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Mupirocin and Chlorhexidine Resistance in Staphylococcus aureus in
Patients with Community-Onset Skin and Soft Tissue Infections

Stephanie A. Fritz,a Patrick G. Hogan,a Bernard C. Camins,b Ali J. Ainsworth,a Carol Patrick,a Madeline S. Martin,a Melissa J. Krauss,c

Marcela Rodriguez,a* Carey-Ann D. Burnhama,d

Departments of Pediatrics,a and Medicine,b Division of Biostatistics,c and Department of Pathology and Immunology,d Washington University in St. Louis School of
Medicine, St. Louis, Missouri, USA

Decolonization measures, including mupirocin and chlorhexidine, are often prescribed to prevent Staphylococcus aureus skin
and soft tissue infections (SSTI). The objective of this study was to determine the prevalence of high-level mupirocin and chlor-
hexidine resistance in S. aureus strains recovered from patients with SSTI before and after mupirocin and chlorhexidine admin-
istration and to determine whether carriage of a mupirocin- or chlorhexidine-resistant strain at baseline precluded S. aureus
eradication. We recruited 1,089 patients with community-onset SSTI with or without S. aureus colonization. In addition to rou-
tine care, 483 patients were enrolled in a decolonization trial: 408 received intranasal mupirocin (with or without antimicrobial
baths), and 258 performed chlorhexidine body washes. Patients were followed for up to 12 months with repeat colonization cul-
tures. All S. aureus isolates were tested for high-level mupirocin and chlorhexidine resistance. At baseline, 23/1,089 (2.1%) pa-
tients carried a mupirocin-resistant S. aureus strain and 10/1,089 (0.9%) patients carried chlorhexidine-resistant S. aureus. Of 4
patients prescribed mupirocin, who carried a mupirocin-resistant S. aureus strain at baseline, 100% remained colonized at 1
month compared to 44% of the 324 patients without mupirocin resistance at baseline (P � 0.041). Of 2 patients prescribed chlor-
hexidine, who carried a chlorhexidine-resistant S. aureus strain at baseline, 50% remained colonized at 1 month compared to
48% of the 209 patients without chlorhexidine resistance at baseline (P � 1.0). The overall prevalence of mupirocin and chlor-
hexidine resistance is low in S. aureus isolates recovered from outpatients, but eradication efforts were less successful in patients
carrying a mupirocin-resistant S. aureus strain at baseline.

Preventive measures for Staphylococcus aureus infections have
been widely implemented in health care settings (1). Specifi-

cally, the topical antimicrobial agents mupirocin and chlorhexi-
dine have been prescribed for decades for patients in intensive care
units and those undergoing surgery and dialysis as a means to
eradicate S. aureus carriage to reduce the risk of nosocomial infec-
tions (2–4). During the current epidemic of cutaneous abscesses
associated with the emergence of community-associated methicil-
lin-resistant S. aureus (CA-MRSA) strains, these decolonization
therapies have been extrapolated to outpatients in an effort to
prevent recurrent skin infections (5–9).

S. aureus strains exhibiting resistance to mupirocin and chlor-
hexidine have been reported. While this phenomenon has been
described in both inpatient and outpatient settings for mupirocin,
chlorhexidine resistance outside the hospital setting has not been
previously studied (10–16). At the population level, widespread
use of mupirocin and chlorhexidine has been associated with dra-
matically increased prevalence of S. aureus strains resistant to
mupirocin and chlorhexidine compared to periods of time or geo-
graphic regions with limited use of these agents, likely due to the
selection of resistant strains (13, 17–20). Alarmingly, routine use
of these measures in health care settings has contributed to out-
breaks with resistant strains (18, 21). At the individual level, in
patients undergoing peritoneal dialysis, repeated prophylaxis with
mupirocin has been associated with the development of mupiro-
cin resistance in S. aureus (22, 23).

Mupirocin inhibits bacterial isoleucyl-tRNA synthetase, re-
sulting in protein synthesis inhibition (24). S. aureus strains may
harbor low-level (MIC � 8 to 256 �g/ml) or high-level (MIC �
512 �g/ml) resistance to mupirocin (25). Low-level mupirocin
resistance is the result of an alteration in the isoleucyl-tRNA syn-

thetase gene ileS, a mutation which is typically stable and non-
transferrable. As mupirocin is frequently delivered directly to the
site of infection as a topical agent, low level resistance is typically
not clinically relevant. High-level mupirocin resistance is con-
ferred by the mupA gene, which is carried on a plasmid, enabling
the spread of this resistance mechanism. The mupA gene encodes
a novel isoleucyl-RNA synthetase which is not inhibited by mupir-
ocin (16, 17, 24, 26–28). The plasmid carrying the mupA gene may
also carry resistance determinants to other systemic antimicrobial
agents, raising concern that mupirocin use could select not only
for mupirocin resistance, but also for increasing antimicrobial
resistance overall (10, 15, 16).

Chlorhexidine is a biguanide cationic bactericidal agent which
is rapidly taken up by S. aureus (29, 30). At low concentrations,
chlorhexidine disrupts the integrity of the cell wall and mem-
branes, resulting in leakage of the intracellular contents. At high
concentrations, chlorhexidine causes coagulation of the intracel-
lular contents. Chlorhexidine resistance is conferred by the plas-
mid-mediated qacA/B genes which encode proton-dependent
multidrug efflux pumps (13, 30, 31). Some studies have suggested
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cross-resistance between the qacA/B genes and other systemic an-
timicrobial agents, as the plasmids may carry multiple determi-
nants of antimicrobial resistance (30–32). Data regarding chlor-
hexidine resistance in S. aureus isolates recovered from patients in
the United States are limited.

