
 1

MuR-DPA: Top-down Levelled Multi-replica
Merkle Hash Tree Based Secure Public

Auditing for Dynamic Big Data Storage on
Cloud

Chang Liu, Rajiv Ranjan, Chi Yang, Xuyun Zhang, Lizhe Wang, Jinjun Chen

Abstract—Big data and its applications are attracting more and more research interests in recent years. As the new generation
distributed computing platform, cloud computing is believed to be the most potent platform. With the data no longer under users'
direct control, data security in cloud computing is becoming one of the most obstacles of the proliferation of cloud. In order to
improve service reliability and availability, storing multiple replicas along with original datasets is a common strategy for cloud
service providers. Public data auditing schemes allow users to verify their outsourced data storage without having to retrieve the
whole dataset. However, existing data auditing techniques suffers from efficiency and security problems. First, for dynamic
datasets with multiple replicas, the communication overhead for update verification is very large, because verification for each
update requires O(logn) communication complexity and update of all replicas. Second, to the best of our knowledge, there is no
existing integrity verification schemes can provide public auditing and authentication of block indices at the same time. Without
authentication of block indices, the server can build a valid proof based on data blocks other than the block client requested to
verify. In order to address these problems, in this paper, we present a novel public auditing scheme named MuR-DPA. The new
scheme incorporated a novel authenticated data structure based on the Merkle hash tree, which we name as MR-MHT. For
support of full dynamic data updates, authentication of block indices and efficient verification of updates for multiple replicas at
the same time, the level values of nodes in MR-MHT are generated in a top-down order, and all replica blocks for each data
block are organized into a same replica sub-tree. Compared to existing integrity verification and public auditing schemes,
theoretical analysis and experimental results show that the MuR-DPA scheme can not only incur much less communication
overhead for both update and verification of datasets with multiple replicas, but also provide enhanced security against
dishonest cloud service providers.

Index Terms—Big Data, Cloud Computing, Data Security, Public Auditing, Replica Management

—————————— ——————————

1 INTRODUCTION

IG data has been one of the most intensive research
topics in recent years. People from almost all major

industries are increasingly realizing the values in their
explosively growing datasets. Research directions for big
data are always into 4 v's: Velocity, Variety, Veracity and
Volume, in which cloud can help in a big way. Cloud
computing is the new-generation distributed computing
platform that is extremely useful for big data storage and
processing. With the pay-as-you-go payment model, elas-
tic and scalable resource allocation and various levels of
services in IaaS (Infrastructure-as-a-Service), PaaS and
SaaS, cloud is widely recognised as the most promising
technological backbone for solving big data problems [5].
Cloud can also save a lot of investments in purchasing
and maintenance of hardware, which is also great for big
data applications. A vision is that cloud, providing com-
putational resources, can one day be integrated into our
daily life so close as other utilities such as electricity, gas
and water [11].

Security/privacy is one of the major concerns in the
usage of cloud computing [19, 26]. As data are no longer
under users' direct control, users are reluctant to move
their valuable data onto cloud, especially public cloud
with high consolidation and multi-tenancy. Also, from an
efficiency perspective, querying and retrieving with cloud
server requires a lot more efforts than with local servers.

Datasets in big data applications are always dynamic.

In fact, except for a few examples of large static datasets
such as libraries and e-archives, datasets in most big data
applications needs constant updating. In many applica-
tions data updates are very frequent, such as in social
networks and business transactions. Therefore, it is of
extreme importance for a cloud security mechanism, such
as a public auditing scheme, to efficiently support dy-
namic data.

Three main dimensions in security are confidentiality,
integrity and availability. Aiming at integrity assurance,
public auditing of cloud data has been an extensively in-
vestigated research problem in recent years. As user data-
sets stored on cloud storage servers (CSS) are out of the
user's reach, auditing from the client herself or a third
party auditor is a common request, no matter how power-
ful the server-side mechanisms claim to be. With provable
data possession (PDP) and proofs of retrieveability (POR),
the data owner or a third-party auditor can verify integ-
rity of their data without having to retrieve their data. In
such schemes, a small metadata called 'homomorphic
authenticator' or 'homomorphic tags' are stored along
with each data block. When the client needs to verify data
integrity, the server will generate a proof with the authen-
ticators of the selected data blocks, and data auditing is
done by the client or a third-party auditor through verify-
ing the proof with the public keys.

Existing public auditing schemes can already support

B

2

public auditing and various kinds of full dynamic data
updates at the same time [17, 31]. However, there are a
few problems that we aim to address in this work. First,
not much work has been done in support multiple repli-
cas. Storing multiple replicas is a common strategy for
reliability and availability in cloud. For highly dynamic
data, each update will lead to update to every replica.
Given the fact that update verifications in current verifica-
tion schemes are of O(logn) communication complexity,
verifying these replicas one by one will be very costly in
terms of communication. Second, current schemes for
dynamic public auditing are susceptible to attacks from
dishonest servers. Although there is an integrity verifica-
tion schemes for dataset with replicas [13] and schemes
with index verification [14], they cannot support public
auditing.

