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MÜNTZ SYSTEMS AND ORTHOGONAL
MÜNTZ-LEGENDRE POLYNOMIALS

PETER BORWEIN, TAMAS ERDÉLYI, AND JOHN ZHANG

Abstract. The Müntz-Legendre polynomials arise by orthogonalizing the
Müntz system {xxo, xx¡, ...} with respect to Lebesgue measure on [0, 1]. In
this paper, differential and integral recurrence formulae for the Müntz-Legendre
polynomials are obtained. Interlacing and lexicographical properties of their ze-
ros are studied, and the smallest and largest zeros are universally estimated via
the zeros of Laguerre polynomials. The uniform convergence of the Christof-
fel functions is proved equivalent to the nondenseness of the Müntz space on
[0, 1 ], which implies that in this case the orthogonal Müntz-Legendre polyno-
mials tend to 0 uniformly on closed subintervals of [0, 1 ). Some inequalities
for Müntz polynomials are also investigated, most notably, a sharp L2 Markov
inequality is proved.

1. INTRODUCTION

Let 0</lo<Ai<.->oo. The classical Müntz-Szász Theorem states that
the Müntz polynomials of the form Ylk=o ûkxXk with real coefficients are dense
in L2[0, 1] if and only if

oo

(l.i) 5x1 = +°°-
k=\

If the constant function 1 is also in the system, that is, An = 0, then the
denseness of the Müntz polynomials in C[0, 1] in the uniform norm is also
characterized by ( 1.1 ). It is our intention to examine various facets of the Müntz
space

M = spanlx'1", xÀ' ,xh,...}
and for its subspaces

M„ = spanfx'*0, xAl, ... , xx"},

where the span is taken over all real numbers (§§4 and 5, where real properties
are studied) or complex numbers (§§2 and 3). It has been observed [25, MR
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#88e:33008] and [13], but does not appear to be particularly well known, that
the orthogonal polynomials associated with a Müntz system (with respect to
Lebesgue measure) on [0, 1] can be explicitly written down. These orthogonal
polynomials are called Müntz-Legendre polynomials. This is the key tool for
the analysis we undertake. We prove for example the L2 Markov inequality

\\xp'(x)h < ■4 ¿(1 + 24)
V -¿   ;,_n\\P   2

for all Müntz polynomials p from Mn . Compare this with the L°° result in
[17]

Both of these are sharp up to the constants. In order to prove this result and
various of its relatives we first derive some explicit formulae and recursions for
the sequence of Müntz-Legendre polynomials. Since this orthogonalization is
not well known, and for the sake of completeness, we briefly reprove some of
the basic formulae, some of which may be found in [13, 25]. This is contained
in §2. Section 3 offers some inequalities for Müntz polynomials, mainly, the
above-mentioned L2 Markov inequality. In §4, we study the interlacing and
lexicographical properties of the zeros of Müntz-Legendre polynomials. Also
in this section, universal estimates of the smallest and largest zeros of Müntz-
Legendre polynomials are obtained via the zeros of Laguerre polynomials. Fi-
nally in the last section, we study the properties of the Christoffel functions,
whose pointwise or uniform convergence on closed subintervals of [0, 1) turns
out to give a characterization of the nondenseness of the Müntz space on [0, 1].

Proofs of the Müntz-Szász Theorem can be found in [6, 8, and 10], and
various new developments are in [1-5, 7, 8, 11, 17, 18, 21-23, 26]. A very
special class of Müntz systems, the incomplete polynomials of the form xmp(x)
with ordinary polynomials p has been studied intensively (cf. [12, 20]).

2. Basic properties of Müntz-Legendre polynomials
Throughout this paper, we adopt the following definition for xx :

(2.1) xx = eiu*x,        xe(0,oo), X£C,

and the value at x = 0 is defined to be the limit of xx as x -» 0 from (0, oo)
whenever the limit exists. Given a complex sequence A = {An, Xx, X2, ...} , a
linear combination of the Müntz system {x^0, xA', ... , xXn} is called a Müntz
polynomial, or a A-polynomial. Denote the set of all such polynomials by
Mn(A), that is,

(2.2) Mn(A) = span{xA°, xA|, ... , xk"},

where the linear span is over the real numbers (§4 and §5) or over the complex
numbers (this section and §3), according to context. The union of all Mn(A)
is denoted by M (A), that is,

oo

(2.3) M(A) = \J Mn(A).
n=0
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For the L2 theory of a Müntz system, we consider

(2.4) A = {X0,Xx,X2,...},    <H(4)>-l/2, and Xk ¿ Xj (k ¿ j),

where 9\(X) is the real part of X. This ensures that every A-polynomial is in
L2[0, 1]. We can then define the orthogonal A-polynomials with respect to
the Lebesgue measure, the Müntz-Legendre polynomials. Although we almost
always assume (2.4), the following definition does not require the distinctness
of the exponents Xk .

Definition 2.1. Let A = {Xq , Xx, X2, ...} be a complex sequence. We define
the Mth Müntz-Legendre polynomial on (0, 1] to be (cf. [25])

(2.5) Ln(Xo,..., X„; x) = ~ [ "A t+tJk.+ 1 fdl ,        « = 0,1,2,...,

where the simple contour Y surrounds all the zeros of the denominator in the
integrand, and X denotes the conjugate of X.

The orthogonality of the above functions with respect to the Lebesgue mea-
sure will be proved in Corollary 2.3. Here we first record an immediate conse-
quence of the definition and the Residue Theorem.

Corollary 2.2. Let A = {Xq,Xx,X2, ...} satisfy (2.4). Then for every n =
0,1,2,...,

"      . n?r01(4+^ + l)
(2.6) Ln(X0, ... ,Xn\x) = ¿^ck,nxÁk,    ck>n = -¿¡-—

k=0 Uj=0,jjikKÁk-Áj)

with Ln(Xo, ... , Xn ; x) defined by (2.5).