We recently performed two decolonization trials for patients
with community-onset skin and soft tissue infections (SSTI)
which prescribed brief regimens employing mupirocin applica-
tion to the anterior nares and chlorhexidine body washes (7, 8). In
the present study, we aimed to determine the epidemiology of
mupirocin and chlorhexidine resistance in contemporary S. au-
reus isolates recovered from these patients. The primary objective
was to measure the prevalence of high-level mupirocin resistance
and chlorhexidine resistance in S. aureus isolates recovered from
patients with S. aureus colonization and/or SSTI at baseline and
after performing decolonization with mupirocin and chlorhexi-
dine. Additionally, we aimed to identify patient-level epidemio-
logic risk factors and isolate-level features associated with mupi-
rocin and chlorhexidine resistance and to determine whether
carrying a mupirocin- or chlorhexidine-resistant strain at baseline
resulted in failure of S. aureus eradication.

MATERIALS AND METHODS
Setting and study population. This study was approved by the Washing-
ton University Institutional Review Board and informed consent was ob-
tained for all study participants. From April 2007 to November 2009,
1,089 patients, 6 months of age and older with community-onset SSTI,
were recruited from nine community pediatric practices in metropolitan
St. Louis affiliated with a practice-based research network, the St. Louis
Children’s Hospital (SLCH) Emergency Department (ED) and ambula-
tory wound center, and the Barnes-Jewish Hospital (BJH) ED. Coloniza-
tion cultures to detect S. aureus carriage were obtained from the anterior
nares, axillae, and inguinal folds. Isolates associated with clinical infection
were obtained from the SLCH or BJH clinical microbiology laboratories.
A questionnaire was administered to assess health, hygiene, and house-
hold factors. Patients with traditional risk factors for health care-associ-
ated MRSA infections (e.g., indwelling catheter, percutaneous medical
device, receiving dialysis, or residing in a long-term-care facility) were
excluded. Each participant had at least one S. aureus isolate available for
the analysis of mupirocin and chlorhexidine resistance.

Of the 1,089 patients with community-onset SSTI, 483 with S. aureus
colonization were subsequently enrolled into 1 of 2 decolonization trials,
described in detail elsewhere (7, 8). Briefly, in the first trial, participants
were randomized to 1 of 4 decolonization regimens: (i) hygiene education
alone; (ii) hygiene education plus 2% mupirocin ointment applied to the
anterior nares twice daily for 5 days; (iii) hygiene education, twice daily
application of intranasal mupirocin, and daily body washes with 4%
chlorhexidine solution for 5 days; and (iv) hygiene education, twice daily
application of intranasal mupirocin, and daily baths in dilute bleach water
for 5 days. Longitudinal colonization cultures were collected from the
anterior nares, axillae, and inguinal folds of the study participants 1
month and 4 months following decolonization (7). In the second trial, the
5-day decolonization regimen consisted of hygiene education, 2% mupi-
rocin ointment applied to the anterior nares twice daily, and daily body
washes with 4% chlorhexidine solution. Patients and their households
were randomized to either the index decolonization group, in which only
the patient presenting with the skin infection performed the decoloniza-
tion regimen, or the household decolonization group, in which all house-
hold members were asked to perform the decolonization measures. Lon-
gitudinal colonization cultures were collected from the anterior nares,
axillae, and inguinal folds of the index patients 1, 3, 6, and 12 months
following decolonization (8). For both trials, S. aureus eradication was
defined as the absence of S. aureus at the 3 sampled body sites.

Laboratory methods. Colonization swabs were placed in tryptic soy
broth with 6.5% sodium chloride (BBL; Becton Dickinson, Sparks, MD)
and incubated at 35°C overnight. The broth was subsequently plated onto
Trypticase soy agar with 5% sheep blood (BBL; Becton Dickinson) for
overnight incubation. S. aureus isolates were identified based on colony
morphology, Gram stain, results of a rapid latex agglutination test for S.
aureus identification (Staphaurex; Remel, Lenexa, KS), and catalase activ-
ity. Disk diffusion testing on Mueller-Hinton agar (BBL; Becton Dickin-
son) was performed to detect resistance to cefoxitin (as an indicator of
methicillin resistance), clindamycin, erythromycin, trimethoprim-sulfa-
methoxazole, ciprofloxacin, rifampin, and tetracycline according to Clin-
ical and Laboratory Standards Institute guidelines (25). Inducible clinda-
mycin resistance was detected by the double-disk approximation “D test”
(25, 33); for the final analysis, strains which possessed inducible clinda-
mycin resistance were considered resistant to clindamycin. All S. aureus
isolates were frozen in glycerol for future analyses.

Genomic DNA extraction. Total DNA extraction was performed us-
ing either the BiOstic bacteremia DNA kit (MoBio Laboratories, Carls-
bad, CA) or the GeneOhm lysis kit (Becton Dickinson) according to the
manufacturers’ directions. An analysis of the two DNA extraction meth-
ods for downstream PCRs found the methods to be comparable (not
shown).