In this paper, we present a multi-replica dynamic pub-
lic auditing (MuR-DPA) scheme that can bridge the gaps
mentioned above through a newly designed authenti-
cated data structure. Research contributions of this paper
can be summarized as follows:

1. To address the efficiency problem in verifiable up-
dates for cloud storage with multiple replicas, we propose
a multi-replica public auditing (MuR-DPA) scheme. The
new scheme is based on a novel multi-replica Merkle
hash tree (MR-MHT). Experimental results show that our
scheme can drastically reduce communication overheads
for update verification of cloud data storage with multi-
ple replicas.

2. As the previous usage of Merkle hash tree (MHT) in
public auditing of dynamic data did not involve authenti-
cation of node indices, such schemes are susceptible to
cheating behaviours from a dishonest server. In this pa-
per, with the support of MR-MHT, we proposed the first
MHT-based public auditing scheme for dynamic data
with authentication of index information, which is safe
against dishonest servers. The main strategy is top-down
levelling and verification of indices from both sides.

3. With MR-MHT, we also designed a novel public au-
diting protocol for verification of all replicas at once. Ex-
perimental results show that our scheme can not only
provide efficient verification for multiple replicas, but
also incur less extra storage overhead at server side.

Paper Organization: The rest of this paper is organ-
ized as follows. Section 2 discusses related work. Section
3 provides an analysis of our research problem. Section 4
provides a detailed description of our proposed scheme
in detail. Section 5 provides security and efficiency analy-
sis for our design. Section 6 provides experimental results.
Section 7 provides conclusion for this research.

2 RELATED WORK

Compared to traditional systems, scalability and elasticity
are key advantages of cloud [1, 5, 11]. As such, efficiency
in supporting dynamic data is of great importance. Secu-
rity and privacy protection on dynamic data has been
studied extensively in the past [9, 14, 15, 31]. Frequent
updates exist in many cloud applications such as business

transaction logs, health records from hospitals and online
social networks (e.g. Twitter [21]).

Data security/privacy is one of the most pressing con-
cerns related to big data and cloud [22, 33, 37]. There is a
lot of research to enhance cloud data security/privacy
with technological approaches on cloud server side, such
as [18, 34]. They are of equal importance as external veri-
fication approaches such as our focus of public auditing.

Integrity verification for outsourced data storage has
attracted extensive research interest. The concept of
proofs of retrievability (POR) and its first model was pro-
posed by Jules, et al. [16]. Unfortunately, their scheme can
only be applied to static data storage such as archive or
library. In the same year, Ateniese, et al. proposed a simi-
lar model named ‘provable data possession’ (PDP) [7].
Their schemes offer ‘blockless verification’ which means
the verifier can verify the integrity of a proportion of the
outsourced file through verifying a combination of pre-
computed file tags which they call homomorphic verifi-
able tags (HVTs) or homomorphic linear authenticators
(HLAs). Work by Shacham, et al. [23] provided an im-
proved POR model with stateless verification. They also
proposed the first public verification scheme in the litera-
ture that based on BLS signature scheme [10]. In this
scheme, the generation and verification of integrity proofs
are similar to signing and verification of BLS signatures.
When wielding the same security strength (say, 80-bit
security), a BLS signature (160 bit) is much shorter than
an RSA signature (1024 bit), which in turn brings shorter
proofs for a POR scheme. They also proved the security of
both their schemes and the PDP scheme by Ateniese, et al.
[6, 7]. Ateniese, et al. extended their scheme for enhanced
scalability [9], but only partial data dynamics and a pre-
defined number of challenges is supported.

Erway, et al. proposed the first PDP scheme that can
support verification for full dynamic data updates [14]. A
modified authenticated data structure (ADS) is used for
verification of updates, which became the popular way of
supporting verifiable updates in the following PDP/POR
works. The ADS they used is called rank-based authenti-
cated skip list (RASL). However, public auditability and
variable-sized file blocks are not supported in their
framework. Wang, et al. [31] proposed a scheme based on
BLS signature that can support public auditing (especially
from a third-party auditor, TPA) and full data dynamics.
To support verification of updates, they used another
ADS called Merkle hash tree (MHT). However, their us-
age of ADS was flawed, which will be patched in this
work. A follow-up work by Wang et al. [30] added a ran-
dom masking technology on top of [31] to ensure the TPA
cannot infer the raw data file from a series of integrity
proofs. In their scheme, they also incorporated a strategy
first proposed in [23] to segment file blocks into multiple
‘sectors’. for trading-off of storage and communication
costs. Work by Liu et, al. [17] investigated support for
fine-grained updates and efficiency for verification of
small updates. However, their scheme is under a strong
assumption, where they assumed the server remains hon-

AUTHOR ET AL.: TITLE 3

est answering queries to file blocks. Also, none of the
above schemes has considered the commonly employed
multi-replica strategy in clouds.