So, Ln(Xo, ... , Xn) is indeed a A-polynomial provided that Xq,X\, ... , X„
are distinct. Its value at x = 0 is defined if for all k either 9i(Xk) > 0
or Xk = 0. For example, if Xq = 0 and 9i(Xk) > 0 (1 < k < n), then
Ln(Xo, ... , Xn;0) = Co,„ , and it is 0 if £K(An) > 0 also holds.

Remark. From either Definition 2.1 or Corollary 2.2, it is obvious that in
Ln(Xo, ... , Xn), the order of X0, ... , X„-x does not make any difference, as
long as X„ is kept last. For example, L2(X0, Xx, X2) = L2(Xx, An, X2), but both
are usually different from L2(X0, X2, Xx). For a fixed (ordered) sequence A, we
will use Ln(A), or simply Ln to denote the «th Müntz-Legendre polynomial
L„(Xq, ... , X„), whenever there is no ambiguity.

In (2.6), repeated indices (for example, Xq = Xx) cause a problem. But in the
original definition, Xk = Xj is allowed. We can view this also as a limiting case
(Xk -* Xj). We state a very special case when all indices are the same, which
turns out to be closely related to the Laguerre polynomials. Notice also that the
result is actually no longer a A-polynomial, with log x coming into the picture.

Corollary 2.3. Let Ln(Xo, ... , Xn; x) be defined by (2.5). If An = • • • = Xn - X,
then

(2.7) Ln(Xo ,...,X„;x) = x^n(-(l +X + X) logx),
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where 2^n is the nth Laguerre polynomial orthogonal with respect to the weight
e~x on [0, oo) and with £?„(0) = 1.
Proof. Since Xk = X for k = 0, 1, ... , n , (2.5) yields

^r¡(An, Xx, ... , X„ ; x) — x—r / (t-xyn+\

where the contour Y can be taken to be any circle centered at X. By the Residue
Theorem,

Ln(X0,...,Xn;x) = -^¡[xt(t + X+l)n]t=i

= ̂ J2(n^)xx(logxMn-l)---(k+l)(X + X+l)k
" k=0 ^   '

=x*±Un\i+x+mof.kx.
k=0    ' V   '

These are just the Laguerre polynomials {5Cn} in (-logx) which are orthogonal
with respect to the weight function e~' on [0, oo) with the normalization
-2£(0) = 1 (cf. [24, p. 100]), and we obtain (2.7).   D

The name Müntz-Legendre polynomial is justified by the following theorem,
where the orthogonality of {Ln} with respect to the Lebesgue measure is proved.

Theorem 2.4. Let A = {An, Xx, X2, ...} satisfy 9t(Afc) > -1/2 for k = 0, 1,
2, ... . Assume that Ln is defined by (2.5). Then

(2.8) / L„(x)Lm(x) = a„,m/(l+A„+Ä„)
Jo

holds for every m, n = 0, 1,2,....

Remark. In the orthogonality (2.8), repeated indices are allowed.

Proof. We provide a proof here for the sake of completeness. It suffices to
consider 0 < m < n. Also, we just need to prove (2.8) for distinct indices,
since from the definition in (2.5), L„(An, ... , Xn; x) is uniformly continuous
in An, ... , X„ for x in closed subintervals of (0, 1], and the nondistinct case
is a limiting argument. Since 9t(A¡t) > -1/2, we can pick a contour Y in
the integral (2.5) such that T lies completely to the right of the vertical line
9t(r) = -1/2, and T surrounds all zeros of the denominator. When t e T, we
have 9í(í + Xm) > -1, and /J xt+kmdx = 1/(1 + t + Xm), for every m > 0.
Hence,

Í1. , ,-r-,        1    fr}t + Xk + l dt/    L„(x)x/l'»flX = -z-^   / -+;-=-.
Jo 2nt^Lo    l'Xk    (t-Xn)(t + Xm + \)

Notice that for m < n, the new term t + Xm_+ 1 in the denominator can
be cancelled, and for m = n the new pole — (A„ + 1) is outside Y, because
9t(-Ä„ - 1) < -1/2.   Changing the contour from Y to \t\ = R with R >
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max{|Afj| + 1, ... , \X„\ + 1}, we have for 0 < m < n that

/•i _ i     f     n~l t
/ l„(x)xwx=±- \  n ~tJo 2ni JW=R "    /

t + Xk + 1 í/í
* - A*    (/ - Xn

àm,n TT       —Aw + Xk

"k=0
n-\

-Xk    (t-Xn)(t + Xn + l)

Xn      1      Xn ̂ _q — /(.„ — 1 — Afc

Letting i? —> oo, we see that the integral on the right-hand side is actually 0,
which gives

I1 A "~l    T
„i    j„ um,n TT      Ar¡      AAL„(x)x^i/x = _    m'n— Tv ' i   ±i   ±i n/o A„ + A„ + 1 *=* A„ + Afc + 1

Now with (2.6), we have for 0 < m < n that
• i ,i

/  Ln(x)Lm(x)dx = /  L„(x) VcfcjWxA*iix
■to ^ fc=0

= c^     L„(x)x*'»dx = ômin/(Xn+Xn + l),
Jo

where the last step comes from the formula for ck^„ in (2.6).   D

An alternative and probably easier proof of orthogonality follows from (2.10)
below, integration by parts and induction. Later we will see that Ln(l) = 1.
This can be viewed as the normalization for Müntz-Legendre polynomial Ln .
Clearly, if we let

(2.9) Un:=(\+Xn+In)x'2Ln,

then we get an orthonormal system, that is,

/  L*n(x)L*m(x)dx = ôm,n,        m,n = 0, 1, 2, ... .
Jo

These L*, « = 0,1,2,..., will be called orthonormal Müntz-Legendre poly-
nomials.

There is also a kind of Rodrigues formula for the Müntz-Legendre polyno-
mials [13]. Let

p„(x) = J2xXk/    fi   (A*-*,),
k=0 j=0, j¿k

then
Ln(x) = DXo---DÀn_ipn(x),

where the differential operators Dk are defined by Dxf(x) = x~xj¿(xx+xf(x)).
Notice also that pn and its first n - 1 derivatives vanish at x = 1 (cf. [13]).
This formula follows easily from Corollary 2.2.