Detection of high-level mupirocin resistance. A real-time PCR assay
detecting a 124-bp portion of mupA was used to detect high-level mupir-
ocin resistance using established primers (34). Briefly, 50 to 100 ng of
DNA was added to a reaction mix containing 1� iQ SYBR green Super-
mix (Bio-Rad, Hercules, CA), 200 nM (each) primers Mup-F and Mup-R
(Table 1) (34), and molecular-grade water to a final reaction volume of 25
�l. PCR was performed using the Cepheid SmartCycler, with an initial
cycle of 95°C for 120 s, followed by 35 cycles of 95°C for 10 s (optics off),
60°C for 15 s (optics on; FCTC25 dye set), and 72°C for 15 s (optics off). A
melt curve analysis was then performed from 60 to 95°C, at a rate of 0.2
degrees per second. Samples were considered positive if they had a
threshold cycle (CT) of less than 31 cycles and a melting temperature
within �0.5°C of the positive control, S. aureus strain BAA-1708
(80.5°C � 0.5°C).

Phenotypic MIC testing was performed on a subset of the isolates to
validate the molecular assay. Seventy-three mupA negative isolates were
phenotypically mupirocin susceptible (MIC � 0.50 �g/ml) by Etest (bio-

TABLE 1 Primers used in this study

Primer name Primer sequence
Source or
reference

Mup-F TAATGGGAAATGTCTCGAGTAGA 34
Mup R AATAAAATCAGCTGGAAAGTGTTC
qacA/B-F CTATGGCAATAGGAGATATGGTGT 31
qacA/B-R CCACTACAGATTCTTCAGCTACATG
qacA/B-RT-F AGTGAAGCCATACCAGCTCCAACT This study
qacA/B-RT-R TTGCACCAATTGCACCCGGATTAG
Mup1 CCCATGGCTTACCAGTTGA 38
Mup2 CCATGCAGCACTATCCGAA
MupA-1f ACTTTACTTTATCCAATATATCTTTC 38
MupA-1r AATGTAGATAATATATTCCATACAC
MupA-2f TACTGGGTTGACATGGACTCCC 38
MupA-2r TCTTTGTTATAACATTTAAGAAATCC
MupA-3f TGGTATTGTTCATATAGCACCA 38
MupA-3r AACCAAACATCGATTACTTCTTC
MupA-4f ATATTGAGTTGCATAGACCTTATG 38
MupA-4r ATCGTAATTATTTACATAAATATTAC
MupA-5f AATACATTAGATAATTGGGCTCTT 38
MupA-5r TTTAAGCTCATAGGTAATATAGTG
MupA-6f GGTGATTAAACCTAATAGTCAATTAAAC 38
MupA-6r TTTATTTGGTAATTTAGAATAATC

Fritz et al.

560 aac.asm.org Antimicrobial Agents and Chemotherapy

 on M
arch 8, 2014 by W

ashington U
niversity in S

t. Louis
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org
http://aac.asm.org/
http://aac.asm.org/


Mérieux, St. Louis, MO), suggesting that mechanisms other than mupA
were not contributing to phenotypic mupirocin resistance in our popula-
tion. Ninety-two of the 94 mupA-positive isolates had a mupirocin MIC of
�1,024 �g/ml. The remaining 2 mupA-positive isolates (recovered from
the same participant) had a mupirocin MIC of �0.50 (i.e., were pheno-
typically mupirocin susceptible). For all analyses, these two isolates were
considered mupirocin susceptible.

Detection of chlorhexidine resistance. Amplification of the qacA/B
genes, the genetic determinants for chlorhexidine resistance, was per-
formed. All strains possessing these genetic determinants were classified as
chlorhexidine resistant. PCR of qacA/B was performed using a modifica-
tion of a previously published assay (31). Briefly, approximately 100 ng of
DNA was added to a Ready-To-Go PCR bead (GE Life Sciences), with 2.5
�l of a 2 �M solution of each primer (qacA/B-F and qacA/B-R) (Table 1)
and molecular-grade water (added to a final volume of 25 �l) (31). Fol-
lowing an initial denaturation step at 94°C for 10 min, 30 cycles of PCR
were performed under the following conditions: 94°C for 30 s, 52°C for
30 s, and 74°C for 30 s. A final elongation step was performed for 10 min
at 72°C for an expected amplicon of 321 bp. A positive control (S. aureus
strain NB01264) (21) and a negative control (S. aureus ATCC 29213) were
included with each PCR run. A second PCR for qacA/B with an alternate
genetic target was performed on all isolates that were positive in the first
qacA/B PCR, as well as on all isolates that were both mupA positive and
qacA/B negative in the first PCR. The PCR and cycling conditions were
identical to the initial qacA/B PCR except for the primer sequences (qacA/
B-RT-F and qacA/B-RT-R) (Table 1) and an expected amplicon size of
172 bp. All PCR products were resolved and visualized on a 2% agarose gel
stained with ethidium bromide.

Molecular typing by rep-PCR. To determine the clonality of the
mupirocin- and chlorhexidine-resistant S. aureus strains, molecular typ-
ing was performed by repetitive-sequence-based PCR (rep-PCR). DNA
amplification was performed using random amplified polymorphic DNA
Ready-To-Go RAPD analysis beads (GE Life Sciences, Piscataway, NJ) in
a final volume of 25 �l, including �100 ng of total genomic DNA and 75
pmol of the primer RW3A (35, 36). Rep-PCR products were resolved
using Diversilab DNA chips for the Agilent 2100 (Agilent Technologies,
Santa Clara, CA). Diversilab Bacterial Barcodes software was used to com-
pare banding patterns and to determine similarity among isolates (bio-
Mérieux Clinical Diagnostics, Marcy I’Etoile, France) (37). Isolates with a
similarity index of �95% were considered to represent the same strain
type.