For cloud storage with multiple replicas, Curtmola, et
al. [13] proposed a scheme named MR-PDP that can
prove the integrity of multiple replicas along with the
original data file. Although the scheme only requires only
one authenticator for each block, it has two severe draw-
backs. First, it does not support public auditing, which
means the verifications can only be done by the client
herself. Second, it does not support dynamic data. To-
date, to allow a third-party auditor to verify datasets with
multiple replicas, the client needs to store and build dif-
ferent ADS for every replica.

Research in this area also includes the work of Ateni-
ese, et al. [8] on how to transform a mutual identification
protocol to a PDP scheme; scheme by Zhu, et al. [36]
which allows different service providers in a hybrid cloud
to cooperatively prove data integrity to data owner. As
cloud data sharing is happening in many scenarios, Wang
et, al. worked on secure data verification of shared data
storage [27] and also with efficient user management [29]
and user privacy protection [28]. Zhang et, al. proposed a
scheme with a new data structure called update tree [35].
Without conventional authenticated data structures such
as MHT, the proposed scheme has a constant proof size
and support fully data dynamics. However, the scheme
also does not support public auditing. Cash et, al. [12]
proposed a novel POR scheme based on oblivious RAM
(ORAM). ORAM, or oblivious file system, was mostly
used to hide data access patterns through shuffling and
noise addition on outsourced data storage [25, 32]. Shi et,
al. also proposed a more efficient scheme based on
ORAM [24], but such schemes are still not practical to use.

3 PROBLEM STATEMENT AND ANALYSIS

3.1 Multiple Replicas

For availability, storing multiple replicas is a default set-
ting for cloud service providers. Storing replicas at differ-
ent servers and/or locations will make user data easily
recoverable from service failures. A straightforward way
for users to verify the integrity of multiple replicas is to
store them as separate files and verify them one by one.
Currently, the most common technique used to support
dynamic data is authenticated data structure (ADS).
Given the communication complexity and storage
complexity of ADS (n is the total number of blocks, a very
large number when file is large), different replicas. More
importantly, an update for each data block will require
update of the corresponding block in every replica. If all
replicas are indexed in their own separated ADS, the cli-
ent must verify these updates one by one to maintain
verifiability. The 'proof of update' for each block contains
log(n) hash values as auxiliary authentication information
(AAI). Therefore, the communication cost in update veri-
fications will easily become a disaster for users whose
cloud datasets are highly dynamic. In previous schemes,
researchers have considered support for public auditing,

data dynamics and multiple replicas, but none has con-
sidered them all together.In this work, we try to address
this problem with a new ADS which links together all
replicas for each block.

In [13], the authors proposed a multi-replica verifica-
tion scheme with great efficiency by associating only one
authenticator (HLA) for each block and all replica blocks.
Although this approach can bring great benefits such as
lower storage cost at server side and less pre-processing
time at client side, their scheme do not support public
auditability. The verification needs the privately kept
padding randoms (or at least the pseudo-random func-
tion that used to generate them). If leaked, another party
will know how to compute the original message based on
it and how to compute an arbitrary replica based on an
original file block, which is also the inherent reason why
this setting cannot even be transferred into a scheme with
public verifiability.

To sum up, from our considerations, desired proper-
ties of a multi-replica verification scheme should include
the following:

1. Public Auditability and Support for Dynamic Data --
Enables a third-party auditor to do the regular verifica-
tion for the client and allow the client to verify data up-
dates. It will be unreasonable for the client to conduct
verification herself on a regular basis, where she only
wants to know when something went wrong about her
data; and dynamic data exists in most applications.

2. All-round Auditing -- Enables efficient verification
for all replicas at once so that the verifier will get better
confidence. If any of the replicas fails, the server will be
notified on time.

3. Single-Replica Auditing -- Enables verification for an
arbitrary replica for some specific blocks; because the
verifier may only wants to know if at least one replica is
intact for less important data.

3.2 Secure Dynamic Public Auditing

As demonstrated in Fig.1, the three parties in a public
auditing game -- the client, the cloud service provider and
third-party auditor -- are not fully trusted. by each other,
Authenticated data structures (ADS) such as MHT or
RASL can enable other parties to verify the content and
updates of data blocks. The authentication for a block is
accomplished with the data node itself and its auxiliary
authentication information (AAI) which is constructed
with node values on or near its verification path. Without
verification of block indices, a dishonest server can easily
take another intact block and its AAI to fake a proof that
could pass authentication. This will cause several security
holes. First, the proofs of updates are no longer reliable. A
dishonest server can store new data block anywhere, as
long as it transfers back a consistent pair of hash
and AAI that can be used to compute the correct root
value. Second, for auditing of dynamic data, , the
hash value of the block itself, is needed in authenticator
computation instead of hash of any value that contains
block indices such as or , otherwise an in-

4

sert/delete will cause change of authenticators of all fol-
lowing blocks, which will be disastrous, especially that
the client is the only one who can compute authenticators.
Therefore, in order for each authenticator to include a
block-specific hash value, seemed to be the only
choice. In this case, as the verifier (client or TPA) does not
possess the original dataset, the client will solely rely on
cloud server -- who keeps the actual dataset -- to compute for verification of data integrity. As the only way
for the client to verify the correctness of is through
ADS, the server can cheat the client with another hash
and AAI pair. In other words, the server can take any
other healthy block to replace the block that should be
verified, which denies the primary aim of integrity verifi-
cation. To the best of our knowledge, there is no existing
public auditing scheme that supports full dynamic data
can deal with this problem.

