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Abstract We consider a type I or type X two Higgs doublets
model with a modified lepton sector. The generalized lepton
sector is also flavor conserving but with the new Yukawa
couplings completely decoupled from lepton mass propor-
tionality. The model is one loop stable under renormalization
group evolution and it allows to reproduce the g − 2 muon
anomaly together with the different scenarios one can con-
sider for the electron g − 2 anomaly, related to the Cesium
and/or to the Rubidium recoil measurements of the fine struc-
ture constant. Thorough parameter space analyses are per-
formed to constrain all the model parameters in the different
scenarios, either including or not including the recent CDF
measurement of the W boson mass. For light new scalars
with masses in the 0.2–1.0 TeV range, the muon anomaly
receives dominant one loop contributions; it is for heavy new
scalars with masses above 1.2 TeV that two loop Barr–Zee
diagrams are needed. The electron g−2 anomaly, if any, must
always be obtained with the two loop contributions. The final
allowed regions are quite sensitive to the assumptions about
perturbativity of Yukawa couplings, which influence unex-
pected observables like the allowed scalar mass ranges. On
that respect, intermediate scalar masses, highly constrained
by direct LHC searches, are allowed provided that the new
lepton Yukawa couplings are fully scrutinized, including val-
ues up to 250 GeV. In the framework of a complete model,
fully numerically analysed, we show the implications of the
recent MW measurement.
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1 Introduction

In the search of Physics beyond the Standard Model (SM),
disagreement between measurements and theoretical expec-
tations, that is “anomalies”, can play the role of beacons to
guide our explorations. One longstanding anomaly concerns
the anomalous magnetic moment of the muon aμ = gμ−2

2 .
The Muon g-2 experiment at Brookhaven [1] and its succes-
sor at Fermilab [2,3] have produced the following result

δaExp
μ = aExp

μ − aSM
μ = (2.5 ± 0.6) × 10−9. (1)

where aExp
μ is the experimental observation and aSM

μ the
SM theoretical expectation [4–24]. Although there are unset-
tled discrepancies concerning Hadronic Vacuum Polarization
(HVP) contributions to aSM

μ [25–27], we interpret δaExp
μ in

Eq. (1) as a signal of New Physics (NP).1

Besides the muon, recent results concerning the anomalous
magnetic moment of the electron might also be interpreted as
NP hints [32]. On the one hand, perturbative calculations of
ae = ge−2

2 , which have reached impressive levels [5,33–36],
yield aSM

e as a series in powers of the fine structure constant

α. On the other hand, we have precise measurements of aExp
e

such as [37]. In the past, such measurements were indeed
used to infer values of α. On the contrary, measurements of
atomic recoils [38] provide now more precise determinations
of α, which give values of aSM

e such that

δaExp,Cs
e = −(8.7 ± 3.6) × 10−13 , (2)

from measurements with 133Cs [39], and

δaExp,Rb
e = (4.8 ± 3.0) × 10−13 , (3)

1 Solving the anomaly in Eq. (1) by enhancing the HVP contribution
could generate other tensions in electroweak precision fits [28–31].
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from measurements with 87Rb [40].
In reference [41] the possibility to explain the values

of δaExp
μ from the Muon g-2 Brookhaven experiment [1]

together with δaExp,Cs
e in Eq. (2) was successfully addressed

within a subclass of Two Higgs Doublets Models (2HDMs)
with general flavor conservation [42,43]. This was achieved,
of course, without conflicting with a large set of high and
low energy constraints. The specific model considered, the
so-called I-g�FC 2HDM is a 2HDM without tree level scalar
flavor changing neutral couplings (SFCNC): in the quark
sector it is a type I 2HDM while in the lepton sector it is
a general flavor conserving model. The existence of these
two anomalies has been addressed in a variety of scenarios,
including models with extra Higgs doublets [44–62], mod-
els with other scalar extensions [63–73] and supersymmetric
models [74–78]. There are also plenty of studies with other
approaches such as leptoquarks, vector-like fermions or extra
gauge bosons, among others [79–95].

The present work extends and improves several aspects of
[41].

– An improved numerical exploration of the parameter
space shows that some unexpected regions of interest
can be appropriately covered.

– Some theoretical assumptions like the perturbativity lim-
its on Yukawa couplings had a significant impact on the
analysis and were not fully considered.

– The latest Muon g-2 Fermilab result [2,3] consolidates
the need of NP brought by the previous Brookhaven
result.

– For aExp
e the situation is rather unclear: within the present

scenario, accommodating the values in Eq. (2) or in
Eq. (3) may have non-trivial consequences in the model,
since they differ in size and in sign.

– The recent measurement of the W boson mass by the
CDF collaboration [96], which disagrees with SM expec-
tations [97], can also be addressed in this context.

All in all, we are entering an era of exclusion or discovery at
the LHC and improved analyses of such potential NP hints
are necessary.

The manuscript is organized as follows. In Sect. 2, the
model is presented. Section 3 is devoted to a discussion of
general constraints which apply regardless of δa�. The new
contributions to δa� are analysed in Sect. 4. The main aspects
of the numerical analysis are introduced in Sect. 5. Next,
Sect. 6 contains the results of the different analyses together
with the corresponding discussions. Finally, the conclusions
are presented in Sect. 7. We relegate to the appendices some
aspects concerning different sections.

2 Model

The 2HDM is based on the SM gauge group with identical
fermion matter content2 and an additional complex scalar
doublet. Hence, we have Φ j ( j = 1, 2) and their corre-
sponding C-conjugate fields defined as Φ̃ j ≡ iσ2Φ

∗
j , with

opposite sign hypercharge.
The most general scalar potential of 2HDMs can be written

as

V (Φ1, Φ2) = μ2
11Φ

†
1Φ1 + μ2

22Φ
†
2Φ2 + (μ2

12Φ
†
1Φ2 + H.c.)

+ λ1(Φ
†
1Φ1)

2 + λ2(Φ
†
2Φ2)

2

+ 2λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + 2λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+ [λ5(Φ
†
1Φ2)

2 + H.c.]
+ [λ6(Φ

†
1Φ1)(Φ

†
1Φ2)

+ λ7(Φ
†
2Φ2)(Φ

†
1Φ2) + H.c.] ,

(4)

with real μ2
11, μ2

22 and λi (i = 1 to 4), whereas μ2
12 and

λ j ( j = 5 to 7) are complex in general. We assume that
V (〈Φ1〉, 〈Φ2〉) has an appropriate minimum at

〈
0
∣∣Φ j

∣∣0
〉 = 1√

2

(
0

v j eiθ j

)
, (5)

being θ j and v j (v j ≥ 0) real numbers. Taking this into
account, the Higgs doublets can be parametrized around the
vacuum as

Φ j = eiθ j
(

ϕ+
j

(v j + ρ j + iη j )/
√

2

)
. (6)

Introducing3 cβ ≡ cos β ≡ v1/v, sβ ≡ sin β ≡ v2/v,
tβ ≡ tan β = v2/v1, with β ∈ [0;π/2] and v2 = v2

1 + v2
2 =

(
√

2GF )−1 	 (246 GeV)2, one can perform a global SU (2)

rotation in the scalar space and express the scalar doublets in
the so-called Higgs basis [98–100]
(
H1

H2

)
= Rβ

(
e−iθ1Φ1

e−iθ2Φ2

)
, with

Rβ =
(

cβ sβ
−sβ cβ

)
and RT

β = R−1
β , (7)

where only one linear combination of the scalar doublets,
namely H1, has a non-zero vacuum expectation value (vev):

〈H1〉 = v√
2

(
0
1

)
, 〈H2〉 =

(
0
0

)
. (8)

The explicit degrees of freedom in this basis are defined by

H1 =
(

G+
v+H0+iG0√

2

)

, H2 =
(

H+
R0+i I 0√

2

)

, (9)

2 As in the SM, we do not include right-handed neutrinos.
3 From now on, t−1

β = cot β.
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where
(
G+
H+

)
= Rβ

(
ϕ+

1
ϕ+

2

)
,

(
H0

R0

)
= Rβ

(
ρ1

ρ2

)
,

(
G0

I 0

)
= Rβ

(
η1

η2

)
. (10)

As we can check, the would-be Goldstone bosonsG0 andG±
get isolated as components of the first Higgs doublet. Like-
wise, we already identify two charged physical scalars H±
and three neutral fields {H0, R0, I 0} that are not, in general,
the mass eigenstates. The latter are determined by the scalar
potential, which generates their mass matrix M 2

0 . This can
be diagonalized by a 3 × 3 real orthogonal transformation,
R, as

RTM 2
0 R = diag(m2

h,m
2
H,m2

A), RT = R−1, (11)

and thus the physical scalars {h, H, A} are given by
⎛

⎝
h
H
A

⎞

⎠ = RT

⎛

⎝
H0

R0

I 0

⎞

⎠ . (12)

Neglecting CP violation in the scalar sector, one has

R =
⎛

⎝
sαβ −cαβ 0
cαβ sαβ 0
0 0 1

⎞

⎠ , (13)

where sαβ ≡ sin(α+β) and cαβ ≡ cos(α+β), with π/2−α

being the mixing angle that parametrizes the change of basis
from the fields in Eq. (6) to the mass eigenstates in Eq. (12).
We should point out that different conventions for Eq. (13)
can be found in the literature.