Now we state the differential recurrence formulae for {Ln}.

Theorem 2.5. Assume that A is a complex sequence satisfying W(Xk) > -1/2
for all k. Then

(2.10) xL'n(x)-xL'n_l(x) = X„Ln(x) + (l+Xn-l)Ln-i(x),
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where Ln, « = 0,1,2,..., are the associated Müntz-Legendre polynomials
defined by (2.5).
Proof. From (2.5), we get

¿,^,w,.¿/ng^1)(|+Xj_i + 1)^,.,¿<

Multiplying both sides by xXn+Xn-,+x, we obtain

X (X      Ln(X))-2j[.Jr     n„-l(i_4)     U + 4-1 + 1)^ <«,

and again by the definition of L„_i (cf. (2.5)),

xx"+J->+x(x-x"L„(x)y = (xI-1+1L„_i(x))/.

Simplifying by the product rule and dividing both sides by xXn~l, we get (2.10).
G

Corollary 2.6. Let a complex sequence A satisfy (2.4), and let the associated
Müntz-Legendre polynomials Ln and the orthonormal Müntz-Legendre polyno-
mials L* be defined by (2.5) and (2.9), respectively. Then

n-l

(2.11) xL'n(x) = XnLn(x) + Y,^k+h + l)Lk(x),
k=0

(2.12) xL*'(x) = A^Cx) + \jxn +Xn + 1 £ \/xk+Xk + lL£(x),
fc=0

a«i/
n-l

(2.13) xL;'(x) = (A„ - l)L'n(x) + ^(Afc +Afc + \)L'k(x)
k=0

for every x £ (0, oo).
Proof. The first equality (2.11) follows from Theorem 2.4 by writing xL'n(x) -
xLq(x) as a telescoping sum. From (2.11) and the relation

Lk = (Xk+Xk + l)x/2Lk

(cf. (2.9)), we get (2.12). Differentiating (2.11), we obtain (2.13).   D

The values and derivative values of the Müntz-Legendre polynomials at 1
can all be calculated. They are useful in locating the zeros of Müntz-Legendre
polynomials (cf. §4).

Corollary 2.7. Let Ln be the nth Müntz-Legendre polynomial defined by (2.5)
(or by (2.6) from A satisfying (2.4)), then

n-l

(2.14) L„(l) = l,    L;(1)=A„ + £(A*+Xfc + 1),        « = 0,1,2,...,
k=0
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and
n-l

(2.15)   L';(l) = (Xn-l)L'n(l) + J2(Xk+Xk + l)Lk(l),        « = 0,1,2,....
fc=0

Proof. It suffices to show that Ln(\) = 1, for the rest follows from Corollary
2.6. Notice that from (2.5),

t.,,,. ' /n'iiiti-^L..
2niJrkJo n    l~Xn

Since T surrounds all zeros of the denominator, and the degree of the denom-
inator is one higher than that of the numerator, let Y be the circle \t\ = R and
let R -> oo . From this we get Ln(l) = 1.   D

The recurrence formula can also be expressed in an integral form.

Corollary 2.8. Let a complex sequence A satisfy (2.4), and let Ln, « = 0,1,
2, ... , be the Müntz-Legendre polynomials defined by (2.5). Then,

L„(x) = Ln_i(x) - (Xn+Xn-x + l)xx" i x-x"-xLn-x(t)dt,

xe(0, 1].
Proof. Rewriting the recurrence formula (2.10) as

xL„(x) - A„L„(x) = xL;_,(x) + (1+Ä„_i)L„_i(x),
and multiplying both sides by x~kn~x, we obtain

(x-a»L„(x))' = x-a"L;_1(x) + (1+Â„_,)x-^-1L„_,(x).

On taking the definite integral of the above on [x, 1], and using the fact that
Lk(l) = 1 for all k > 0, we conclude

1 -x-k"Ln(x) = \-x-x"Ln_x(x)- f (rx")'Ln_x(t)dt
J x

+ (X„_, + l) / rx»-xLn_x(t)dt,
J X

which implies (2.16).   D
Another observation is that if 0 < A„ —► oo very fast, then x = 1 is the

unique maximal point of the Müntz-Legendre polynomial on [0, 1 ]. A reason-
able conjecture seems to be that the maximum of \L„\ is always attained at one
of the endpoints of [0, 1 ] when A„ > 0, at least for regularly going sequences.

Corollary 2.9. If A = {An, Aj, X2, ...} is a nonnegative sequence such that
n-l

(2.17) A„>£(l+2Afc),        «=1,2,3,...,
fe=0

then
(2.18) |L„(x)|<L„(l)=l,        xe[0, 1),« = 2,3,4,....
Remark. If Xk = pk , then (2.17) holds if and only if p > 2 + \/3 .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



530 PETER BORWEIN, TAMAS ERDÉLYI, AND JOHN ZHANG

Proof. We assume A0 = 0. (The proof for A0 > 0 is essentially the same.) In
this case, L0(x) = 1, and (2.18) fails for « = 0. From (2.17), Ai > 1, and
Xk>2 + Xk_x for k > 2. By (2.6),

\Lm-\Cn i_naii+^i  Ai+v.