Erway et, al.'s RASL [14] can provide authentication
for indices, which is resilient to the above attacks. Aside
from the effective ADS, they did propose a scheme where
the authenticator is computed as , but it is too
simple (without hash value, they can be inte-
grated/separated too easy) to support public auditing. In
fact, the RASL cannot be directly applied into a public
auditing scheme supporting dynamic data. As stated ear-
lier, is to be used in authenticators for support of
dynamic data. Therefore, the client needs com-
puted by and transferred from the cloud server for verifi-
cation. In order to achieve verifiability of index informa-
tion, the leaf nodes no longer stores the hash value of file
blocks, but the hash value of a concatenation of multiple
values in the form of .
Therefore, the server need to send back both values of and , and the client will need to verify . In
an RASL, a common case is that multiple leaf nodes are in
the same verification path, such as in Fig. 2. Let's
say represents message blocks . As
stated earlier, the client needs computed by and
transferred from the cloud server for verification. In this
case, if verification of is needed, the server not only
needs to return all 3 values on as part of AAI,
but also needs to compute and transfer all . As only a small fraction of
blocks (460 for 99% confidence when auditing 1GB file), it

is not likely that these consecutive blocks are chosen for

one audit, which means much excessive overheads. Also，

the bottom-up levelling restricts the insertions. If leaf
nodes are level 0 as defined in [14], any insertion that cre-
ates a new level below level 0 will cause update of all
level values (therefore all hash values of all nodes), which
is hardly possible for the client to verify. For these reasons,
we choose to use MHT with top-down levelling, instead
of RASL, to design the new ADS. Now that the leaf nodes
are on different levels, we will need both the client and
verifier to remember the total number of blocks and ver-
ify the block index from both directions (leftmost to
rightmost, rightmost to leftmost) to make sure the server
do not cheat the client with another node on the verifica-
tion path.

4 MUR-DPA

4.1 Preliminaries

4.1.1 Bilinear Pairing

Assume a group is a gap Diffie-Hellman (GDH) group
with prime order . A bilinear map is a map constructed
as where is a multiplicative cyclic group
with prime order. A useful should have the following
properties:

1. Bilinearity – ;
2. Non-degeneracy – ;

and
3. Computability – should be efficiently computable.
As denoted in [10], a more efficient asymmetric bilin-

ear map may also be applied. For simplic-
ity, we will use this symmetric bilinear map in our
scheme description.

4.1.2 Merkle Hash Tree

The Merkle Hash Tree (MHT) [20] has been intensively
studied in the past. Similar to a binary tree, each node
will have a maximum of 2 child nodes. In fact, according
to the update algorithm, every non-leaf node will con-
stantly have two child nodes. Information contained in
one node in an MHT is constructed as follows. For a
leaf node based on a file block , node value is com-
puted as . A parent node of and is con-
structed as . A leaf node ’s auxiliary
authentication information (AAI) is a set of hash values
chosen from every of its upper level so that the root value can be computed through .
4.2 MuR-DPA: Multi-replica Dynamic Public

Fig. 1. Relations between the participating parties in public auditing
of cloud data

Fig. 2. A Rank-based Authenticated Skip List (RASL)

AUTHOR ET AL.: TITLE 5

Auditing

4.2.1 MR-MHT

A multi-replica Merkle hash tree (MR-MHT) is a novel
authenticated data structure designed for efficient verifi-
cation of data updates, as well as authentication for block
indices. Each MR-MHT is constructed based on not only a
logically segmented file, but also all its replicas, as well as
a pre-defined cryptographic hash function H. An example
of MR-MHT, constructed based on a file with 4 blocks
and 3 replicas, is shown in Fig. 3. The differences from the
MHT are as follows:

1. Value stored in the leaf nodes are hash values of
stored replica blocks. In MR-MHT, leaf nodes represents
replica blocks , namely the jth replica of the ith file

block.
2. Value stored in a node v from a none-leaf level is

computed from the hash values of its child nodes and two
other indices and . is the level of node and is the maximum number of nodes in the leaf(bottom)
level that can be reached from v. Different to RASL in [14],
the levels are defined in an top-down order, i.e., the level
of root node is defined as 0, and levels of its child nodes
are defined as 1, etc.. The values stored in leaf nodes

are ; the value in each none-leaf node

is computed as where and
denotes the values stored in its left child node and right
child node, respectively. In Fig. 3, under our definition, (and for all leaf nodes) is 4, . For example,

the value is computed as:

and , , etc..