Regarding the Yukawa sector, it is extended to

LY = −Q̄0
L (Φ1Yd1 + Φ2Yd2) d

0
R

−Q̄0
L

(
Φ̃1Yu1 + Φ̃2Yu2

)
u0
R

−L̄0
L (Φ1Y�1 + Φ2Y�2) �0

R + H.c. , (14)

where the couplings Yd j , Yu j and Y�j ( j = 1, 2) are 3 × 3
complex matrices in flavor space. One should notice that there
are only two flavor structures in the leptonic sector because
we are not considering right-handed neutrinos. In the Higgs
basis, the Yukawa Lagrangian takes the form

LY = −
√

2

v
Q̄0

L

(
H1M0

d + H2N0
d

)
d0
R

−
√

2

v
Q̄0

L

(
H̃1M0

u + H̃2N0
u

)
u0
R

−
√

2

v
L̄0
L

(
H1M0

� + H2N0
�

)
�0
R + H.c.. (15)

It is then clear that the matrices M0
f ( f = d, u, �) are the

non-diagonal fermion mass matrices since they are coupled

to the only Higgs doublet that acquires a non-vanishing vev,
i.e., H1.

The model we are considering in the quark sector is
defined by

Yd2 = dYd1 , Yu2 = d∗Yu1 , (16)

which is equivalent to

N0
d = t−1

β M0
d , N0

u = t−1
β M0

u . (17)

In the leptonic sector, there exist two unitary matricesWL and
WR such that both W †

LY�iWR (i = 1, 2) get simultaneously
diagonalized. It is well-known that the structure of the quark
sector can be enforced through a Z2 symmetry, but this is not
the case in the lepton sector. Nevertheless, as it is shown in
Appendix A, the entire Yukawa structure is stable under one
loop renormalization group evolution (RGE) and, therefore,
the model is free from unwanted SFCNC.

Going to the fermion mass bases for our I-g�FC model –
type I in the quark sector and general flavor conserving in the
lepton sector – we get the relevant new Yukawa structures:

LY = −
√

2

v
Q̄L (H1Md + H2Nd) dR

−
√

2

v
Q̄L

(
H̃1Mu + H̃2Nu

)
uR

−
√

2

v
L̄ L (H1M� + H2N�) �R + H.c. , (18)

with

Nd = t−1
β Md , Nu = t−1

β Mu, N� = diag(ne, nμ, nτ ) , (19)

and M f ( f = u, d, �) the corresponding diagonal fermion
mass matrices. Note that the quark couplings Nu and Nd are
those from 2HDMs of type I or X. On the other hand, the
matrices N� correspond to a general flavor conserving lepton
sector. Therefore, they are diagonal, arbitrary and one loop
stable under RGE, as it was shown in [43], meaning that they
remain diagonal.

We must stress that it is the fact that ne and nμ are
completely independent what implements the desired decou-
pling between electron and muon NP couplings in order to
have enough freedom to address the corresponding (g − 2)�
anomalies. We assume that these couplings are real, i.e.,
Im(n�) = 0. This prevents us from dangerous contribu-
tions to electric dipole moments (EDMs), that are tightly
constrained: |de| < 1.1 × 10−29 e · cm [101].

Furthermore, we consider an scalar potential shaped by
a Z2 symmetry that is softly broken by the term μ2

12 
= 0.
Hence, we have to take λ6 = λ7 = 0 in Eq. (4). We also
assume that there is no CP violation in the scalar sector, so
Eq. (13) is fulfilled.

123



915 Page 4 of 25 Eur. Phys. J. C (2022) 82 :915

Under these assumptions, the flavor conserving Yukawa
interactions of neutral scalars read

LN = −mu j

v

(
sαβ + cαβ t

−1
β

)
h ū j u j

− mdj

v

(
sαβ + cαβ t

−1
β

)
h d̄ j d j

− m� j

v

(

sαβ + cαβ

Re
(
n� j

)

m� j

)

h �̄ j� j

− mu j

v

(
−cαβ + sαβ t

−1
β

)
H ū j u j

− mdj

v

(
−cαβ + sαβ t

−1
β

)
H d̄ j d j

− m� j

v

(

−cαβ + sαβ

Re
(
n� j

)

m� j

)

H �̄ j� j

+ i
mu j

v
t−1
β A ū jγ5u j − i

md j

v
t−1
β A d̄ jγ5d j

− i
Re
(
n� j

)

v
A �̄ jγ5� j ,

(20)

and those involving charged scalars are

LCh = H−
√

2v
d̄i V

∗
j i t

−1
β

[
(mu j − mdi ) + (mu j + mdi )γ5

]
u j

+ H+
√

2v
ū j V ji t

−1
β

[
(mu j − mdi ) − (mu j + mdi )γ5

]
di

− H−
√

2v
�̄ j Re

(
n� j

)
(1 − γ5) ν j

− H+
√

2v
ν̄ j Re

(
n� j

)
(1 + γ5) � j ,

(21)

with i, j = 1, 2, 3 summing over generations. It is easy to
check that h presents the same couplings as the SM Higgs
boson when we take the scalar alignment limit, i.e., sαβ → 1.

3 General constraints

Before addressing the different contributions to the anoma-
lous magnetic moments δa�, we discuss in this section some
general constraints which are relevant in the scenario under
consideration. By “general” we mean that they do not depend
specifically on the values of Re (ne), Re

(
nμ

)
, δae and δaμ.

Furthermore, their effects can be understood in simple terms.

– Alignment. The couplings of the scalar h, assumed to be
the SM-Higgs-like particle with mh = 125 GeV, deviate
from SM values through the scalar mixing in Eq. (13).
Measurements of the signal strengths in the usual set
of production mechanisms and decay channels impose
cαβ � 1. Concerning the scalar sector, we are thus in the
alignment limit.

– Oblique parameters and MW . Electroweak precision mea-
surements constrain deviations in the oblique parameters
S and T [97,102]:

ΔS = 0.00 ± 0.07, ΔT = 0.05 ± 0.06,

ρ = 0.92 (correlation). (22)

In 2HDMs, in the alignment limit mentioned above, one
can observe that the corrections to S and T are kept under
control when either mH± 	 mA or mH± 	 mH, as shown
in Fig. 1a. Recently, the CDF collaboration announced
a measurement of the W boson mass which disagrees
with SM expectations [96]. In fits of electroweak preci-
sion observables this disagreement can be translated into
values of the oblique parameters (ΔS,ΔT ) 
= (0, 0)

[103,104] (although fits including ΔU have also been
considered, we focus on the case ΔU = 0, appropriate
here). In order to “explain” the CDF MW “anomaly” one

(a) (b) (c)

Fig. 1 Oblique parameters: allowed regions in mA − mH± vs. mH − mH± . Darker to lighter colors correspond to 2D-Δχ2 1, 2 and 3σ regions.
The plot corresponds to mH± = 1 TeV and scalar alignment
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can thus consider (ΔS,ΔT ) constraints from [103,104]
instead of Eq. (22). We can consider, in particular,

(i) the “conservative scenario” in [103] which combines
the CDF with previous measurements and gives

ΔS = 0.086 ± 0.077, ΔT = 0.177 ± 0.070,

ρ = 0.89, (23)

(ii) the results in [104] which solely use the CDF mea-
surement and give

ΔS = 0.15 ± 0.08, ΔT = 0.27 ± 0.06,

ρ = 0.93. (24)

In the alignment limit, for mH± = 1 TeV, Eqs. (23) and
(24) give the allowed regions represented in Fig. 1b, c
respectively. In sharp contrast with Fig. 1a, notice in
Fig. 1b, c how near degeneracy of the three new scalars
is excluded, and how even near degeneracies mH± 	 mA

or mH± 	 mH are quite disfavored. Furthermore, notice
that the 1σ region (2D-Δχ2 ≤ 2.23) does not appear
in Fig. 1c: contrary to Eq. (23), with Eq. (24) one cannot
obtain the minimum χ2

Min with mH± = 1 TeV.
– H± − induced FCNC. The charged scalar H± can con-

tribute to ΔF = 1 and ΔF = 2 FCNC processes like
b → sγ and Bq–B̄q mixings (for example, through SM-
like box diagrams for Bq–B̄q in which W± are replaced
with H±). The dominant contributions involve virtual top
quarks as in the SM, with couplings including now t−1

β

factors. Keeping those contributions within experimental
bounds only allows, roughly, the colored region in Fig. 2.
For each value of mH± there is a lower bound on tβ . See
[105–107] for further details.