Hence, |Li(0)| < 1, and L„(0) < 1 for every « > 2. Now we use induction
to show that |L„(x)| < 1 on (0,1) for every « > 1. Indeed, for « = 1,
because |Li(0)| < 1 = Li(l), and Li(x) = Cn,i +CiiiXAl is monotone on
[0, 1], we have |Li(x)| < 1 on (0, 1). Assume that « > 2, and \Lk(x)\ < 1
for 1 < k < n — 1. Let x be a local maximal point of \Ln\ in (0, 1), then
L'n(x) — 0. Hence Corollary 2.6 yields

n-l

XnLn(x) + ^(l+2Xk)Lk(x) = 0.
k=0

Therefore

\Ln(x)\ = y
n-l

J2(l+2Xk)Lk(x)
k=0

n-l

<£(l+2Afc)/A„<l.   D
fc=0

We finish this section by introducing the reproducing kernels. They are sim-
ilar to the Dirichlet kernels in the trigonometric theory, or to the reproducing
kernels for ordinary polynomials (cf. [24, p. 40]).
Corollary 2.10. Let A = {An, Ai, X2, ...} be as in (2.4), and let Ln and L*n be
defined by (2.5) and (2.9). Then for every A-polynomial p(x) = YH=oakxXk in
Mn(A), we have

(2.19) p(x)= [ Kn(x,t)p(t)dt,
Jo

where
n

(2.20) Kn(x,t) = Y,LUx)~LW)
k=o

is the nth reproducing kernel.
Proof. This is a well-known consequence of orthogonality.   Since L*,  « =
0,1,2,..., form an orthogonal system

• i
K„(x, t)L*k(t)dt = L*k(x),        0<k<n.

io
Note that {Lq, ... , L*} is a basis of Mn(A), and the above is equivalent to
(2.19).   D

Later in §3 and §5, we will see the importance of Kn in solving an extremal
problem for A-polynomials, and in the characterization of denseness of Müntz
spaces.

3. Inequalities for Müntz systems

Let A = {An, Ai, X2, ...} satisfy (2.4) and let the Müntz spaces M(A) and
M„(A) be defined by (2.2) and (2.3). With the help of Müntz-Legendre poly-
nomials, we establish some inequalities for A-polynomials.

/'Jo

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MÜNTZ SYSTEMS 531

We now record an estimate of a A-polynomial p and its derivative at a point
y £ (0, 1] in terms of its L2 norm (\\p\\2 := (fx \p(t)\2 dt)xl2). First we state a
more general theorem in terms of linear functionals.
Theorem 3.1. Suppose that A satisfies (2.4) and that L*, « = 0,1,2,.
the orthonormal Müntz-Legendre polynomials. Then

1/2

are

(3.1) \<P(p)\ < Ei^ra2
Uc=0

\\p\h
for every linear functional <f> defined on the Müntz space Mn(A), and for ev-
ery p £ Mn(A). If <p ̂  0, then the equality holds if and only if p(x) =
const ELoW)^W-
Proof. This is also a well-known consequence of the orthogonality of L*, « =
0,1,2,... (cf. [24, p. 39], where <f)(p) - p(x) is considered). To show (3.1)
we write

n

P(x) = ^ckLk(x)
k=0

with Y,k=o \ck\2 = \\P\\2 ■ Hence, by the linearity of </>, we have
n

0(P) = 5>0(XP.
k=0

The theorem now follows from the Cauchy-Schwarz inequality.   D
If the linear functional is 4>(p) = p(v\y) for some fixed y 6 (0, 1] and fixed

integer v , then the above becomes
Corollary 3.2. Suppose that A satisfies (2.4) and that L*, « = 0,1,2,
the orthonormal Müntz-Legendre polynomials. Then

I 1/2

(3.2)

, are

\p{v)(y)\ < Ei¿rV)i
.k=0

for every A-polynomial p e Mn(A), v = 0, 1,2,

llPlb
. , and y € (0, 1]. Equality

holds if and only if p(x) = c Ylk=o L*kU\y)L*Áx) for some constant c.
Remark. An equivalent expression of (3.2) is

1/2

(3.3)     Y.\LT\y)\7
lk=0

= max{\pC\y)\:p£Mn(A),\\p\\2 = l}.

On letting «

(3.4)

oo, this leads to
"I 1/2

Ei^mi2
k=0

= sup{|^<%)|:peM(A),|M|2 = l}

which may be finite or infinite. We will return to this in §5.
More explicit estimates than those in Corollary 3.2 can be obtained by com-

bining Corollary 3.2 and Corollary 2.7. For simplicity, we only consider the
cases v = 0 and v = 1, that is, we only state the estimates for \p(y)\ and
\p'(y)\ in terms of ||p||2 and the exponents Xk . These are of the flavour of
Nikolskii and Bernstein type inequalities.
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Corollary 3.3. Under the conditions of Corollary 3.2, we have

(3.5)

and

\yi/2p(y)\ < ¿1 + 2ÍR(A,)
Jt=0

1/2

(3.6)        \y3/2p'(y)\ < £(l+2*(Afc))
k=0

k-l
Xk + ^(l+2D\(Xj))

7=0

ll/2

llPlb

hold for every p £ M „(A) and y £ (0, 1].
Proof. When y = 1, the above is a simple combination of Corollaries 2.7 and
3.3. For 0 < y < 1, the scaling x -» yx reduces the problem to the case
y= 1.   D

We now focus on one of our principal results, the L2 Markov inequalities
for Müntz polynomials, whose L°° version is in [17].

Theorem 3.4. Assume that A = {An, Ai, X2, ... } is given as in (2.4). Then,

1/2

£ \*j\2 + £(1 + 2tt(A;)) £ (1 + 2*(A,))
7=0 7=0 k=j+\

If, in addition, A consists of nonnegative real numbers, then

XmLÁ

,3.7,    s„p   MA
P6M„(A)        \\P\\2

(3.8) T2Ü
7=0 peM„(\)

2^< -L ¿(1+2A;)

where n is an arbitrary nonnegative integer.

Remark. It is easy to see that the imaginary part of the exponents X¡ does not
affect the Markov factor as much as their real parts. For example, if X¡ = ij,
where /' is the imaginary unit, then the Markov bound on the right-hand side
of (3.7) is [E^oU2 + n- ;')]1/2 = 0(n^2), while A; = ; results in 0(n2).