3. The AAI is different from the MHT in [31] as fol-

lows. They now contain not hash values of the intermedi-
ate nodes only, but tuples in the format of , one
tuple for each node. h is the hash value stored on this
node, l is the level of this node, q is the maximum number
of leaf nodes reachable from this node, and d is a Boolean
value that indicates this node is to the right (0) or left (1)
of the node on the verification path, i.e. the nodes from
leaf node to the root . For example, in Fig. 3, for rep-
lica block is defined as , and its verification path is .

4. All replicas of one file block are organized into a
same sub-tree which we call replica sub-tree (RST), see
Fig. 3. Note that each RST has the same structure. Each
block has exactly c replicas because there are c replica files
for the original data file. The total number of leaf nodes
for every RST is the total replica number c. Different from
[13], replica blocks are treated independently and each
replica block has its own authenticator. The root of each
RST, which we denote as , will play a vital role in the
newly proposed multi-replica verification and update
verification in the following sections. We use to denote

the AAI for , i.e., one can verify the content and index of with and , similar to discussed earlier but has

less hash values. Although roots of RSTs are non-leaf
nodes, they can still be authenticated in the same way as
leaf nodes. In addition, we define as the set of tuples for all intermediate nodes in each RST . t is
the sequence number from 1 to , ordered from top to the
bottom right. For example, in Fig. 3, contains only one
node where . As the number of repli-
cas is only a small number (less than 10), for simplicity of
description, we assume the structure of is stored at cli-
ent (and TPA) side, which applies to every RST and takes
only a negligible amount of storage. In this case, the client

can compute , therefore , based on and

without requesting it from the server. But keep in mind,
for less client-side storage, the client may also request
from the server and verify them via and .

Based on this new ADS, we now describe our scheme
in detail.

4.2.2 Setup

The user and cloud server will first establish common
parameters, including a bilinear map , and a
cryptographic hash function H. : The client generates a secret value

and a generator of , then compute where
are the public key and is the secret key. Another secret
signing key pair is chosen with respect to a des-
ignated provably secure signature scheme whose signing
algorithm is denoted as . This algorithm outputs as the secret key and as the public
key . :

1) For a dataset to be stored on cloud server, the client
will first make c replicas based on the original files. In
order to enable the verifiability of these replicas, they
should be different from one another; otherwise, the
server may cheat the client by responding to challenges
with the correct proofs but actually storing only one rep-
lica. From an original file , we denote

its jth replica file as . The

replica blocks are transformed from , and the trans-

form is reversible, i.e., the client can recover the original
file through retrieval and reversed transformation of

any replica . Therefore, the client do not have to upload ; she can recover with any intact replica if needed. For

Fig. 3. An example of MR-MHT

6

example, a method described in [13] is to choose
pseudo-random functions to compute random values then output as ; the repli-

cas may also be computed with other methods such as
public-key techniques.

2) The client constructs a MR-MHT based on , com-

putes the root value R, and computes its signature
with .

3) The client will compute an authenticator for every replica block .

Finally, this algorithm outputs and then

uploads them all to the cloud server.

4.2.3 Data Updates and Verification

In this paper, types of updates considered are whole-
block insertion I, deletion D and modification M. These
are the minimum requirements for support of full data
dynamics [14]. In multi-replica scenario, when a block
needs to be updated, all its corresponding replica blocks are also needed to be updated in the same way to

maintain consistency. For insertion and modification, the
client needs to upload new data block. As the only one
that has the capability to compute replica blocks based

on the original file block , the client will compute the
new replica blocks then send them to the server along

with the update type I, D or M. : The server will parse into and perform the update to

file blocks, indices and ADS according to the update re-
quest. Specifically, the server will need to update the
value for nodes in insertions and deletions. Note that val-
ues in none-leaf nodes in stays the same after the up-
date process.

For insertions and deletions, the situations are more
complex than in past schemes [14, 17, 31]. In a traditional
MHT, level or rank information is not contained in the
nodes; in an RASL, all leaf nodes stays constantly on level
0. Therefore, there is no need to change the hash value in
other nodes. In this top-down levelled MHT however, the
levels of all leaf nodes in adjacent RST have also changed
by +1 with insertion/-1 with deletion, as the level value is
a part in computation of node value. For example, in Fig.

4-a, with the insertion of , the levels of have

increased by 1, which will cause change to all ;
while in Fig. 4-b, with the deletion of , levels of the

old (i.e., old) have decreased by 1. To output

the correct , these updates are needed to be performed
in the hash tree as well. For insertions and modifications,

The server will then output

and returns it to the client. For deletions, the server will

need to additionally transfer . : In order to verify this up-

date, the client first need to parse . Let the tuples

in be for each node in an decreasing
order of levels, i.e., . A little
different from the definition, is the max number of RST
roots, instead of leaf nodes, that can be reached from .
Since the structure of RST is known to the client, she
will be able to compute and , the old and new roots

of , with (got from the server) and alone

respectively.
1. The client will first iteratively compute tuples for nodes on the verification path with

nodes in as follows, : , ,
and if ,

or: , , and , if ,

where , , , .