Genetic analysis of mupA genotype-phenotype discordant strains.
Both of the isolates that were mupA positive but phenotypically mupiro-
cin susceptible were from the same patient; these were determined to be
identical using rep-PCR. The mupA gene of one of these isolates and the
reference isolate S. aureus BAA-1708 were bidirectionally sequenced
(Sanger sequencing) using a series of overlapping primers (Table 1) (38).
The patient isolate was aligned with the reference isolate using BioEdit
software (Ibis Biosciences, Carlsbad, CA) for analysis.

Statistical methods. Statistical analyses were performed with SPSS for
Windows 20 (IBM SPSS, Chicago, IL) and SAS version 9.2 (SAS Institute,
Cary, NC). Chi-square analysis was performed to compare patient-level
and isolate-level factors associated with mupirocin or chlorhexidine resis-
tance. As age was not normally distributed, we calculated median age and
compared groups with the Mann-Whitney U test. To evaluate the associ-
ation between mupirocin or chlorhexidine resistance and strain resistance
to other systemic antibiotics, only the baseline wound isolate was included
in the analysis. Fisher’s exact tests were used to determine whether the
proportion of participants who remained colonized at the same sites (or
additional sites) at the 1-month follow-up differed between participants
colonized at baseline with a mupirocin-resistant strain versus a mupiro-
cin-susceptible strain. Student’s t test was used to analyze continuous
variables. All tests of significance were two tailed. Odds ratios (OR) were
considered significant if the 95% confidence interval (CI) did not include
1. A P value of �0.05 was considered significant.

RESULTS
Study population. We enrolled 1,089 patients with community-
onset SSTI. Of these patients, 761 (69.9%) had a confirmed S.
aureus SSTI plus S. aureus colonization, 191 (17.5%) had S. aureus
SSTI without S. aureus colonization, and 137 (12.6%) were colo-
nized with S. aureus, but S. aureus was not recovered from the
infecting site. The median age of the study population was 7.3
years (range, 6 months to 70 years). Females comprised 58% of the
study population. A large proportion of the participants was Af-
rican-American (64%) and had government-issued health insur-
ance or no health insurance (70%) (Table 2).

At baseline, 2,425 S. aureus isolates were recovered from the
1,089 participants; 901 (37.2%) isolates were recovered from SSTI
and 1,524 (62.8%) were colonizing isolates (Table 2). The major-
ity of isolates (74.5%) were identified as MRSA, while 25.5% were
identified as methicillin-susceptible S. aureus (MSSA).

Baseline prevalence of and risk factors for mupirocin resis-
tance. At baseline, 23 (2.1%) of the 1,089 participants were colo-
nized and/or infected with a mupirocin-resistant S. aureus strain,
yielding 50 mupirocin-resistant isolates among the 2,425 S. aureus
isolates tested (2.1%). Epidemiologic risk factors associated with
carriage of a mupirocin-resistant strain at baseline included
younger age (P � 0.05), systemic antibiotic use in the prior year
(P � 0.006), an emergency department or urgent care visit in the
prior year (P � 0.04), hospitalization in the prior year (P � 0.02),
and having a household contact with an SSTI in the prior year
(0.006). Participants with a pet in the household were less likely to
carry a mupirocin-resistant S. aureus strain (P � 0.03) (Table 2).

At baseline, there was not a statistically significant difference in
mupirocin resistance between strains recovered from infecting
sites and strains from colonizing sites or between colonizing
strains recovered from the nose, axilla, or inguinal fold (Table 3).
Overall, a higher proportion of isolates recovered at longitudinal
samplings (31 of 696, 4.5%) were mupirocin resistant compared
to those obtained at baseline (50 of 2,425, 2.1%; OR, 2.21; 95% CI,
1.40 to 3.49; P � 0.001).

To evaluate the association between high-level mupirocin re-
sistance and resistance to commonly prescribed systemic antibi-
otics, we analyzed the baseline infecting isolates recovered from
the site of SSTI (n � 901). Isolates resistant to clindamycin were
more likely to be resistant to mupirocin (6 of 96, 6.2%) compared
to clindamycin-susceptible isolates (10 of 805, 1.2%; P � 0.004)
(Table 4).

Baseline prevalence of and risk factor for chlorhexidine re-
sistance. At baseline, 10 (0.9%) of the 1,089 patients carried a
chlorhexidine-resistant S. aureus strain, yielding 17 chlorhexi-
dine-resistant isolates of 2,425 total S. aureus isolates (0.7%).
Chlorhexidine resistance was not associated with the participant-
level epidemiologic risk factors (Table 2). There was not a statis-
tically significant difference in chlorhexidine resistance at baseline
between strains recovered from infecting sites and strains from
colonizing sites or between sites of colonization from which the
strains were obtained (Table 3). Again, overall, a high proportion
of isolates recovered at longitudinal samplings (11 of 696, 1.6%)
were chlorhexidine resistant compared to those obtained at base-
line (17 of 2,425, 0.7%; OR, 2.28; 95% CI, 1.06 to 4.88; P � 0.043).
In evaluating the baseline infecting isolate, chlorhexidine resis-
tance was not associated with resistance to other systemic antibi-
otics (Table 4).