Proof. Let p £ M„(A) be arbitrary, and \\p\\2 = 1. Then p(x) = Ylk=oakL*k(x),
and IN! = £Lolû*l2 = l-Thus,

n

xp'(x) = ^akxL*k'(x).
k=0

If we use the recurrence formula (2.12) for the terms xLk(x) in the above and
rearrange the sum, we get

xp'(x) = £
7=0

ajXj + y 1 + Xj + Xj £ ak y 1 + Xk + Xk
k=j+l

L*(x),
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Hence,

/ \xp'(x)\2dx = J2
Jo ~k7=0

n

7=0

ajXj + y 1 + X¡ + Aj 53 ak\lx-+h+ h
k=j+\

y¡\ + A; + A; ¿ ak yf 1 + A* + Xk
k=j

Applying the Cauchy-Schwarz inequality for each term in the sum, and recalling
that Y,l=o \ak\2 = 1, we obtain

[l\xp'(x)\2dx<J2
J° 7=0

<

\Xj\2 + (l+Xj+Xj) £ (l+Xk+Xk)
k=j+l

2

E(1 + 2|A;I
7=0

The above proves (3.7) and the right half of (3.8). To prove the sharpness for
the case that each Xk is nonnegative, we need to find a A-polynomial p ^ 0 in
Mn(A), such that

(3.9) ii^'ii2>no(¿^) llalli
\k=0     /

Corollary 3.2 suggests that a possible candidate is Y,"k=oLk(\)L*k(x), and in-
deed, this works. However, a slight alternation makes the estimation easier. We
consider

k=0 V=°     /
Since the system {L£}£L0 is orthonormal, we have

2
•1 n I   k        \

(3.10) [i\p(x)\2dx = J2Àï\Y,*j) ^ íí>) •
Jo k=o     \j=o    J        \j=o    J

Now

xp'(x) = £ Vh   53 A,   x^'(x) = J] ¿mL;(x),
A:=0 \7=0     / m=0

where by the recurrence formula (2.12)
m n &

bm=Xm^/%,Y,Xj + Vl + Um  5Z   v/4(l+2AÄ)53A;-
7=0

n k
k=m+l 7=0

yt=m        7=0
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Hence

• i

/o
jí1 \xp'(x)\2dx = ¿ \bm\2 > ¿Am (¿A, 53 A;

rr¡=0 m=0 \k=m       7=0

=    2_^     /__, xmxkXjXkiXj<
0<m<n     0<j<k

m<k,k'<n0<j'<k'
5

>

0<m<7'<7'
/ , AmAfeA_/Afc<A_/' > — I 2^^*: ]   -

<j'<k<k'<n '   \k=0      )

This, together with (3.10), proves (3.9), and hence the left-hand side of the
inequality (3.8).   □

We believe that the general LP analogue of Theorem 3.4 is true. When the
sequence {Xo, X\, X2, ...} is lacunary, the proof can be obtained from (5.10)
in Lemma 5.6.

4. On zeroes of Müntz-Legendre polynomials

In this section we always assume that A0, Ai, ... , A„ are real numbers (not
necessarily distinct) greater than -1 /2. We make several observations on the
zeros of Müntz-Legendre polynomials, some of them are interesting for their
own right. The main result is a lexicographic property of the zeros given by
Theorem 4.9.

Proposition 4.1. For a function f £ C(0, 1), let S~(f) and Z(f) denote the
number of sign changes and the number of zeros, respectively, of f in (0, 1) (in
the count we count the zeros where there is no sign change, twice). Let i> and
Y be in C(0, 1). If there is an « , such that

« <S~(a^ + ßyi') <Z(a® + ß*¥)<n+\

holds for every real a and ß with a2 + ß2 > 0, then the zeros of <I> and *¥
strictly interlace.

A proof may be found in [19, Theorem 1.1 and Corollary 2].

Proposition 4.2. Assume that

{Xo, Xx, ... , Xn} = {Ao, A], ... , Xm},
where the numbers

Xo > X\, ... , Xm
are distinct, and let m}, j = 0, I, ... , m, be the number of indices i =
0, 1, ... , « for which A, = X¡. Then L„(Xq, ... , Xn) is in the Chebyshevspace

Hn := span{xA^(logx)': j = 0, I, ..., m, i = 0, 1,..., m¡ — 1}.
This follows from the definition (cf. (2.5)) and the residue theorem.

Proposition 4.3. {Lk(Xo, ... , Xk)}k=0 is a basis of the Chebyshev space Hn de-
fined in Proposition 4.2.

This follows from orthogonality (cf. Theorem 2.4).
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Proposition 4.4. Ln = L„(An, ... , X„) has exactly n distinct zeros in (0,1),
and Ln changes sign at each of these zeros.
Proof. Assume to the contrary that the number of sign changes of L„ in (0, 1)
is less than « . By Proposition 4.3, there is a function p £ span{L/t}^~¿ , which
changes sign exactly at those points in (0,1) where L„ changes sign. Then
J0 Lnp ^ 0 which contradicts Theorem 2.4.   D

Proposition 4.5. Let Xn<X*n. Then the zeros of

O = L„(An, ... , A„_i, A„)
and

*F = L„(An, ... , A„_i, A*)
in (0,1) strictly interlace.
Proof. Note that Theorem 2.4 implies

/ (a<D + ßV)p = 0
Jo

for every p £ Hn-\ , where i/n-i is defined in Proposition 4.2. As in the proof
of Proposition 4.4, aO + ß*¥ has at least « sign changes in (0, 1), whenever
a and ß are real with a2 + ß2 > 0. Proposition 4.2 implies that a<l> + ß*¥
cannot have more than n + 1 zeros in (0, 1 ) whenever a and ß are real with
a2 + ß2 > 0. Now the proof can be finished by Proposition 4.1.   D

Proposition 4.6. Let A0, ... , Xk_\, Xk+l, ... , X„ be fixed distinct numbers. Sup-
pose {Xki}^ c (-1/2, oo) is a sequence with lim,-_(0OXk>¡ = oo. Then the
largest zero of

Ln,k,i = Ln(Xo > • • • ) Afc-i, Xk¡, Xk+x, ... , A„)
in (0,1) tends to 1.

In particular, for the functions <1> and ¥ of Proposition 4.5, the jth largest
zero of G> in (0, 1) is less than the jth largest zero of *¥ in (0, 1) for every
j =1,2, ... , n.
Proof. Assume, without loss of generality, that Xk , is greater than each of the
numbers X¡, j = 0, 1, ... , n , j ^ k . We distinguish two cases.