– Scalar sector perturbativity. Additional constraints on
scalar masses vs. tβ arise from perturbativity require-
ments on the quartic coefficients of the scalar poten-
tial and from perturbative unitarity of 2 → 2 scattering
amplitudes [108–114]. With a Z2 symmetric potential, it
is difficult to obtain masses above 1 TeV and values of
tβ larger than 8. Larger values of the masses and larger
values of tβ can be nevertheless obtained with the intro-
duction of a soft symmetry breaking term μ2

12 
= 0 in
Eq. (4) [114,115].

– Gluon-gluon fusion production cross section. Let us con-
sider the production cross section of H and A through the
one loop gluon-gluon fusion process. In the scalar align-
ment limit, one can read from Eq. (20) that the same t−1

β

factor applies to both pure scalar H and pure pseudoscalar
A couplings with the top quark in the triangle loop:

σ(pp → S)ggF ∝ t−2
β |FS(x)|2,

x = 4m2
t /m

2
S, S = H, A. (25)

Fig. 2 H± FCNC: mH± vs. tβ allowed region when contributions of
H± to Bq–B̄q are below experimental uncertainty in ΔMBq

The corresponding loop functions FH and FA [116–121]
are different due to the scalar or pseudoscalar character:

FH(x) = −2x(1 + (1 − x) f (x)),

FA(x) = −2x f (x),

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

arcsin2(1/
√
x), x ≥ 1

− 1

4

(

ln

(
1 + √

1 − x

1 − √
1 − x

)

− iπ

)2

, x < 1

⎫
⎪⎪⎬

⎪⎪⎭
.

(26)

Figure 3 shows |FH(x)|2, |FA(x)|2 and the ratio |FA(x)|2
/|FH(x)|2 as a function of the scalar mass. It is clear
that the pseudoscalar A has a larger gluon-gluon produc-
tion cross section than the scalar H for mA = mH (up
to a factor of 6 for mA = mH = 2mt ). Since dimuon
searches [pp]ggF → S → μ+μ− at the LHC can be
rather constraining for scalar masses mS < 1 TeV, one
can expect that in that low mass region mA > mH. One
could have worried about the validity of this expectation
in case Br

(
A → μ+μ−) � Br

(
H → μ+μ−), but the

only way to achieve a suppression of Br
(
A → μ+μ−)

relative to Br
(
H → μ+μ−) is through the existence of

A → HZ decays, which are only available if mA > mH,
and thus cannot change that expectation.

– e+e− → μ+μ− at LEP. Sizable ne and nμ are necessary
ingredients for the contributions to ae and aμ involving
the new scalars H, A and H±. Data from LEP [122] on
e+e− → μ+μ− with

√
s up to 210 GeV are sensitive

to s-channel H and A mediated contributions (contrary
to the LHC gluon-gluon fusion process, being scalar or
pseudoscalar does not change the sensitivity of LEP data).
One can roughly expect that agreement with LEP data
imposes mA,mH ≥ 210 GeV.
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Fig. 3 Loop functions controlling gluon-gluon production cross sec-
tions of scalars

4 Contributions to δa�

The complete prediction of the anomalous magnetic moment
aTh
� , � = e, μ, is

aTh
� = aSM

� + δa� , (27)

where aSM
� is the SM contribution and δa� the NP correction.

The anomalies in Eqs. (1)–(3) are “solved” for δae = δaExp
e

and δaμ = δaExp
μ . We introduce for convenience Δ� such

that

δa� = K� Δ�, K� = 1

8π2

(m�

v

)2
. (28)

For δaμ one needs

Δμ 	 1 , (29)

while for δae one needs

ΔCs
e 	 −16 , ΔRb

e 	 9, (30)

where the superscript corresponds to the different values in
Eqs. (2) and (3).

In the model considered here, it is well known that both
one loop and two loop (of Barr–Zee type) contributions can
be dominant. In this section we analyse both types of con-
tributions in the scalar alignment limit sαβ → 1 and keep-

ing only leading terms in
m2

�

m2
S
, S = H, A, H±. Full results,

used for instance in the numerical analyses, can be found in
Appendix B.

4.1 One loop contributions to δa�

The one loop result Δ(1)
� has contributions from H, A and H±.

With the approximations mentioned above and the couplings
in Eqs. (20) and (21), we have

Δ
(1)
� 	 |n�|2

(
I�H

m2
H

− I�A − 2/3

m2
A

− 1

6m2
H±

)

, (31)

where

I�S = −7

6
− 2 ln

(
m�

mS

)
. (32)

The range of interest in our analyses will be mS ∈ [0.2; 2.5]
TeV, in which case

IμS ∈ [13.9; 18.9], (33)

while

IeS = IμS + 2 ln

(
mμ

me

)
= IμS + 10.7. (34)

In Eq. (31), the H contribution is positive, the A contribution
is negative and the H± contribution is negligible. One can
then anticipate the following.

– The muon anomaly Δμ 	 1 can only be explained with
the one loop H contribution and provided

1 	 |nμ|2
m2

H

IμH ⇒ |nμ| ∼ 1

4
mH. (35)

Considering |nμ| < 250 GeV, a priori there could be a
one loop explanation of δaμ formH < 1 TeV. Since the A
contribution has opposite sign, if mA ∼ mH a substantial
cancellation would occur. As discussed in Sect. 3, it is
precisely for light H that one expectsmA > mH, in which
case that cancellation is largely avoided and a one loop H
explanation viable. For heavier mH, the muon anomaly
needs other contributions.

– For the electron Cs anomaly, ΔCs
e 	 −16 can only be

explained with the one loop A contribution provided

− 16 	 −|ne|2
m2

A

IeA ⇒ |ne| ∼ 4

5
mA. (36)

For |ne| < 250 GeV, this would require the pseudoscalar
A to be rather light, mA < 300 GeV. On the other hand,
mA > 200 GeV would require |ne| > 160 GeV: besides
perturbativity concerns, such values of |ne| might be hard
to reconcile with other constraints. More importantly,
since we expect mH < mA for light A, we also expect a
sizable cancellation among H and A contributions. From
this simple analysis, obtaining ΔCs

e 	 −16 with one loop
contributions does not appear to be feasible.

– For the electron Rb anomaly, ΔRb
e 	 9 can only be

explained with the one loop H contribution and provided

9 	 |ne|2
m2

H

IeH ⇒ |ne| ∼ 3

5
mH. (37)

For mH > 200 GeV, this would require |ne| > 120 GeV.
If the same concerns on the values of |ne| mentioned for
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ΔCs
e 	 −16 apply here, obtaining ΔRb

e 	 9 does not
seem to be feasible neither; otherwise ΔRb

e 	 9 would
be “easier” to accommodate with one loop contributions
than ΔCs

e 	 −16 because of the sign difference and the
smaller absolute value.

4.2 Two loop contributions to δa�

The dominant two loop contributions are the Barr–Zee ones.
Diagrammatically they correspond to contributions where a
closed fermion loop is attached to the external lepton through
two propagators: one photon and one of the new scalars H,
A. In the scalar alignment limit,

Δ
(2)
� = −2α

π

Re (n�)

m�

F. (38)

It is important to notice that these contributions are linear
in n�. Detailed expressions are provided in Appendix B. In
Eq. (38) we have

2α

πme
	 9.1 GeV−1,

2α

πmμ

	 0.044 GeV−1. (39)

The function F depends on the masses of the fermions in the
closed loop, their couplings to H and A, and on mA and mH.
Considering the dominant contributions from top and bottom
quarks, and also from tau and muon leptons since nτ and nμ

are free parameters,

F = t−1
β

3
[4( ftH + gtA) + ( fbH − gbA)]

+Re (nτ )

mτ

( fτH − gτA) + Re
(
nμ

)

mμ

( fμH − gμA), (40)

with

fx S = f

(
m2

x

m2
S

)

, gxS = g

(
m2

x

m2
S

)

. (41)

The functions f (z) and g(z) are defined in Appendix B. It is
to be noticed that (i) f (z) ∼ g(z) in the range of interest, (ii)
larger values correspond to heavier fermions, (iii) for the top
quark loop, f and g vary between 0.08 and 1 in the relevant
range of scalar masses, mS ∈ [0.2; 2.5] TeV.

– If the electron anomaly is to be obtained through the two
loop contributions,

Δe 	 −9.1 F Re (ne) /GeV, (42)

and thus

from ΔCs
e , Re (ne) F 	 1.8 GeV,

from ΔRb
e , Re (ne) F 	 −1.0 GeV.