S. aureus Mupirocin and Chlorhexidine Resistance
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Nine isolates (from 3 participants) were resistant to both
mupirocin and chlorhexidine. No predictive factors for this cross-
resistance could be identified; these isolates were recovered from a
variety of body sites (nasal, axilla, groin, and wound) and exhib-
ited varying susceptibly profiles to systemic antimicrobial agents.
Eight of these isolates were identified as MRSA, and one isolate
was identified as MSSA.

Longitudinal sampling. Of the 1,089 participants sampled at
baseline, 483 were enrolled into one of two decolonization trials.
Of these, 408 were assigned mupirocin nasal applications and 258
were assigned chlorhexidine body washes. Of the 483 participants
enrolled in a decolonization trial, 404 (83.6%) provided at least 1
follow-up culture.

Seven of 404 (1.7%) patients with culture data carried mupir-

ocin-resistant S. aureus at a longitudinal sampling. Of 75 patients
not prescribed mupirocin, 3 (4%) carried mupirocin-resistant S.
aureus at baseline; 2 of these patients had follow-up data and 1
patient carried mupirocin-resistant S. aureus during the longi-
tudinal study period (Fig. 1A and Table 5). Of 408 patients
receiving mupirocin, 6 (1.5%) carried mupirocin-resistant S.
aureus at baseline; of these, 4 of 4 patients with follow-up data
carried mupirocin-resistant S. aureus during follow-up. Of pa-
tients not carrying mupirocin-resistant S. aureus at baseline,
carriage of mupirocin-resistant S. aureus during follow-up oc-
curred in 0 of 64 patients not receiving mupirocin compared to
2 of 334 (0.6%) patients receiving mupirocin (P � 1.0) (Fig. 1A
and Table 5).

During the longitudinal study period, 4 of 404 (1.0%) patients

TABLE 3 Mupirocin and chlorhexidine resistance at baseline by isolate factors (n � 2,425 isolates)b

Isolate factor

Mupirocin-
resistant
isolate
(n � 50) (%)

Mupirocin-
susceptible
isolate
(n � 2,375) (%) OR (95% CI) P value

Chlorhexidine-
resistant isolate
(n � 17) (%)

Chlorhexidine-
susceptible
isolate
(n � 2,408) (%) OR (95% CI) P value

Infecting isolate (n � 901) 16 (1.8) 885 (98.2) 0.79 (0.44–1.44) 0.55 4 (0.4) 897 (99.6) 0.52 (0.17–1.59) 0.32
Colonizing isolate (n � 1,524) 34 (2.2) 1,490 (97.8) 13 (0.9) 1511 (99.1)
Site of colonizationa

Anterior nares (n � 601) 10 (1.7) 591 (98.3) Reference 0.16 4 (0.7) 597 (99.3) Reference 0.59
Axilla (n � 302) 11 (3.6) 291 (96.4) 2.23 (0.94–5.32) 4 (1.3) 298 (98.7) 2.00 (0.50–8.06)
Inguinal fold (n � 621) 13 (2.1) 608 (97.9) 1.26 (0.55–2.90) 5 (0.8) 616 (99.2) 1.21 (0.32–4.53)

a OR calculated separately for the axilla and inguinal fold sites of colonization in comparison to the anterior nares site of colonization.
b The percentages listed represent the percentages for the row (not the column).

TABLE 4 Baseline wound isolate mupirocin and chlorhexidine resistance by systemic antibiotic susceptibility (n � 901 isolates)b

Antibiotic resistancea

Mupirocin-
resistant isolate
(n � 16) (%)b

Mupirocin-
susceptible isolate
(n � 885) (%) OR (95% CI) P value

Chlorhexidine-
resistant isolate
(n � 4) (%)

Chlorhexidine-
susceptible
isolate
(n � 897) (%) OR (95% CI) P value

Methicillin
R (n � 755) 14 (1.9) 741 (98.1) 1.36 (0.31–6.05) 1.00 4 (0.5) 751 (99.5) NA 1.00
S (n � 146) 2 (1.4) 144 (98.6) 0 (0) 146 (100)

Clindamycin
R (n � 96) 6 (6.2) 90 (93.8) 5.30 (1.88–14.93) 0.004 1 (1.0) 95 (99.0) 2.81 (0.29–27.32) 0.36
S (n � 805) 10 (1.2) 795 (98.8) 3 (0.4) 802 (99.6)

Erythromycin
R (n � 804) 13 (1.6) 791 (98.4) 0.52 (0.14–1.84) 0.40 4 (0.5) 800 (99.5) NA 1.00
S (n � 97) 3 (3.1) 94 (96.9) 0 (0) 97 (100)

TMP-SMX
R (n � 2) 0 (0) 2 (100) NA 1.00 0 (0) 2 (100) NA 1.00
S (n � 897) 16 (1.8) 881 (98.2) 4 (0.4) 893 (99.6)

Ciprofloxacin
R (n � 86) 0 (0) 86 (100) NA 0.24 0 (0) 86 (100) NA NA
S (n � 84) 2 (2.4) 82 (97.6) 0 (0) 84 (100)