Case 1. k = n . Let

8i\X) = Án t i\Ln ,n, j(Xj — Cn t)JX "■' J ,

where
c(0   =\~Y]Zo(hj + Xj + l)

ri7=o(^n.' _^')
is the coefficient of xA"-' in £„,„,,. Now Corollary 2.2 implies that the func-
tions gj converge uniformly on [ô, 1], ô £ (0, 1), to a function

0 ^ g £ H„-x = span^0 ,xx',..., xx"-'}.

By using Ln>n,i(l) = 1 (cf. Corollary 2.7), and the explicit formula for c„]n ,
it follows that g (I) < 0 and

^•n, i'-'n,n, ¡(^■) = ^n , i(^n ,n,i\X) — Cn > WX "•'j + XW; iCn,nX "''
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converge to g(x), as /: -> oo, for every x e (0, 1).
Now assume that the statement of the proposition is false. Then there is

an e £ (0, 1) and a subsequence {A„>¿i}jíj of {An>,}g, so that the Müntz-
Legendre polynomials Ln,n,ij nave no zeros in [1 - e, 1]. It now follows that
L„t„ti is nondecreasing on [1 - e, 1], otherwise L'n n ,(1) > 0 (cf. Corollary
2.7) would imply that L'n ¡ has at least « + 1 zeros in (0, 1), which is
impossible. This yields that g is nondecreasing in [1 - e, 1]. Since 0 ^ g £
//„_i and g(l) < 0, g(l - e) < 0. Therefore, Ln<nj(\ - e) < 0 if / is large
enough. Since L„„,(l) = 1 (cf. Corollary 2.7), each Ln _„_,- has a zero in
( 1 - e, 1 ) if i > io, which contradicts our assumption.

Case 2. 0 < k < « - 1. Let

gi(x)=Xk>i(Ln>k>i(x)-cki]nxx"-<),

where
c(0   ;_n^(Ajfc,,- + Aj + l)

U.j=0,j¿k("k,i—Xj)
is the coefficient of xXk-> in Lnki. From Corollary 2.2, we can deduce that
the functions gt converge uniformly on [5, 1], ô £ (0, 1), to a function

0 =é g e //„_i = span{xA°, ... , xA*-', xA*+1, ... , xXn}.

By using Lnkyi(l) = l (cf. Corollary 2.7) and the explicit formula for ck'\ , it
follows that g(\) < 0 and

L„>iM(x) = (L„,k,i(x)-cki]nxx^) + cki]nxx^

converge to g(x), as / —> oo, for every x 6 (0, 1). Now the proof of Case 2
can be finished as in Case 1.

The second part of the proposition follows from Case 1 and the interlacing
properties of zeros (cf. Proposition 4.5) by a limiting argument.   D

Proposition 4.7. Let Xk ̂  Xn. Then the zeros of

O = L„(An, • • • , Xk_x, Xk, Ajt+i, ... , A„_i, X„)
and

T = Ln(Ao, • • • , Afc_i, Xn , Xk+x, ... , A„_i, Xk)
in (0,1) strictly interlace.
Proof. Using arguments similar to those in the proof of Proposition 4.5, it is
easy to see that

«- 1 < S~(a<& + ß*¥) < Z(aO + ßV) < «,
and Proposition 4.1 gives the conclusion. The observations O(l) = 4*(1) = 1
and 1"(1)-O'(l) = X„-Xk ¿ 0 (cf. Corollary 2.7) guarantee that aQ+ßV ¿ 0
whenever a and ß are real with a2 + ß2 > 0.   D

Proposition 4.8. Let í> and *P be as in Proposition 4.7. Let Xx < x2 < ■■ ■ < x„
and x* < Xj < ■ ■ ■ < x* be the zeros of 4> and *F in (0, 1). Then Xk < A„
implies that x¡ <xj, j = 1,2,..., n.
Proof. By Proposition 4.7, it is sufficient to prove that x„ < x*. Let Hn be
the Chebyshev space defined in Proposition 4.2. Corollary 2.7 implies <P(1) =
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*F(1) = 1 and *¥'{l) - <P'(1) = A„ -Xk > 0. From this, and Proposition 4.7, we
can deduce that x„ > x* would imply that 0 ^ *F - i> £ Hn has at least « + 1
distinct zeros in (0, 1], which is a contradiction.   G
Theorem 4.9. Suppose max{Ay: 1 <j<n}< min{ßj\ 1 < j < «} and X¡ < p.¡
for some i and j. Let xx < x2 < ■■■ < xn and x\ < x| < • • • < x* be the zeros
of L„(Xo, ... , Xn) and L„(no, ... , fi„), respectively, in (0, 1 ). Then x¡ < x*,
7 = 1,2,...,«.
Proof. Repeated applications of Propositions 4.6 and 4.8 yield the desired re-
sult.   D
Proposition 4.10. Let Xo < X„. Let xi < x2 < ■ ■ ■ < x„ and x¡ < x£ < • • • <
x* be the zeros of L„(Xo ,X\,..., Xn) and Ln(Xn , A„_i, ... , Xo), respectively,
in (0, 1). Then {Xj}nj=i and {x*}"=¡ strictly interlace and Xj < x*, j =
1, 2, ... , «.
Proof. This follows from Propositions 4.7 and 4.8 and the Remark given after
Corollary 2.2.   D
Proposition 4.11. The zeros of

<fr = Ln-x(Xo, ... , A„_i)   and   X¥ = L„(X0,..., X„)
in (0, 1) strictly interlace.
Proof. Proposition 4.1 and arguments similar to those given in the proof of
Proposition 4.5 yield the theorem.
Corollary 4.12. Assume that Xx < x2 < ■■■ < xn are the zeros of L„(Xq , ... , X„)
in (0, 1). Then,

eXK~r^¿)<X'<X2<""<^<eXP((l+2A-K4« + 2))'
where A* := min{An, ... , X„}, X* := max{A0, ... , Xn} and jx > 3n/4 is the
smallest positive zero of the Bessel function J0(z) = I]^=0(_z2)/c/(^'2i:)2.
Proof. Let Jz^ be the «th Laguerre polynomial with respect to the weight e~x
on [0, oo), and let the zeros of £fn be z\ < z2 < ■■ ■ < z„ . Then we have
(cf. [24, pp. 127-131])