After is obtained, client will verify
with , and verify if and hold at
the same time. If the three values passed authentication,
the authenticity of (also) and its index can be con-

firmed.

Fig. 4-a. An Insertion before the 3rd block into the MR-MHT in Fig. 3

Fig. 4-b. A Deletion of the 3rd block for the MR-MHT in Fig. 3

AUTHOR ET AL.: TITLE 7

2. For deletion, the client needs to verify . Note

that represented the same block and replicas

whose root of RST was stored as the first tuple in , e.g.,

in Fig. 4-b, and represented the same set of

data; the only difference is that .

Therefore, the client has enough information to verify with , and R. The verification processes

are similar to those above. As for insertion, has

already been verified along with ; the client can safely
compute the new without additional verifications,

see Fig. 4-a.
3. With RST structure, the client will then compute

with , then compute with and and com-

pare with .
If all 3 verification passed, it means that the server has

performed the update to all replicas honestly. The client
will update the total block number n, then compute

(the authenticators for) and store them on server.

The protocol for verification of updates is demon-
strated in Fig. 5.

4.2.4 Challenge and Verification for Multi-replica Public
Auditing
Within our top-down levelled setting, the verifier will

need to verify the auditing equation as it is not

stored in the MR-MHT. Here we discuss how to conduct
verification on all replica blocks for a given set of indices
in one go.

 : The third-party
auditor TPA generates challenge message with the give
accuracy Acc, and sends an authorization. For example,
same as before, for a 99% accuracy, the verifier needs to
verify 460 blocks out of a 1GB file. The challenge message

is where is for authorization, I

is the random set of indices chosen for verification, and are random numbers for integration of . : The cloud server will first
verify , same as in [17]. Then, it will compute and for every replica, and send

 back to TPA. : Since the verifier knows the structure of

RSTs, it will compute R with and verify

for each ith chosen block. The verification process is simi-
lar as in section 4.2.3, with iterative triples and verifica-
tion of of . Also, it needs to verify the authen-

ticity of by verifying if , where can be in-

ferred from which equals level of the first node in .
For example, in Fig. 3, . When we know that from (is the first node in), we can

easily derive . If this veri-

fications passed, TPA will trust the retrieved are

genuine, then it can verify c replicas one by one by verify-
ing the following c equations:

If these equations holds then the verification will out-
put 'ACCEPT', otherwise output 'REJECT'. The process is
demonstrated in Fig. 6.

4.3 Discussions and Extensions

Since each replica block has its own authenticator ,
our scheme also supports single replica verification. The
process will be similar to the verification in [31] with ad-

ditional verification of and the index of .

Except for the rank verifications of are now and . other details
will be similar as the verifications described above.

In [23], the authors proposed a value for trade-off of
storage and communication overheads. In this strategy,
every file block is segmented into s segments
(length of each segment equals the length of a block with-
out s, typically 20bytes), and the authenticators are com-

puted as . In this case, the proof

size has increased by because there will be multiple , instead of one, to be included in the proof.
However, the storage overhead has decreased to 1/s as
there is only one authenticator stored along with s sectors.
As our scheme is also based on BLS signature, with same

Fig. 5. Data update and verification

8

block segmentation strategy, the trade-off can easily be
applied to our scheme to support dynamic data with mul-
tiple replicas. We will show our experimental results un-
der different s values in Section 6.

Based on the segmented blocks, Liu, et, al. have inves-
tigated fine-grained updates for variable-sized file blocks
with different segmentations and RMHT in [17]. If we
extend MR-MHT to let the nodes to store the 'rank' in-
formation computed from different sizes of blocks, our
scheme can also support fine-grained updates and en-
hance the scheme in [17] with efficient support for update
of multiple replicas.

Wang et, al. have proposed a random masking tech-
nology for privacy protection against the third-party
auditor [30]. In their scheme, the server will mask the
proof (integrated blocks) with a random r and generate
a new so that TPA will not learn the users
data from multiple challenging of the same set of blocks.
In the multi-replica setting, the proof is computed based
on replica blocks instead of the message blocks .
Therefore, in most scenarios it is not necessary to apply
another masking from the server. Even TPA can infer

from multiple challenges, it will not get any information
of the user data without knowing the transformation
method, which is known only by the client, from to .
If there is any need to protect replica blocks against the
TPA, our scheme can be extended with the same server-
side padding strategy.

5 SECURITY AND EFFICIENCY ANALYSIS

As before, the security of our scheme is based on :
1. collision-resistance of the hash function,
2. difficulty of gap Diffie-Hellman problem, and
3. unforgeability of the chosen signature scheme.

5.1 Verifiable Multi-Replica Updates

Lemma 1. With , RST structure, total number of blocks n
and a given block index , if a returned block-AAI combi-
nation for an RST root passed the authentication, then
either it is computed with the actual replica blocks, or the server
has found a way to find collisions in the hash function H.