(43)

The sign and the magnitude of F is fixed by the Re (ne)
value to fix δae.

– For mH > 1 TeV, two loop contributions are necessary
to explain the muon anomaly, in which case

Δμ 	 −0.044 F Re
(
nμ

)
/GeV ⇒ Re

(
nμ

)

F 	 −23 GeV. (44)

If follows that, for mH > 1 TeV,

for ΔCs
e and Δμ, Re

(
nμ

) ∼ −13Re (ne) ,

for ΔRb
e and Δμ, Re

(
nμ

) ∼ 23Re (ne) .
(45)

These correlations show that, in the present framework, the
independence of ne and nμ is essential to explain the different
sign of ΔCs

e and Δμ. This sign difference is challenging for
many scenarios addressing simultaneously both anomalies.
In this sense, addressing ΔRb

e and Δμ is less challenging.

5 Analysis

In Sect. 3 we have discussed some general constraints
that apply without regard to the values of ne and nμ of
interest to reproduce the δa� anomalies; in Sect. 4 we
have explored the obtention of the δa� anomalies through
one and two loop contributions. It is now time to present
the main aspects of our detailed numerical analyses. The
goal of the numerical analyses is to explore the param-
eter space of the model and map the different regions
where a chosen set of relevant constraints is satisfied and
the δa� anomalies are explained in terms of the new con-
tributions. The independent parameters of the model are
{tβ,mH,mA,mH± , μ2

12, cαβ, Re (ne), Re
(
nμ

)
, Re (nτ )}:{tβ,

mH,mA,mH± , μ2
12, cαβ} control the scalar sector (together

with v and mh) while {Re (ne) , Re
(
nμ

)
, Re (nτ )} give the

lepton Yukawa couplings (quark Yukawa couplings are fixed
by tβ ). The set of relevant constraints includes the following.

– Boundedness from below of the scalar potential [123],
perturbativity of quartic couplings and perturbative uni-
tarity of high energy 2 → 2 scattering in the scalar sector
[110].

– Corrections to the oblique parameters S and T in agree-
ment with electroweak precision data [97,102].

– “Production×decay” predictions for h in agreement with
Higgs signal strengths [124–136]. As already mentioned,
this constraint forces the alignment limit in the scalar
sector: in the analyses of Sect. 6 one obtains indeed cαβ <

3 × 10−3.
– Lepton flavor universality in leptonic and semileptonic

decays [97,137,138].
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– b → sγ and B0
q–B̄0

q data [97,105,106].
– e+e− → μ+μ−, τ+τ− data from LEP (with center of

mass energies up to 210 GeV) [122].
– LHC searches: resonant pp → S → μ+μ−, τ+τ−

searches with gluon-gluon fusion pp → S production
[139–143] and H± searches in pp → H±tb, H± →
τν, tb [144–147].

For additional details on the different constraints we refer to
[41]. The constraints are typically modelled with a gaussian
likelihood or an equivalent χ2 term, the overall likelihood
is sampled over parameter space using Markov chain Monte
Carlo techniques in order to obtain the regions where (best)
agreement with the constraints is obtained. There are two
final aspects of central importance which require a specific
discussion: (i) how are the anomalies included in the analy-
ses, (ii) what ranges are considered for the n� parameters.
Concerning the a� anomalies, the situation for δaExp

μ is clear:

one should consider Eq. (1). On the contrary, for δaExp
e the

situation is not settled: we have Eqs. (2) and (3), which are
rather incompatible. In order to have a complete picture, we
analyse both cases separately. Furthermore, we also consider
two additional possibilities concerning δaExp

e :

– despite the marginal compatibility of δaExp,Cs
e and δaExp,Rb

e ,
we combine them into

δaExp,Avg
e = −(2.0 ± 2.2) × 10−13, (46)

which has the same sign as δaExp,Cs
e , i.e. opposite to

δaExp
μ , but a size close to 4 times smaller;

– a conservative approach in which we only assume that
|δae| ≤ 20×10−13. Rather than targeting a specific value,
this analysis may help to single out regions of parameter
space where one cannot reproduce δaExp

μ together with

any value of δae compatible with δaExp,Cs
e or δaExp,Rb

e .

We will refer to these separate analyses as “aCs
e ”, “aRb

e ”,

“aAvg
e ”, “aBound

e ”. For their implementation in the analyses,
we assign a joint χ2 contribution (corresponding to a gaus-
sian factor in the likelihood)

χ2
g−2(δae, δaμ) =

(
δae − ce

se

)2

+
(

δaμ − cμ

sμ

)2

, (47)

where c� is the experimental central value and s� is the exper-
imental uncertainty divided by 4. The scope of this choice –
dividing the experimental uncertainty by 4 instead of simply
using the experimental uncertainty – is to show clearly that
the model can reproduce easily and simultaneously both the
muon and the electron anomalies, and to guarantee that we
are definitely reproducing a sizable deviation from the SM
both in aμ and in all cases for ae, except the “aBound

e ” analysis

Fig. 4 Allowed δaExp
μ vs. δaExp

e regions in the different analyses

where there is no δae term in Eq. (47) and |δae| ≤ 20×10−13

is imposed. As a summary, all four selected cases of δaExp
μ

vs. δaExp
e are represented in Fig. 4.

The different colored regions in Fig. 4 represent three con-
tours in the joint Δχ2 = χ2−χ2

Min considering only Eq. (47).
In a 2D-Δχ2 distribution they correspond, darker to lighter,
to 1, 2 and 3σ regions with 68.2% C.L., 95.4% C.L. and
99.7% C.L., respectively. The same color coding is used in
the figures below illustrating the final results of the analyses,
where all observables and constraints have been included.
Finally, in [41], only |n�| ≤ 100 GeV were considered.
Although for |ne|, |nμ| ∼ 100 GeV lepton couplings to the
new scalars are hugely enhanced with respect to h couplings,
it is true that |n�|

v
∼ 100 GeV

v
∼ 0.4 does not appear to pose a

perturbativity challenge. In fact, the one loop correction to the
imaginary part of the mH mass is controlled by Γ (H → ��̄)

and the relevant ratio is Γ
mH

= 1
8π

|n�|2
v2 , therefore arriving to

|n�| = v ∼ 250 GeV represents one loop corrections at the
4% level. For this reason the analyses have been done with
|n�| ≤ 250 GeV ∼ v; furthermore, the analysis “aCs

e ” has
been conducted both with |n�| ≤ 100 GeV (since this case
is the closest one to [41]) and with |n�| ≤ 250 GeV.

6 Results

In the next subsections we discuss the most relevant results of
the analyses done following the lines of the previous section.
In Sect. 6.1 we consider the scenario “aCs

e ” when |n�| ≤
100 GeV is imposed. The implications of changing this last
assumption to |n�| ≤ 250 GeV are addressed in Sect. 6.2.
The implications of the different assumptions for the electron
anomaly, that is scenarios “aRb

e ”, “aAvg
e ” and “aBound

e ” are
explored in Sect. 6.3. The impact of the recent measurement
of MW by the CDF collaboration is considered in Sect. 6.4.
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(a) (b) (c)

Fig. 5 Allowed regions: relevant correlations involving mH with |n�| ≤ 100 GeV

Finally, to further illustrate these discussions, a few complete
example cases are shown in Sect. 6.5.

6.1 |n�| ≤ 100 GeV

Here we present the results of the analysis “aCs
e ” with the per-

turbativity constraint |n�| ≤ 100 GeV. This serves to revisit
the main results of [41] and as a reference for the analysis
with |n�| ≤ 250 GeV addressed in the following subsection.

The perturbativity constraint limits the possibility of
explaining δaExp,Cs

e via the one loop contribution, since it
requires mA ≤ 125 GeV for |ne| ≤ 100 GeV (see Eq. (36))
which is not allowed by e+e− → μ+μ− LEP data. On that
respect, lepton flavor universality constraints also limit the
possibility of a one loop explanation for the electron anomaly,
as discussed later. This leaves us with two scenarios, one
where both anomalies are explained via the two loop con-
tribution, following the scaling law in Eq. (45), and another
where the muon anomaly is one loop dominated while the
electron one is still generated at two loops.
In Fig. 5a the allowed regions for Re

(
nμ

)
are presented as

a function of mH. Three disjoint regions in the scalar mass
can be seen: two in the 200–400 GeV range and the other
above 1.2 TeV. The low mass regions belong to the scenario
where the muon anomaly is obtained through the one loop
contribution in agreement with the relation in Eq. (35). Note
that this contribution depends on the absolute value of the
coupling, so both signs are allowed for Re

(
nμ

)
. In the large

mass region both leptonic anomalies are two loop dominated.
Figure 5b shows mH vs. tβ . It contains two separate allowed
regions again: in the tβ ∼ 1 regime only scalar masses above
1.2 TeV are allowed; conversely for tβ larger than 10, mH

lies in the 200–400 GeV interval.
To complement the previous two plots, in Fig. 5c the rela-
tion between the masses mH and mH± is shown. In the low
mass region we can clearly distinguish two scenarios. One

where mH± 	 mH and another where mH± > mH; in the
latter, mH± 	 mA.The degeneracy of H± with either H or A
arises from the oblique parameters constraint, as mentioned
in Sect. 3. In the large mass region the mass differences do
not exceed ±300 GeV.