Rifampin
R (n � 3) 0 (0) 3 (100) NA 1.00 0 (0) 3 (100) NA 1.00
S (n � 891) 16 (1.8) 875 (98.2) 4 (0.4) 887 (99.6)

Tetracycline
R (n � 21) 1 (4.8) 20 (95.2) 2.61 (0.33–20.80) 0.34 0 (0) 21 (100) NA 1.00
S (n � 744) 14 (1.9) 730 (98.1) 4 (0.5) 740 (99.5)

a R, resistant; S, susceptible.
b The percentages listed represent the percentages for the row (not the column). NA, not applicable.
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with culture data carried chlorhexidine-resistant S. aureus. Of 225
patients not prescribed chlorhexidine, 4 (1.8%) carried chlorhexi-
dine-resistant S. aureus at baseline; 2 of these patients had fol-
low-up data, and 1 patient carried chlorhexidine-resistant S. au-
reus during the longitudinal study period (Fig. 1B and Table 6). Of
258 patients receiving chlorhexidine, 3 (1.2%) carried chlorhexi-
dine-resistant S. aureus at baseline; of these, 1 of 2 patients with

follow-up data carried chlorhexidine-resistant S. aureus. Of pa-
tients not carrying chlorhexidine-resistant S. aureus at baseline,
carriage of chlorhexidine-resistant S. aureus during follow-up oc-
curred in 0 of 185 patients not receiving chlorhexidine compared
to 2 of 215 (0.9%) patients receiving chlorhexidine (P � 0.5) (Fig.
1B and Table 6).

Mupirocin and chlorhexidine resistance and prediction of S.
aureus eradication. At the 1-month sampling, of 4 patients pre-
scribed mupirocin, who carried a mupirocin-resistant S. aureus
strain at baseline and provided follow-up cultures, 100% re-
mained colonized compared to 44% of the 324 patients without
mupirocin resistance at baseline (P � 0.04) (Fig. 2A). In evaluat-
ing sites of colonization, 5 of 6 (83%) participants colonized at
baseline at one or more sites with a mupirocin-resistant strain
remained colonized at the same or additional sites at the 1-month
follow-up sampling, while only 83 of 384 (22%) participants col-
onized at baseline with only mupirocin-susceptible strains re-
mained colonized at the same site(s) at 1 month (P � 0.003). Of
the 2 patients prescribed chlorhexidine, who carried a chlorhexi-
dine-resistant S. aureus strain at baseline and provided follow-up
cultures, 50% remained colonized at 1 month compared to 48% of
the 209 patients without chlorhexidine resistance at baseline (P �
1.0) (Fig. 2B).

Diversity of resistant strains. To determine whether all of the
mupirocin-resistant or chlorhexidine-resistant strains repre-
sented a single S. aureus clone, rep-PCR was performed on all
mupirocin- and chlorhexidine-resistant isolates. These isolates
were not clonal; among 113 isolates, 16 distinct strain types were
detected.

Sequence of strains possessing mupA demonstrating pheno-
typic susceptibility. Two S. aureus isolates recovered from the
same participant were genotypically mupirocin resistant (i.e., pos-
sessed the mupA gene) but were phenotypically mupirocin sus-
ceptible as determined by Etest, with a mupirocin MIC of �0.50
�g/ml. The mupA gene was sequenced from one of the strains
recovered from the participant concomitantly with a mupirocin-
resistant reference strain possessing the mupA gene (S. aureus
ATCC BAA-1708). When the sequences from the two isolates
were aligned, no variants were detected within the mupA-coding
region of the phenotype-genotype discordant isolate.

DISCUSSION

Community-onset S. aureus SSTI are a significant public health
burden. The incidence of recurrent SSTI has been reported to be as
high as 50% over 1 year (8). Thus, many health care practitioners
prescribe decolonization measures, especially mupirocin and

FIG 1 (A) Baseline and longitudinal carriage of mupirocin-resistant S. aureus
strains stratified by randomization to perform mupirocin decolonization.
Mup-R, mupirocin-resistant strain; Mup-S, mupirocin-susceptible strain. (B)
Baseline and longitudinal carriage of chlorhexidine-resistant S. aureus strains
stratified by randomization to perform chlorhexidine decolonization. Qac�,
strain carrying the qacA/B genes and therefore classified as chlorhexidine re-
sistant; Qac�, strain not carrying the qacA/B genes and classified as chlorhexi-
dine susceptible.

TABLE 5 Longitudinal carriage of mupirocin-resistant isolatesa

Participant
Randomized to
use mupirocin Baseline 1-month follow-up

3- to 4-month
follow-up 6-month follow-up 12-month follow-up

A Yes Mup-S NC NC NC Mup-R
B Yes Mup-S Mup-R NC – –
C Yes Mup-R Mup-R Mup-R Mup-R Mup-R
D Yes Mup-R Mup-R Mup-R – –
E Yes Mup-R Mup-R NC – –
F Yes Mup-R Mup-R Mup-R – –
G No Mup-R Mup-R Mup-R – –
H No Mup-R Mup-S NC – –
a Mup-S, mupirocin susceptible; Mup-R, mupirocin resistant; NC, not colonized at this time point; -, colonization data not collected.
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chlorhexidine, in an effort to prevent recurrent staphylococcal
disease (5). Of concern is the potential for increasing prevalence of
S. aureus strains resistant to these antimicrobial agents with wide-
spread use, which has been reported in countries outside the
United States (19, 21). Thus, it is important to be aware of the
prevalence of S. aureus strains encoding resistance to these mea-
sures, risk factors associated with resistance, and the clinical sig-
nificance of resistant S. aureus strains.

