequence (i.e. it is the alter-

native allele, not the reference allele for example), A1 and A2 along

with the effect and frequency columns are flipped, creating consistent

directionality of allelic effects across GWAS.

27 Check for SNPs on chromosome X, Y and mitochondrial

SNPs (MT)

If any are found these are removed.

28 Check output format is LDSC ready Standardized file can be passed to LDSC without pre-processing

29 Check effect column values Ensure effect columns (like BETA) aren’t equal to 0

30 Check Standard Error Ensure standard error (SE) is positive

31 Check dropped and imputed values Return indicators of the imputed values for a SNP and return the SNPs

and the reason for exclusion because of QC.
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