Figure 6 illustrates the allowed regions for the resonant
process [pp]ggF → S → μ+μ− with respect to the scalar
mass mS for S = H, A. The black line corresponds to the
limit observed by CMS [140]. Although LHC direct searches
are already constraining the allowed regions, there is ample
room for extra scalars that can explain both g − 2 anomalies
simultaneously.

Let us now discuss some results concerning Re (ne) and
Re (nτ ). With a two loop explanation of the electron anomaly,
it follows from Eqs. (38) and (40) (see Appendix B for further
details) that one could have expected that both the coupling
Re (ne) and the deviation δae have opposite sign: this is con-
firmed in Fig. 7 in the 1σ region. However, this figure also
contains regions where Re (ne) is negative. This behavior
might be understood by analysing with some detail the two
loop contribution to δae: F in Eq. (40) can be decomposed
as F = Fq + Fτ + Fμ, where Ff is the contribution with
fermion f running in the closed loop. One can estimate the
importance of the different contributions for different tβ , mH

and mA ranges.

– For tβ ∼ 1 and mH,mA > 1.2 TeV, Eq. (40) gives

Fq > 0.18, |Fτ | < 0.13 × 10−4 Re (nτ )

1 GeV
,

∣∣Fμ

∣∣ < 0.12 × 10−5 Re
(
nμ

)

1 GeV
. (48)

It is clear that in this region the quark-induced contri-
bution Ft is (i) necessarily dominant and (ii) it requires
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Fig. 6 σ(pp →
S)[ggF] × Br

(
S → μ+μ−) vs.

mS allowed regions with
|n�| ≤ 100 GeV

(a) (b)

Fig. 7 Allowed regions for
Re (ne) with |n�| ≤ 100 GeV

(a) (b)

Re (ne) ∼ 4−10 GeV, as Fig. 7a illustrates, in order to
reproduce ΔCs

e 	 −16.
– For tβ > 10, mH ∈ [200, 400] GeV and mA ∈

[400, 1000] GeV, Eq. (40) gives

Fq < 0.18, Fτ ∈ [0.02, 0.15] × 10−2 Re (nτ )

1 GeV
,

Fμ ∈ [0.04, 0.25] × 10−3 Re
(
nμ

)

1 GeV
. (49)

In this case, large values of Re (nτ ) 	 ±100 GeV give τ -
induced contributions at the same level of, or even larger
than, the quark-induced contribution. This occurs despite
some cancellation among the τH and τA contributions
in Eq. (40). This scenario would require Re (ne) � −15
GeV or Re (ne) � 7 GeV, as shown in Fig. 7a, in order
to reproduce ΔCs

e 	 −16.

From this simple estimates one can conclude that, besides
the expected regions where δae arises from quark-induced
two loop contributions, regions where the τ -induced con-
tributions have an important role might be present. For
this to occur, one might expect some peculiarities: besides
light H and large tβ , large values of both |Re (nτ ) | and

|Re (ne) |, with Re (nτ ) and Re (ne) having the same sign,
are required. Contrary to the case with dominating quark-
induced contributions, one might then have allowed regions
where Re (ne) < 0. This is illustrated in Fig. 7a, b where one
can observe how allowed Re (ne) < 0 only appear for a light
H, and how the regions with large ±Re (ne) correspond to
large ±Re (nτ ).

To close this subsection, it is worth analysing in detail the
role of the lepton flavor universality constraints mentioned in
Sect. 5. As justified later, we focus on observables involving
only μ’s and e’s. For the ratios

RP
μe = Γ (P+ → μ+ν)

Γ (P+ → μ+ν)SM

Γ (P+ → e+ν)SM

Γ (P+ → e+ν)
, (50)

the current constraints are [97]

Rπ
μe = 1 + (4.1 ± 3.3) × 10−3,

RK
μe = 1 − (4.8 ± 4.7) × 10−3. (51)

In the present scenario,

RP
μe= |1 − ΔP

μ |2
|1−ΔP

e |2 , |1 − ΔP
� |2 =

∣∣∣∣∣
1− M2

P

tβm2
H±

Re (n�)

m�

∣∣∣∣∣

2

, (52)
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and thus, for ΔP
� � 1,

RP
μe 	 1 + 2

M2
P

tβm2
H±

(
Re (ne)

me
− Re

(
nμ

)

mμ

)

. (53)

The presence of M2
P and the lepton masses allows us to con-

centrate on RK
μe and neglect the nμ contribution. Therefore

from Eq. (51) we get the constraint

Re (ne) < 5
tβm2

H±

1 TeV2 GeV. (54)

Then,

– for tβ 	 1 and mH± 	 2 TeV, Re (ne) < 20 GeV,
– while for tβ 	 102 and mH± 	 0.5 TeV, Re (ne) < 125

GeV.

From muon decay constraints on the H± mediated contri-
butions we also have a tβ independent constraint (since the
process is purely leptonic) [97,107]:
∣∣∣∣∣
nenμ

m2
H±

∣∣∣∣∣
< 0.035. (55)

This constraint is relevant for the low mass region: for
Re
(
nμ

) 	 100 GeV, we can rewrite

|ne| < 87
( mH±

0.5 TeV

)2
GeV, (56)

which is more restrictive than the bound from RK
μe above.

Concerning other observables involving τ leptons, semilep-
tonic processes are not sensitive to nτ due to me

mτ
and mμ

mτ
sup-

pressions, while purely leptonic decays have looser bounds
than Eq. (55).
This simple numerical exercise confirms that δaExp

e cannot
be explained through one loop contributions.

6.2 |n�| ≤ 250 GeV

As previously motivated, perturbativity bounds on the Yukawa
couplings should be studied in detail. Here we explore higher
scales in n�, namely changing from |n�| ≤ 100 GeV to
|n�| ≤ 250 GeV while maintaining the same constraints of
the previous section. Conversely to what one would naively
expect, it is not just the allowed regions in the different n� that
might change, but it has direct consequences on other phys-
ical observables such as the scalar masses and tβ , among
others.

Figure 8a shows results for Re
(
nμ

)
vs. mH. It is clear that

the allowed regions in parameter space are notably enlarged
with respect to those in Fig. 5a, which are completely embed-
ded in the ones of this new analysis, as one could have
expected. On that respect, one may realize of the appear-
ance of a new set of intermediate values for the scalar mass,
mH ∈ [0.4; 1.2] TeV, when increasing our perturbativity
upper bound. It can be easily understood by tracing an hori-
zontal line at Re

(
nμ

)
0 = −100 GeV: we eliminate the blue

region “bridge” connecting the low and high mass solutions.
Therefore, this new range of scalar masses requires large val-
ues of |Re

(
nμ

) |.
To fully characterize the impact of perturbativity on the

allowed parameter space, Fig. 8b illustrates the scalar mass
mH in terms of tβ . Taking into account the appearance of
new intermediate solutions in mH, one could expect that this
behavior is translated into tβ . As Fig. 8b corroborates, new
values of tβ , roughly in the range 1 ≤ tβ ≤ 10, are allowed
when changing the perturbativity requirement from |n�| ≤
100 GeV to |n�| ≤ 250 GeV. Furthermore, one may also
notice by comparing with Fig. 5b that the top blue region for
large mH becomes wider, around a factor 2.5 in tβ for each
value of the scalar mass.

Figure 8c shows correlations among the scalar masses mH

and mH± . Concerning the low mass regions where H± is

(a) (b) (c)

Fig. 8 Allowed regions: relevant correlations involving mH with |n�| ≤ 250 GeV
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Fig. 9 Allowed regions for
scalar masses with |n�| ≤ 250
GeV

(a) (b)

degenerate either with H or A, already mentioned in Fig. 5c,
it can be observed that enlarging perturbativity bounds pushes
the upper limit of these regions in such a way that mH± ∈
[0.2; 1.2] TeV for mH± 	 mH and mH± ∈ [0.4; 1.2] TeV
for mH± 	 mA, to a high degree of accuracy. Figure 9a, b
complete the results for the scalar masses. For instance, it is
still true that mA > mH in the low mass region, according to
the general constraints presented in Sect. 3.