/2(4.1) ■"     < zx <z2<-    < zn <4« + 2,4« + I
where the upper estimate is asymptotically sharp, and the lower estimate is
sharp up to a constant (not exceeding 44/97t2). Since « is fixed, we let
e > 0 be sufficiently small that A» - ne > -1/2. Then all the zeros of
L„(An, ... , Xn) lie to the right of those of L„(A*, A* - e, ... , A* - «e) by The-
orem 4.9. From the contour integral formula (2.5), L„(X*, A* - e, ... , A* - «e)
tends to Ln(X,,X*,...,Xt) uniformly on closed subintervals of (0, 1] as
e —> 0. Recalling that (cf. Corollary 2.3)

L„(A», A,, ... , A») = xx'^n(-(l + 2A.)logx),
we conclude that Xi > y\, where yi is the smallest zero of L„(A», A«,... , A»).
Since zn = -(1 + 2A*)log}>i, we can combine this with (4.1) to get

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



538 PETER BORWEIN, TAMAS ERDELYI, AND JOHN ZHANG

which is the left-hand side inequality of this corollary. It can be seen similarly
that all zeros of Ln(Xo, ... , X„) lie to the left of the zeros of

Ln(X* ,...,X*) = xx'S?n(-(\ + 2A*) logx),
which implies that x„ < exp(-;'2/((l + 2A*)(4« + 2))).   □

5. Christoffel functions
Christoffel functions have been intensively studied, and their utility in the

theory of orthogonal polynomials and approximation theory can be illustrated
by their relation with polynomial inequalities, interpolation theory, quadrature
formulae, zeros of orthogonal polynomials, etc. (cf. [14]). In this section we
study the Müntz-Christoffel functions and some of their applications.

We assume that A = {Xo, Xx, X2, ...} satisfies
(5.1) 0 = A0<Ai<A2<->+oo.
The Christoffel function for the Müntz system M (A) with respect to Lebesgue
measure is defined by either side of the following equality

(5-2) r°o    L(xM2 =   pinfr  ,   ,  /' W)\2dt,l^k=0 l-kfcWI p€M(A),p{x)=l Jo
which is a well-known consequence of the orthogonality (cf. [24, p. 39]). If the
infimum is taken just over Mn(A), then we have

(5.3) ^„    /   ,  x„ =        min        ( \p(t)\2dt,£LolL¿WI2       peMn(A),P(x)=lJo
and either side can be called the «th Christoffel function. Recalling the repro-
ducing kernel (2.20), we see that l/K„(x, x) and

l/.rv(x,x):= lim l/Kn(x,x)
n—»oo

are what we have just defined (cf. (3.3) and (3.4)). For convenience, we will
defy the section title a little by stating results in terms of the reciprocal of the
Christoffel functions, namely, in terms of K(x) := K(x,x) and K„(x) :=
K„(x, x).

The classical Müntz theorem characterizes the denseness of M(A) by the di-
vergence of the series YlT=i A^1 • Now we can connect the Christoffel functions
with the denseness. All results here are stated for sequences A of integers, but
they hold for sequences A of nonnegative real numbers.
Theorem 5.1. Let A = {0 = Xo < X\ < ■ ■ ■ } be an integer sequence. Then the
following statements are equivalent:

(i) M (A) is not dense in C[0, 1] in the uniform norm;
(n) Ek=iKl<+°°>
(iii) There is an x £ [0, 1), such that ££=0 l-^JtMl2 < +00 >
(iy) Sitio \L*k(x)\2 converges uniformly on [0, 1 - e] for every 0 < e < 1.
The right endpoint 1 is quite different, where we always have (cf. (2.9) and

(2.14)) K(l) = ¿Xo \Lk(l)\2 = Er=o(! +2Ayt) = +00. The following lemma is
extracted from the proof of [7, Theorem 3], see also [2, Lemma 2]. It estimates
the function values and derivative values of A-polynomials on [0, 1 - e] by
their L2[0, 1] norms. The proof of Theorem 5.1 will follow this.
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Lemma 5.2. Let A = {0 = Xo < Xx < ■ ■ ■} be an integer sequence with YlT=i K?
< +00. Then there is a constant C = C(A, e, v) depending only on A, e, and
v

(5.4) maxy*>(x)|<c(/W)l2)      ,*e[0,i-c] yjo J
for every p £ M (A), for every v = 0, 1,2,..., and 0 < e < 1.
Proof. Since A is an integer sequence, and £it=i ^kl < +oo, by the proof of [7,
Theorem 3], for every e > 0, there is constant Co = Co(A, s) > 0 depending
only on A and e such that

\ak\<Co(l+e)x*U\p(x)\2dx\     ,       k = 0, 1,2,...,

hold for every A-polynomial p(x) = J2l=o akxXk, and for every « = 0,1,2,....
(We remark that the above also holds if inf^6N{A^. - Xk_x} > 0.) Note in par-
ticular that Co is independent of n . Hence

n n /  (x \ I/2
|/^>(x)|<53|^|A£xA'-"<CoE(i + e)M /   \p(x)\2dx\     X\xx*-V .

k=v k=u \Jo J
If x € [0, 1 - e], then (1 + e)x < 1 - e2 , and the above implies that

oo /     i \ 1/2

\pM(x)\<Co(l+syY,(l-e2)kk" U   \p(t)\2dt\     .

Therefore, (5.4) holds with C(A, e, v) = C0( 1 + e)" IXo( \-e2)kkv .   D
A simple consequence of the above is a bounded Nikolskii-type inequality.