In our study population of healthy adults and children present-
ing to Emergency Departments and ambulatory centers, the prev-
alence of infection and/or colonization with S. aureus strains ex-
hibiting high-level mupirocin resistance at baseline was very low
(2.1%) and, over the course of the whole study, remained low
(2.3%). Interestingly, in a prior prevalence survey of mupirocin
resistance in MRSA colonization strains recovered from patients
in an adult surgical intensive care unit at our medical center
(Barnes-Jewish Hospital), 8.6% (26 of 302) of isolates exhibited
high-level resistance to mupirocin despite relatively infrequent

in-hospital mupirocin use (6.08 treatment days per 1,000 patient
days) (12). A nationwide study of hospitalized patients in the
United States found that less than 5% of MRSA isolates recovered
from the nares and blood exhibited high-level mupirocin resis-
tance (39). Two pediatric studies have previously been conducted
evaluating mupirocin resistance in S. aureus isolates. A study by
Hogue et al., conducted on a military base, evaluated first-time
MRSA isolates recovered from children in both inpatient and out-
patient settings. Similar to our study, the investigators detected a
low prevalence (1.8% [3 of 167]) of high-level mupirocin-resis-
tant S. aureus isolates from both infecting and colonizing sites
(34). A study of pediatric patients with recurrent S. aureus SSTI
conducted in Houston, TX, by McNeil et al. determined a rela-
tively high prevalence of mupirocin resistance. Of 68 patients, 12
(18%) were infected with an isolate possessing mupA. Resistance
to mupirocin occurred more commonly among S. aureus isolates
causing recurrent SSTI (19%) than primary infecting isolates
(10%) (15). Prior exposure to mupirocin was unknown in this
study.

In our outpatient study population, the prevalence of S. aureus
strains possessing the genetic determinants of chlorhexidine resis-
tance was extremely low at 0.9% (1.1% over the entire study pe-
riod). This phenomenon has not been studied extensively in the
United States, and this is the first investigation measuring chlor-
hexidine resistance in an outpatient population in the United
States. In a similar population, a study conducted in the United
Kingdom detected no qacA/B genes in CA-MRSA isolates (40). In
a study of Canadian intensive care units, only 2% of the MRSA
strains possessed the qacA/B genes (29). However, in health care
settings in some countries where chlorhexidine use is standard
practice, including Brazil, Taiwan, and European countries, the
prevalence of the qacA/B genes in S. aureus isolates ranges from 10
to 80% (13, 21, 31, 41–43). As chlorhexidine is a topical antiseptic
agent, applied directly to the site of S. aureus colonization and
therefore achieving high local concentrations, the clinical signifi-
cance of in vitro resistance is unclear (3, 21). We do not know the
MIC or minimal bactericidal concentration (MBC) of the qacA/
B-positive strains in this study. However, Smith et al. (40) corre-
lated higher chlorhexidine MBCs for qacA/B-positive strains com-
pared to negative controls. In addition, several reports raise
concern for the presence of S. aureus strains possessing the qacA/B
genes in the clinical setting. For example, in one hospital in the
United Kingdom, although implementation of a chlorhexidine-
based antiseptic protocol in intensive care units led to a reduction
in acquisition of strains not carrying the qacA/B genes, this proto-
col led to increased transmission of an outbreak MRSA strain
exhibiting chlorhexidine resistance (21). Therefore, increased
prevalence of qacA/B-containing isolates is a potential public

TABLE 6 Longitudinal carriage of chlorhexidine-resistant isolatesa

Participant
Randomized to use
chlorhexidine Baseline 1-month follow-up

3- to 4-month
follow-up 6-month follow-up 12-month follow-up

A Yes Qac-neg Qac-neg Qac-pos Qac-neg Qac-neg
B Yes Qac-neg Qac-pos NC Qac-neg NC
C Yes Qac-pos Qac-pos Qac-pos Qac-pos Qac-pos
D Yes Qac-pos NC NC NC NC
E Yes Qac-pos Qac-neg Qac-neg - -
F Yes Qac-pos Qac-pos Qac-pos - -
a Qac-neg, chlorhexidine susceptible; Qac-pos, chlorhexidine resistant; NC, not colonized at this time point; -, colonization data not collected.

FIG 2 (A) S. aureus colonization at the 1-month longitudinal sampling of
patients prescribed mupirocin stratified by a mupirocin-resistant or -suscep-
tible isolate at baseline. Mup-R, mupirocin-resistant strain; Mup-S, mupiro-
cin-susceptible strain. (B) S. aureus colonization at the 1-month longitudinal
sampling of patients prescribed chlorhexidine stratified by a chlorhexidine-
resistant or -susceptible isolate at baseline. Qac�, strain carrying the qacA/B
genes and therefore classified as chlorhexidine resistant; Qac�, strain not car-
rying the qacA/B genes and classified as chlorhexidine susceptible.
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health concern. Lee et al. conducted a nested case-control study in
Switzerland to investigate the significance of low-level mupirocin
and chlorhexidine resistance. This hospital routinely decolonizes
patients with MRSA carriage with intranasal mupirocin and chlor-
hexidine bathing. Culturing of the nares, groin, and other clini-
cally relevant sites revealed a strong association between carriage
of MRSA strains encoding low-level mupirocin plus genotypic
chlorhexidine resistance and persistent colonization following de-
colonization measures (13).