On the other hand, Fig. 10 shows the resonant process
[pp]ggF → S → μ+μ− as a function of the scalar mass
mS for S = H, A, which acquire an important role since
we may be entering an era of exclusion or discovery at the
LHC. As disclosed above, the existence of an intermediate
set of solutions, mH ∈ [0.4; 1.2] TeV and mA ∈ [0.9; 1.2]
TeV, opens the possibility to detect a sizeable signal in that
range of scalar masses that was not contemplated in Fig. 6.
Moreover, it is clear that increasing |n�| up to |n�| ≤ 250
GeV modifies our expectations for Br

(
S → �+�−) and, in

particular, enlarges the allowed parameter space, as one can
easily check.

Finally, we should stress some aspects concerning Re (ne)
and Re

(
nμ

)
from Fig. 11. In spite of increasing our pertur-

bativity bound up to |n�| ≤ 250 GeV, it still seems difficult

to obtain a one loop explanation for the electron anomaly
since it requires quite large couplings, namely |ne| > 160
GeV in the Cs case. Figure 11b shows that |ne| < 150 GeV
in the relevant range of scalar masses, thus indicating that
δaExp,Cs

e is mainly explained at two loops. This agrees with
the discussion on universality constraints closing Sect. 6.1.
As it was already explained in the discussion of Fig. 7a, now
in Fig. 11b and for large scalar masses, one can easily check
that the electron coupling is positive and lies in the range
Re (ne) ∼ 4−20 GeV. Furthermore, according to Eq. (45),
there exists a linear relation between Re

(
nμ

)
and Re (ne)

for mH > 1.2 TeV, which implies that they have opposite
sign in the Cs case and therefore Re

(
nμ

)
should be nega-

tive in this region. The region Re
(
nμ

) = −13Re (ne) can
be seen in the lower part of Fig. 11a inside the 1σ region
as it should. Departure from this straight line introduces an
important one loop contribution to the muon anomaly low-
ering also the scalar masses ranges. On the other hand, for
light scalar masses, Re (ne) might be either positive or neg-
ative by the same arguments discussed in Sect. 6.1. It is also
important to recall that, in this low mass region, Δμ receives
dominant one loop contributions and thus Re

(
nμ

)
could nat-

urally appear with both signs. From Fig. 11a, one may notice

Fig. 10 σ(pp →
S)[ggF] × Br

(
S → μ+μ−) vs.

mS allowed regions with
|n�| ≤ 250 GeV

(a) (b)
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Fig. 11 Allowed regions for
Re (ne) with |n�| ≤ 250 GeV

(a) (b)

as well that |nμ| is in general larger than |ne| in the whole
parameter space.

6.3 Different δae

As commented in Sect. 5, the situation concerning δaExp
e is

to some extent unclear. In this section we discuss the impli-
cations of different assumptions for the value of δaExp

e , that
is, in terms of the model, the implications of requiring differ-
ent values of the new contributions δae. The ultimate answer
is definitely provided by repeating detailed numerical anal-
yses under the different assumptions δaExp

e . However, one
can anticipate part of the answer with simple considerations.
As analysed in Sect. 4, δae arises from two loop contri-
butions proportional to Re (ne): this fact, together with the
results of Sect. 6.2 corresponding to δae 	 δaExp,Cs

e , can
give us a first insight. Consider for example an allowed point
in parameter space (i.e. a point respecting all imposed con-
straints) which gives δae 	 δaExp,Cs

e . This point has a cer-
tain Re (ne) = Re (ne)Cs; it is straightforward that changing

Re (ne) �→ Re (ne)′ = Re (ne)Rb = Re (ne)Cs × δaExp,Rb
e

δaExp,Cs
e

and no other parameter, one would obtain δae 	 δaExp,Rb
e .

The question is, of course, if such a change in Re (ne) alone
still gives an allowed point. On that respect, one needs to
analyse which observables constrain Re (ne) and how those
constraints work. These are the ones related to lepton flavor
universality in leptonic decays �i → � jνν̄ and in semilep-
tonic decays involving kaons and pions, analysed in Sect. 6.1.
In particular, attending to δaExp,Cs

e , δaExp,Rb
e and δaExp,Avg

e in
Eqs. (2), (3) and (46), one is interested in the effect on those
constraints of

Re (ne) = Re (ne)Cs �→ Re (ne)
′

= Re (ne)Rb = −0.55Re (ne)Cs ,

Re (ne) = Re (ne)Cs �→ Re (ne)
′

= Re (ne)Avg = 0.23Re (ne)Cs , (57)

when no other parameter is changed. There are two different
aspects:

1. since |Re (ne)Avg |, |Re (ne)Rb | < |Re (ne)Cs |, the con-
straint on |ne| from μ → eνν̄ decays in Eq. (56) is nec-
essarily less restrictive when Eq. (57) is considered;

2. besides the uncertainty in RK
μe in Eq. (51), as discussed

previously, there is a “sign” question concerning the devi-
ation, at the same 	 5 × 10−3 level of the uncertainty,
from RK

μe = 1. In order to obtain δae 	 δaExp,Cs
e < 0, the

expectation is Re (ne) > 0, and that produces RK
μe −1 >

0 in Eq. (53), which goes “in the wrong direction”. For
both cases in Eq. (57), that problem is alleviated.

It is then clear that the analysis with δaExp,Cs
e is somehow a

“worst case” scenario in terms of the dependence of the con-
straints on Re (ne): besides the naive mapping of allowed
regions expected from Eq. (57), one might then expect larger
allowed regions not only for Re (ne) but also for other quan-
tities of interest. As mentioned in Sect. 5, we also perform
an analysis where |δae| ≤ 20 × 10−13 is imposed (instead of
requiring some specific value, as summarized in Fig. 4). This
serves a double purpose: identifying which allowed regions
are necessary in order to obtain an appropriate δaμ without
regard to δae, and identifying which regions are absolutely
excluded for any value of δae reasonably compatible with
δaExp,Cs

e or δaExp,Rb
e that one could consider.

In Figs. 12, 13 and 14, the color coding follows Fig. 4.
Figure 12 shows Re

(
nμ

)
vs. Re (ne) and Re (ne) vs. mH

allowed regions: comparison with Fig. 11a, b confirms the
simple expectations of the previous discussion in terms of the
position of the allowed regions and their extension. The same
applies to Fig. 13, which shows Re

(
nμ

)
vs. mH (to be com-

pared with Fig. 8a). In particular it is clear from Fig. 13c that
once δaμ 	 δaExp

μ is imposed, the allowed regions for some
parameters (besides Re

(
nμ

)
, obviously) are coarsely deter-
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(a) (b) (c)

(d) (e) (f)

Fig. 12 Re (ne) correlations

(a) (b) (c)

Fig. 13 Re
(
nμ

)
vs. mH correlations
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Fig. 14 δae vs. Re (ne)

mined and the sensitivity of the analysis on the requirement
for δae only concerns a finer level of detail.

There is a final point that the analysis with |δae| ≤ 20 ×
10−13 confirms. Figure 14 shows δae vs. Re (ne): under the
simple expectations for the two loop contributions discussed
in Sect. 4.2, one would have Re (ne)× δae < 0. Besides that
expected region, one can observe smaller allowed regions
where Re (ne)× δae > 0: they correspond to the unexpected

situation in which the two loop contributions are dominated
by virtual τ ’s in the fermion loop, and furthermore it is clear
that the values of δae that can be obtained in this manner are
more restricted, with |δae| < 10−12.

6.4 The CDF MW anomaly

As mentioned in Sect. 3, one can use deviations from the
SM in the oblique parameters (ΔS,ΔT ) 
= (0, 0) in order
to “explain” the CDF measurement of MW in [96]: this sub-
section is devoted to that “explanation”. Figures 15 and 16
show results analogous to the ones in Sect. 6.2 – which use
Eq. (22) – except for a different (ΔS,ΔT ) constraint. Fig-
ure 15 is obtained with Eq. (23) (the “conservative” average
of [103]) and Fig. 16 is obtained with Eq. (24) (the results
in [104]). The coloring of the allowed regions corresponds,
darker to lighter, to 1, 2, 3σ levels of a 2D-Δχ2. For Δχ2 we
use the χ2

Min value of the analysis in Sect. 6.2 (that is, with
the constraint in Eq. (22) for ΔS, ΔT ). A few comments are
in order.

– Besides the absence of degeneracies mH± 	 mH or
mH± 	 mA, masses of the new scalars larger than 2 TeV
are more difficult to accommodate. This can be under-
stood attending to the clash between the mass differences

(a) (b) (c)

(e) (f) (g)

(d)

Fig. 15 Results with (ΔS,ΔT ) in Eq. (23), “conservative” case in [103]
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(a) (b) (c)

(e) (f) (g)

(d)

Fig. 16 Results with (ΔS,ΔT ) in Eq. (24), from [104]

discussed in Sect. 3 that Eqs. (23) or (24) require, and
the need of near degenerate scalars that the perturbativ-
ity requirements on the scalar potential impose for new
scalar masses much larger than v.