Proof. The client will first infer , the level of , from .

Let be the number of tuples in , then . If the a
dishonest server does not have the ability to find arbitrary
collisions of hash functions, it must select an existing node
N and its corresponding AAI in MR-MHT in order to
let the client to compute R, thereby verify , through it-
erative hashing.
1. If N is not on the verification path of , then either the
server provides wrong level or rank values, which will lead
to failure in computing the right R; or verification of both
values of and will fail.
2. When the queried node is a left child node, choosing any
hash value and its AAI from the verification path will let
the verification process output the correct , but not the
correct .
3. When the queried node is a right child node, choosing
any hash value and its AAI from the verification path will
let the verification process output the correct , but not
the correct .
Therefore, except for finding hash collisions, the server
must return the exact in order to let all three values
pass the verification.

With the Lemma above, we can now describe the
soundness and security of the update verification process
in MuR-DPA through the following theorems.

Theorem 1. If there is any fault to the new data content or
index in the server execution of an update request , the client verification will fail.

Proof. According to Lemma 1, the RST root and its AAI returned by the server are the correct representative

for the RST where resided, otherwise the verifica-

tion of R will fail.

 1. For insertions and modifications, if was updated

incorrectly, then , therefore R', will be computed in-
correct due to the collision resistance of hash function H.
According to the property of MHT, stays the same
throughout the update. As the client has the right

and , the values and R' at client side will be correct.
Therefore, the verification will fail.

 2. For deletions, the returned will be incorrect

once there is any fault in this update. As is in-

cluded in the , the client will identify if is

Fig. 6. Public auditing of all replicas at once

AUTHOR ET AL.: TITLE 9

incorrect.

 Therefore, through the verification, the client will be
able to detect any fault caused by accident or dishonest
behaviours in the update.

This concludes the proof that the MuR-DPA scheme
can support public auditing of dynamic data without
cheated by a dishonest server. As for efficiency, the AAI will be taking the majority of data transfer because it is
composed of log(n) hash values and rank/level informa-
tion for each update. For updating of multiple replicas
(which is a must for cloud storage with multiple replicas),
only one, instead of c AAIs, is needed to be transferred for
verification of c replica blocks. Therefore, the more replica
there is, the more efficiency advantage our scheme would
have.

5.2 All-at-once Multi-Replica Verification

Same as verifiable updates, there is need for verification of .
Theorem 3. In MuR-DPA scheme, If integrity of any replica of the i-th block was breached, the server cannot build a

response that can successfully pass the

verification, unless any of the 3 assumptions at the begin-
ning of this section fails to hold.

Proof. As the structure of RST is known by the verifier, the
verifier will be able to re-build the RST under ,

thereby compute based on . With Lemma 1,

the authenticity of can be verified via , i and n.

Therefore, if are not all correct,

then will be incorrect; with , the verification for

R will fail. Because was computed with and , if all these 3 values are cor-

rect, then the returned must be correct, other-

wise the client will fail to verify the equation . Therefore, our design can

make sure the returned are indeed the hash

values of the designated replicas for the ith block. On
the other hand, the soundness and security of verifica-

tion equation itself has

already been proven in [23] and [31]. Therefore, any in-
tegrity breach will be identified with MuR-DPA.
The proof above is based on the assumption that the

verifier knows the structure of RST. In fact, even when
the RST structure was unknown to the verifier, the verifi-
cation for all replicas may still be resilient to dishonest
servers as exchanging the orders of replicas under an RST
does not affect the verification. We leave this problem as
future work.

As a drawback, MR-MHT introduced more levels
(depth of RSTs) than each MHT in SiR-DPA to store rep-
lica blocks. Therefore, the verification cost for one replica
in MuR-DPA will be slightly larger than in SiR-
PA. However, as replica number is small (usually less
than 10), the depth of RSTs are only less than 4 levels.
Therefore, no significant overhead for the client to verify

a single replica. Details will be discussed in the next sec-
tion.

6 EXPERIMENTAL RESULTS AND ANALYSIS

6.1 Experimental Environment

We conducted our experiments on U-Cloud -- a cloud
computing environment located in University of Tech-
nology, Sydney (UTS). The computing facilities of this
system are located in several labs in the Faculty of Engi-
neering and IT, UTS. On top of hardware and Linux OS,
We installed KVM Hypervisor [3] which virtualizes the
infrastructure and allows it to provide unified computing
and storage resources. Upon virtualized data centers,
Hadoop [2] is installed to facilitate the MapReduce pro-
gramming model and distributed file system. Moreover,
we installed OpenStack open source cloud platform [4]
which is responsible for global management, resource
scheduling, task distribution and interaction with users.
The structure of U-Cloud is demonstrated in Fig. 7.