In the present study, chlorhexidine resistance at baseline was
not associated with persistent S. aureus carriage, possibly due to
the low prevalence of these strains in our population. Although
the prevalence of mupirocin resistance was low in our population,
carriage of a high-level mupirocin-resistant S. aureus strain at
baseline did predict decolonization failure. This has similarly been
reported in hospital-based studies. In an investigation conducted
in Veterans Affairs facilities, patients colonized with high-level
mupirocin-resistant MRSA strains were significantly more likely
to remain colonized over 4 weeks compared to patients colonized
with mupirocin-susceptible MRSA strains (28). Thus, although
testing for mupirocin resistance is not routine clinical practice in
the United States, the possibility of S. aureus infection and/or col-
onization with a mupirocin-resistant strain should be considered
in individuals in whom decolonization efforts are unsuccessful or
in those who develop recurrent S. aureus SSTI following the per-
formance of decolonization with mupirocin.

Another concern surrounding routine topical decolonization
is the development of resistance in recolonizing strains (44). Si-
mor et al. conducted a trial that employed a 7-day decolonization
regimen with intranasal mupirocin, chlorhexidine body washes,
and systemic rifampin and doxycycline for hospitalized patients in
Canada with MRSA colonization. The study determined that 5%
of patients carrying a mupirocin-susceptible MRSA strain at base-
line were colonized with a mupirocin-resistant strain at follow-up
(45). In the present study of patients in ambulatory settings, a
short-course of decolonization with mupirocin was not associated
with the emergence of resistant S. aureus strains. Similar findings
were reported from a military study comparing the application of
intranasal mupirocin to placebo for 5 days. Of 199 CA-MRSA
isolates tested, no mupirocin resistance was detected, suggesting
that resistance is not selected when a limited approach is em-
ployed (6).

Determinants of resistance to systemic antibiotics have been
associated with mupirocin and chlorhexidine resistance in prior
studies, leading to the postulate that factors driving resistance to
agents used for decolonization (e.g., increased use) may increase
staphylococcal resistance to other antibiotics. In Europe, the prev-
alence of both mupirocin and chlorhexidine resistance has been
reported to be significantly higher in MRSA strains than MSSA
strains in hospitalized patients (31, 46). In the United States, a
survey of multidrug-resistant MRSA isolates, defined as resistance
to �3 classes of non-beta-lactam antibiotics, found that 6.8% of
191 such isolates carried the mupA gene compared with none of
the 130 non-multidrug-resistant isolates (10). In the study of pe-
diatric patients by McNeil et al., one-third of the S. aureus isolates
possessing the mupA gene were also clindamycin resistant (15).
This association was also observed in our study population, in
which clindamycin-resistant S. aureus strains were more likely to
also be resistant to mupirocin.

High-level mupirocin resistance is encoded by the mupA gene.

In our population, two S. aureus isolates, recovered from the same
patient, possessed the mupA gene but were phenotypically mupir-
ocin susceptible. This discordance in genotypic and phenotypic
resistance has been reported by others as well (38). In a survey of
mupirocin susceptibility by Driscoll et al., one strain testing pos-
itive for the mupA gene by PCR was demonstrated to be mupiro-
cin susceptible by broth microdilution. Sequencing of mupA re-
vealed a single-base-pair deletion, resulting in a frameshift
mutation and, ultimately, a truncated protein which did not con-
fer mupirocin resistance (38). In the present study, mupA in our
discordant strain was also sequenced, but when aligned with the
control strain, no mutations were detected within the mupA cod-
ing sequence. This suggests the possibility that an alternative mu-
tation exists within the promoter region or other regulatory ele-
ment, resulting in disparate results between genotypic and
phenotypic testing. Evaluation of other genetic factors contribut-
ing to this scenario could be the focus of future investigations.
This finding does raise a point of caution that studies relying solely
on genotypic detection of high-level mupirocin resistance may
overestimate prevalence.

This study has several limitations. Although this study tested
an enormous number of isolates, the number of S. aureus isolates
that were resistant to mupirocin or chlorhexidine was small, and
thus we may not have been able to detect associations between
resistance to these agents and other patient- and isolate-level risk
factors. In addition, use of mupirocin and/or chlorhexidine by
study participants prior to the baseline sampling is unknown. Al-
though the low prevalence of mupirocin- and chlorhexidine-re-
sistant S. aureus strains is clinically relevant to practitioners, these
findings may not be applicable to geographic areas outside met-
ropolitan St. Louis.

The genes conferring high-level mupirocin resistance and re-
sistance to chlorhexidine are plasmid borne, permitting facile
transmission among S. aureus strains. Although the prevalence of
both mupirocin and chlorhexidine resistance in S. aureus isolates
was low in our outpatient population, carriage of a mupirocin-
resistant strain at baseline precluded eradication efforts, consis-
tent with the findings of other investigators (13, 28). This may be
germane for patients experiencing recurrent infections despite
performing decolonization measures.

As the contemporary MRSA epidemic persists in the commu-
nity, and as this clone has recently entered the health care envi-
ronment (47, 48), the prevalence of strains resistant to these fre-
quently prescribed decolonization measures will likely continue to
increase. Thus, ongoing monitoring is needed and practitioners
should consider this when prescribing these interventions.
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