– Overall agreement with the imposed constraints is worse
in several regions in Figs. 15 and 16 than it was in the
analyses of Sect. 6.2 (Figs. 8, 9 and 11). This is more
dramatic in Fig. 16, where the agreement with constraints
is worse than in Fig. 15 to the point that several regions
are beyond the represented contour levels.

Despite these changes, the main characteristics of the allowed
regions discussed in the previous sections still apply and are
clearly identified in both Figs. 15 and 16.

Finally, since the oblique parameters S and T play an
important role, Fig. 17 shows allowed regions for ΔS vs.
ΔT in the two scenarios considered for the CDF MW “expla-
nation”, together with the imposed (ΔT,ΔS) constraint in
each case. As anticipated, the constraint in Eq. (24) appears
to be more difficult to accommodate than the constraint in
Eq. (23). In fact, despite the different position of the ellipses
corresponding to the (ΔT,ΔS) constraints in Fig. 17a, b,
the allowed regions are quite similar in both cases, that
is, the model appears to be unable to accommodate values
ΔT > 0.22 together with ΔS > 0.02. Other possible expla-

nations of the CDF MW anomaly have been addressed in
[148–155].

6.5 Example points

In this section, some example points of the allowed parameter
space are presented in order to specify the behavior pointed
out in the previous plots. For the sake of clarity, we only focus
on the analysis with “aCs

e ” concerning the electron anomaly:
other cases do not change substantially beyond the differ-
ences already mentioned in Sect. 6.3.

From Table 1, it is clear that points 1–2 correspond to
the solution with small values of tβ and large scalar masses:
all scalars are above 1.2 TeV and their mass differences do
not exceed ±200 GeV. In this region, both anomalies are
explained at two loops through the top quark terms, as one
can easily check in Tables 2 and 3, where all loop contri-
butions are normalized to the total δa� in such a way that
their sum must be 1. One may also notice that δaμ receives
a subdominant one loop contribution. The lepton couplings
Re (ne) and Re

(
nμ

)
have opposite sign and they roughly

satisfy the linear relation in Eq. (45) for the Cs case.
Regarding the appearance of the intermediate values of the

scalar masses and tβ previously commented in Sect. 6.2, our
point 3 gives a perfect example of that behavior. It is impor-
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Fig. 17 ΔS vs. ΔT , 1, 2 and
3σ 2D-Δχ2 contours from the
imposed constraint are shown
together with the allowed
regions

(a) (b)

Table 1 Example points, masses and Re (n�)’s in GeV

Point mH mA mH± tβ Re (ne) Re
(
nμ

)
Re (nτ )

1 1351 1547 1560 1.34 6.08 −95.0 −40.79

2 1522 1567 1485 1.90 9.09 −158.9 126.5

3 1049 1322 1332 6.88 29.86 −245.0 −75.75

4 663 876 888 11.9 22.09 −172.9 224.6

5 621 938 946 21.5 54.26 238.1 −74.57

6 350 855 860 22.7 17.31 −87.22 94.99

7 372 815 362 34.6 25.44 −98.21 85.64

8 364 812 355 100 46.18 −95.14 79.90

9 360 810 352 186 −35.52 97.10 −119.2

10 1509 1604 1453 1.36 6.55 −112.8 70.7

11 508 809 834 89.3 38.85 −146.8 189.1

Table 2 Example points, δae values; columns 3 to 9 show the relative contributions of the different one and two loop terms to the value of δae in
the second column

1 loop 2 loop

Point δae H A H± tH tA τH τA

1 −7.29 0 0 0 0.469 0.521 −0.012 0.011

2 −7.06 0 0 0 0.445 0.559 0.047 −0.051

3 −8.40 −0.001 0.001 0 0.524 0.526 −0.145 0.113

4 −7.53 −0.002 0.001 0 0.410 0.407 0.764 −0.554

5 −7.12 −0.016 0.007 0 0.627 0.541 −0.734 0.425

6 −6.96 −0.005 0.001 0 0.330 0.186 0.776 −0.207

7 −7.01 −0.009 0.002 0 0.300 0.187 0.926 −0.295

8 −8.41 −0.027 0.006 0 0.161 0.098 1.352 −0.419

9 −7.06 −0.019 0.004 0 −0.078 −0.049 1.879 −0.574

10 −7.06 0 0 0 0.453 0.548 0.019 −0.020

11 −7.09 −0.012 0.005 0 0.133 0.111 1.863 −0.996
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Table 3 Example points, δaμ values; columns 3 to 9 show the relative contributions of the different one and two loop terms to the value of δaμ in
the second column

1 loop 2 loop

Point δaμ H A H± tH tA τH τA

1 2.40 0.085 −0.063 −0.001 0.459 0.511 −0.012 0.011

2 2.58 0.177 −0.162 −0.003 0.439 0.553 0.046 −0.050

3 2.24 0.988 −0.614 −0.012 0.334 0.336 −0.093 0.072

4 2.31 1.124 −0.639 −0.013 0.216 0.215 0.403 −0.292

5 2.41 2.316 −1.024 −0.021 −0.169 −0.145 0.197 −0.114

6 2.51 0.870 −0.157 −0.003 0.095 0.054 0.224 −0.060

7 2.43 1.016 −0.224 −0.024 0.069 0.043 0.213 −0.068

8 2.21 1.093 −0.233 −0.025 0.026 0.016 0.219 −0.068

9 2.37 1.081 −0.227 −0.025 −0.013 −0.008 0.317 −0.097

10 2.54 0.092 −0.079 −0.002 0.448 0.542 0.019 −0.019

11 2.38 1.294 −0.518 −0.010 0.031 0.026 0.433 −0.231

tant to realize that large values of |Re
(
nμ

) | are required in
this region; in fact, they are almost reaching the perturbativity
upper bound |n�| ≤ 250 GeV. On the other hand, although
the top dominance still holds at two loops in the electron
anomaly, the corresponding tau contributions begin to play
a relevant role. This trend will continue as tβ grows and the
quark contributions are more suppressed.

Finally, points 4–9 belong to the low mass region corre-
sponding to a wide range of tβ � 1 values. As we have
stressed before, two possible scenarios arise: one where
mH± 	 mA (points 4–6) and another where mH± 	 mH

(points 7–9). In all cases, the scalar masses are below 1 TeV
and mA > mH, as anticipated. Taking into account the large
values of tβ , the two loop contribution that dominates δae is
generated by the tau loop. This confirms our expectation for
Re (ne): its sign is not fixed and it could be either positive
or negative (point 9). Furthermore, in this region the muon
anomaly is clearly one loop dominated, albeit there exists a
subdominant contribution from the tau loop as well. This in
turn means that Re

(
nμ

)
can take both signs, as one can easily

check.
For completeness, the last two points have been included

to give an example of the allowed parameter space in Sect. 6.4
considering the CDF MW anomaly. It is clear that point 10
mimics the behavior of points 1–2, while point 11 presents
the same features as points 4–6.

7 Conclusions

The experimental determinations of the muon and the elec-
tron anomalous magnetic moment point towards the neces-
sity of lepton flavor non-universal New Physics. Aiming to
address both leptonic anomalies simultaneously, we have

considered a type I or type X 2HDM with a general flavor con-
serving lepton sector, one loop stable under renormalization,
in which the new Yukawa couplings are completely decou-
pled from lepton mass proportionality. The latter turns out
to be crucial in order to reproduce the g − 2 muon anomaly
together with the different scenarios one can consider for
the g − 2 electron anomaly, related to the Cs and/or the Rb
recoil measurements of the fine structure constant. A thor-
ough analysis of the parameter space of the model has been
performed including all relevant theoretical and experimental
constraints. The results show that the muon anomaly receives
dominant one loop contributions for light new scalar masses
in the 0.2–1.0 TeV range together with a significant hierar-
chy in the vacuum expectation values of the scalars, that is
tβ � 1, while two loop Barr–Zee diagrams are also needed
for heavy new scalars with masses above 1.2 TeV together
with tβ ∼ 1. On the other hand, the electron anomaly receives
dominant two loop contributions in the whole range of scalar
masses. Furthermore, we have analysed how the perturbativ-
ity assumptions on the lepton Yukawa couplings have direct
impact on relevant physical observables: intermediate values
of the scalar masses and tβ only arise when the perturbativity
upper bound on n� reaches the electroweak scale. This might
be relevant since we are entering an era of exclusion or dis-
covery at the LHC, so that the allowed parameter space of the
model must be fully scrutinized. The disagreement between
the recent CDF measurement of MW and the SM expecta-
tions for electroweak precision results can be translated into
deviations (ΔS,ΔT ) 
= (0, 0) of the oblique parameters.
We have considered two different scenarios for (ΔS,ΔT )

values which “explain” the CDF disagreement. Both sce-
narios require a scalar spectrum where near degeneracies
mH± 	 mH or mH± 	 mA are now disfavored, and where
masses larger than 2 TeV are more difficult to accommodate.
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However, concerning the n� couplings and tβ , the allowed
regions have the same characteristics as in the analyses com-
patible with (ΔS,ΔT ) = (0, 0).
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Appendices