Corollary 5.3. Under the condition of Lemma 5.2,

i   \p(x)\<C f \p(x)\dx,       p£M(A).,
-e] Jo

max
x€[0,l-«]- J0

where C = C(A, 6) depends only on A and e.
Proof. Consider the new sequence A* = {1, Ao + 1, Ai +1, ...} and the Müntz
space M(A*) = span{l, xAo+1, xXl+l,...}. Apply Lemma 5.2 with v = 1 for
the A*-polynomials JQX p(t)dt with p £ M(A), and use the simple fact that
\loXp(t)dt\<Jx\p(t)\dt.   G
Proof of Theorem 5.1. The equivalence of (i) and (ii) is the classical Müntz-
Szász Theorem. We show that (ii) =$■ (iv) => (iii) =^ (i).

(ii) => (iv). Since YlT=oK' < +00 > we nave °y Corollary 3.2 that

= 1°° ( ri(5.5) 53|L;(,/)(x)|2 = suphpW(x)|2:JpeM(A), /   |p(x)|2úíx
k=o i Jo

for every x e [0, 1]. Hence by Lemma 5.2, for every e > 0 there is a constant
C = C(A, e) such that

oo oo

(5.6) 53|L*(x)|2<C,    53|L*/(x)|2<C,        xG[0,l-e].
fc=0 k=0
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Since

(5-7) ^ ¿(L*(x))2 = ¿ L*k(x)Lp(x),
k=0 k=0

on applying the Cauchy-Schwarz inequality and (5.6), we see that (5.7) is uni-
formly bounded by C for x 6 [0, 1 - e], and « > 0. Therefore the functions
J2k=0\L*(x)\2 are equicontinuous on [0, 1 - e] for « = 0,1,2,..., which
implies the uniform convergence of Kn to K on [0, 1-e] by the Arzela-Ascoli
Theorem.

The implication (iv) => (iii) is trivial.
We now finish the proof by showing (iii) => (i). Assume that K(xo) < +oo

for some x0 e [0, 1]. Then M (A) fails to be dense in C[0, 1]. Otherwise, let
/ £ C[0, 1] be such that |/(x0)|2 > K(x0) + 2 and /J |/(x)|2 = 1. Then by
the density assumption, there is a p £ M (A), such that \p(x0)\2 > K(xq) + 1
and /0 \p(x)\2dx = 1, which means that

sup j \p(x0)\: P £ M(A), jf ' \p(x)\2dx = 11 > K(x0) + 1,

which contradicts (5.3).   D
Actually when M (A) is not dense, the unifonn convergence also holds for

higher derivatives, and in this case, we do not assume Ao = 0.
Theorem 5.4. Let A = {0 < A0 < Ai < •••} be a sequence of integers with
EZiK1 <+oo- Then

oo

(5.8) 53 \L*kV\x)\2 converges uniformly on[0, 1-e]
fc=0

for every v = 0, 1,2,...  and every 0 < e < 1.
Proof. The method is exactly the same as in the proof of (ii) => (iv) of The-
orem 5.1. Lemma 5.2 implies the uniform boundedness of the series in (5.8)
and that of Y^k=o l-^it + I2 on [0> 1 _ el> and the uniform boundedness of
JÏ S/Lol-kfc^MI2 on [0, 1-e] follows by Cauchy-Schwarz inequality. Now
the Arzela-Ascoli Theorem completes the proof.   D

We obtain immediately from Theorem 5.4 that under the conditions of
Theorem 5.4, the orthonormal Müntz-Legendre polynomials tend to 0 uni-
formly on closed subintervals of [0, 1). Whereas for orthogonal polynomi-
als pn , « = 0,1,2,..., orthonormal with respect to a measure supported
on [0, 1], only the relative growth \pn\2/J2k=o \Pk\2 tends to 0 uniformly on
[0,1] (cf. [15, 16, 27]).
Corollary 5.5. Suppose 0 = Ao < Ai <•••—► oo is a sequence of integers, and the
associated Müntz system is not dense in C[0, 1]. Then

lim    max    |L£(i/)(x)| = 0
k->ooxe[0,l-e]     K

holds for every 0 < e < 1 and every u = 0, 1,2,....
When the sequence A is lacunary, that is,

(5.9) inf{Xk+x/Xk:k = 0, 1,2,...}>1,
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we can say more about the boundedness of the function K. To do this, we first
give a bounded Bernstein-type and a bounded Nikolskii-type inequality for a
lacunary system (cf. [4, Theorem 3.1]).

Lemma 5.6. Let A = {0 = Ao < Ai < X2 < ■ ■ ■} be lacunary as in (5.9). Then

(5.10) \p>(x)\<JL- max|p(f)l,        x £ [0, 1), p £ M(A),

and

(5.11) \p(x)\<-^- [ \p(t)\dt,       xe[0,l), P£M(A),
1 - X Jo

hold with a constant C = C(A) depending only on A.
Proof. The inequality (5.10) comes from [4, Theorem 3.1]. For (5.11), consider
the new lacunary sequence A* = {0, 1 +Ao, 1 +At,...}, and apply (5.10) for
A*-polynomials which are indefinite integrals of p £ M (A).   D

Theorem 5.7. Let A = {Ao, Ai, X2, ...} be lacunary. Then there is a constant
C = C(A) depending only on A, such that

OO fy
K(x) = 53|L^(x)|2 < -1—-2 ,        X £ [0, 1).

k=o [l    X)

Proof. Since A is lacunary, applying Lemma 5.6, we get

By (5.2)-(5.3) or (3.2)-(3.4), we have K(x) < C/(\ - x)2.   D

As a last observation in this paper, we point out that if X» -> oo, then
there are numbers xn -* 1~, such that K(x„) > Cx/(l - xn). Indeed, let
x„ = 1 - 1/A„ , and consider p(x) = xXn. Then by (5.2)—(5.3) or Corollary 3.2,

K(xn) > p(xn)2/\\p\\22 = x2X»(2Xn + 1)

= (1 - l/Xn)2X"(2Xn + 1) > CiA„ > C,/(l -x„),

where Ci = inf{(l - l/Xn)2X» :«=1,2,3,...}>0.
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