A One loop stability under RGE

The evolution of the Yukawa couplings under one loop RGE
[156–160] is given by:

DYdα = adYdα +
2∑

ρ=1

T d
α,ρYdρ

+
2∑

ρ=1

(
−2YuρY

†
uαYdρ + YdαY

†
dρYdρ

+1

2
YuρY

†
uρYdα + 1

2
YdρY

†
dρYdα

)

with T d
α,ρ ≡ 3 Tr

(
YdαY

†
dρ + Y †

uαYuρ
)

+Tr
(
Y�αY

†
�ρ

)
, (58)

DYuα = auYuα +
2∑

ρ=1

T u
α,ρYuρ

+
2∑

ρ=1

(
−2YdρY

†
dαYuρ + YuαY

†
uρYuρ

+1

2
YdρY

†
dρYuα + 1

2
YuρY

†
uρYuα

)

with T u
α,ρ ≡ 3 Tr

(
YuαY

†
uρ + Y †

dαYdρ
)

+Tr
(
Y †

�αY�ρ

)
= T d ∗

α,ρ, (59)

DY�α = a�Y�α +
2∑

ρ=1

T �
α,ρY�ρ

+
2∑

ρ=1

(
Y�αY

†
�ρY�ρ + 1

2
Y�ρY

†
�ρY�α

)

with T �
α,ρ ≡ T d

α,ρ, (60)

where D ≡ 16π2 d
d ln μ

, μ is the renormalization scale and

ad = −8g2
c − 9

4
g2 − 5

12
g′2, au = ad − g′2,

a� = −9

4
g2 − 15

4
g′2, (61)

with gc, g, g′ the corresponding gauge coupling constants of
SU (3)c, SU (2)L and U (1)Y , respectively.

The alignment condition in the quark sector

Yd2 = dYd1, (62)

Yu2 = uYu1, (63)

together with the existence of two unitary matrices WL ,R in
the lepton sector such that

Li ≡ W †
LY�iWR (64)

are diagonal, guarantee the absence of SFCNC at tree level.
In order to ensure that Eqs. (62) and (63) in the quark

sector hold at one loop, it is sufficient to impose [161]

DYd2 = D(d)Yd1 + dDYd1, (65)

DYu2 = D(u)Yu1 + uDYu1, (66)

or equivalently

DYd2 − dDYd1 = D(d)Yd1 ∝ Yd1, (67)

DYu2 − uDYu1 = D(u)Yu1 ∝ Yu1, (68)

where the proportionality constants are precisely the running
of the parameters d and u in Eqs. (62) and (63). It is easy to
check that

DYd2 − dDYd1

=
{

3(u∗ − d)(1 + ud)Tr
(
Y †
u1Yu1

)

+Tr
(
(Y�2 − dY�1)(Y

†
�1 + dY †

�2)
)}

Yd1

+2(d − u∗)(1 + ud)Yu1Y
†
u1Yd1, (69)
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DYu2 − uDYu1

=
{

3(d∗ − u)(1 + ud)Tr
(
Y †
d1Yd1

)

+Tr
(
(Y †

�2 − uY †
�1)(Y�1 + uY�2)

)}
Yu1

+2(u − d∗)(1 + ud)Yd1Y
†
d1Yu1. (70)

Then we should have

(d − u∗)(1 + ud) = 0, (71)

and, in particular, we are interested in the solution d = u∗.
Therefore, the relation D(d) = D(u∗) needs to be checked
for the sake of consistency. Taking into account that, in our
case,

D(d) = Tr
(
(Y�2 − dY�1)(Y

†
�1 + dY †

�2)
)

, (72)

D(u) = Tr
(
(Y †

�2 − uY †
�1)(Y�1 + uY�2)

)
, (73)

it is clear that

D(u)∗ = Tr
(
(Y †

�1 + u∗Y †
�2)(Y�2 − u∗Y�1)

)

= Tr
(
(Y�2 − u∗Y�1)(Y

†
�1 + u∗Y †

�2)
)

= Tr
(
(Y�2 − dY�1)(Y

†
�1 + dY †

�2)
)

= D(d),

(74)

as it should. Hence, the quark sector is stable under RGE.
Concerning the lepton sector, one loop stability requires

that

Li + D(Li ) ≡ W †
L(Y�i + D(Y�i ))WR (75)

remain simultaneously diagonal. In this sense, the only appar-
ently problematic term inD(Y�i ) has the structureY�aY

†
�bY�c,

but

W †
L(Y�aY

†
�bY�c)WR = W †

LY�aWRW
†
RY

†
�bWLW

†
LY�cWR

= LaL
†
bLc, (76)

that is obviously diagonal [43]. Therefore, the lepton sector
is also stable under RGE.

B δa� loops

B.1 One loop contributions

The interaction Lagrangian of neutral scalars S with charged
leptons given by

LS�� = −m�

v
S�̄(AS

� + i BS
� γ5)� (77)

generates the following one loop contribution to the anoma-
lous magnetic moment of lepton �

δa(1)
� = 1

8π2

(m�

v

)2∑

S

{
[AS

� ]2[2I1(x�S)

−I2(x�S)] − [BS
� ]2 I2(x�S)

}
, (78)

where x�S ≡ m2
�/m

2
S and

I1(x) = 1 + 1 − 2x

2x
√

1 − 4x
ln

(
1 + √

1 − 4x

1 − √
1 − 4x

)

+ 1

2x
ln x,

(79)

I2(x) = 1

2
+ 1

x
+ 1 − 3x

2x2
√

1 − 4x

× ln

(
1 + √

1 − 4x

1 − √
1 − 4x

)

+ 1 − x

2x2 ln x . (80)

Taking into account that in the limit x � 1

I1(x) 	 x

(
−3

2
− ln x

)

+x2
(

−16

3
− 4 ln x

)
+ O(x3), (81)

I2(x) 	 x

(
−11

6
− ln x

)

+x2
(

−89

12
− 5 ln x

)
+ O(x3), (82)

one can write for m� � mS

δa(1)
� = 1

8π2

(m�

v

)2 m2
�

m2
S

{

−[AS
� ]2

[
7

6
+ ln

(
m2

�

m2
S

)]

+[BS
� ]2

[
11

6
+ ln

(
m2

�

m2
S

)]}

. (83)

On the other hand, the interaction Lagrangian of charged
scalars C± with leptons written as

LC�ν = −C−�̄(AC
� + i BC

� γ5)ν − C+ν̄(AC∗
� + i BC∗

� γ5)�,

(84)

gives rise to one loop contributions to the anomalous mag-
netic moment of lepton � of the form

δa(1)
� = − 1

8π2

∑

C

{
|AC

� |2 + |BC
� |2

}
I3(x�C ), (85)

with x�C = m2
�/m

2
C± and

I3(x) = −1

2
+ 1

x
+ 1 − x

x2 ln(1 − x). (86)

For x � 1,

I3(x) 	 x

6
+ x2

12
+ O(x3). (87)

B.2 Two loop contributions

Together with Eq. (77), the interactions

LS f̄ f = −m f

v
S f̄ (αS

f + iβS
f γ5) f (88)
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(a) (b) (c)

Fig. 18 Illustrative one and two loop contributions to δa�

generate two loop Barr–Zee contributions to the anomalous
magnetic moment of lepton �:

δa(2)
� = −2α

π

1

8π2

(m�

v

)2 ∑

f

∑

S

N f
c Q2

f

×
{
AS

� αS
f f (z f S) − BS

� βS
f g(z f S)

}
, (89)

where N f
c and Q f are the number of colours and the electric

charge of the fermion running in the closed loop of Fig. 18c,
respectively, and z f S = m2

f /m
2
S . The two loop functions

f (z) and g(z) are

f (z) = z

2

∫ 1

0
dx

1 − 2x(1 − x)

x(1 − x) − z
ln

(
x(1 − x)

z

)
, (90)

g(z) = z

2

∫ 1

0
dx

1

x(1 − x) − z
ln

(
x(1 − x)

z

)
. (91)

We refer to [162] to see other two loop contributions.
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