6.2 Experimental Evaluations

We compare our new scheme, MuR-DPA, against the
direct extension of the existing scheme in [31] with tags of
each replica indexed in separate MHTs and MHTs are
with levels and ranks for index authentication. We name
this scheme as SiR-DPA - Dynamic Public Auditing with
Separately-indexed Replicas. As the computation time is
not the primary concern in public auditing schemes, we
will mainly measure communication and storage costs.
All experiments are conducted on an 1GB randomly gen-
erated dataset and its replicas computed as , , on a virtual server launched in U-Cloud with 4 cores
and 16GB RAM. BLS parameters are chosen with 80-bit
security.

TABLE 1
PRICE OF DYNAMISM - COMMUNICATION OVERHEAD

FOR VERIFYING UPDATES OF HALF BLOCKS IN A 1GB

FILE

s (number of
sectors per block)

Data Up-
dated (MB)

Total Server Response
for Verification (MB)

1 512/1024 19.507

5 512/1024 3,625

10 512/1024 1,743

20 512/1024 837

50 512/1024 321

100 512/1024 154

Fig. 7. U-Cloud environment

10

We first measured the communication cost for verifica-
tion of updates. Table 1 shows the total communication
overhead for update verification of only one replica,
where overheads of SiR-PA and MuR-PA are the same.
The testing dataset is 1 GB and we are updating half of
the blocks with 512MB new content in total; with adjust-
ing parameter s. Communication overhead for update
verification in the protocol in [14] and the MHT-based
scheme in [31] will be similar to our SiR-DPA setting, as
the communication complexities in MHT and RASL are
both with high propabilitiy (whp). Note that in
this experiment, there is only one update for each block
for all modifications. Under this setting, we can see that
this overhead is always a large burden. Even for a large , there's still 154MB verification data needed to be
transferred from the server for updating of 512MB data.
Although the communication cost will decrease for a lar-
ger block size (because the number of blocks will be
smaller), it may take several update processes to update
half of its content, where the communication cost will
increase beyond the amount in Table 1. To make things
worse, with multiple replicas, SiR-DPA scheme will mul-
tiply this communication cost, which has to be avoided if
possible, given the fact that cloud service providers al-
ways keep multiple replicas for storage services.

Second, we tested the communication cost for updates
with different numbers of replicas and different sizes of
blocks. Results are depicted in Fig. 8 and 9. From Fig. 8,

we can see that the length of server response for modifica-
tion and insertion has been greatly reduced when there
are multiple replicas, which means the server's crucial
downlink bandwidth will be greatly reduced. The more
replicas the dataset has, the more advantageous the MuR-
DPA scheme is. Overheads for deletions will be similar as
there is only one more hash value to be included in server
response, thus the comparison is omitted here. The total
communication overheads for verification of updates to
dataset with multiple replicas are also tested. For block
insertion and modification, the new data block need to be
uploaded. Therefore, for a larger s, (i.e. a larger block size),
the total communication cost will rise. For block deletion,
since there is no new data block, nothing needs to be up-
loaded. Therefore, the total communication for a single
deletion stays unchanged with different s values. Either
way, for s=1 and s=10, our results show that communica-
tion overheads of verification of updates in MuR-DPA
always has significant advantage compared to SiR-DPA.

Third, we tested extra storage overhead for dynamic
public auditability, as well as communication overhead
for auditing of multiple replicas at once. Although the
total number of authenticators stayed the same, now it is
only one MHT (although with more levels) as opposed to
c MHTs in SiR-DPA. We can infer from Fig. 10 that the
extra storage cost is reduced by a great percentage when
there are multiple replicas stored in cloud. Communica-
tion overheads for verification of multiple replicas at once
are depicted in Fig 11. We can see that the more replicas
the server stored, the more advantage MuR-DPA scheme
has against SiR-DPA scheme. We have also noticed that
with the growth of replica number, the communication
overhead for verifying all replicas with MuR-DPA
scheme is close to verifying a single replica, while the
overhead of SiR-DPA grows in a much faster pace. For
example, when , verifying all 5 replicas with
MuR-DPA takes 26.8% more communication than verify-
ing only 1 replica, while this percentage for SiR-DPA is
398.8%. Therefore, the MuR-DPA scheme is not only use-
ful for verification of dynamic data, but also especially
useful for auditing of important datasets to ensure all
their replicas are intact.

Fig. 8. Length of server response for one verifiable modifica-
tion/insertion of one block

 (a) (b)

Fig. 9. Total communication for one verifiable update of one block when (a) s = 1; (b) s = 10

AUTHOR ET AL.: TITLE 11

We also tested the communication cost for one replica,
under different s value. As analysed in section 5, our
scheme will constantly incur more communication over-
head because of the extended RSTs. However, as can be
seen from Fig. 12, the extra communication overhead is
small. Even for an exaggerated case where and , the extra communication for verification of one
replica in MuR-DPA scheme is only 15.3% compared to
SiR-DPA scheme. For a more common choice of 4 replicas
and , this percentage is only 8.1%. Given that the
MuR-DPA scheme has much less communication cost for
verification of all replicas at once as well as verification of
updates, we would consider this an advantageous trade-
off.

7 CONCLUSIONS

In this paper, we presented a novel public auditing
scheme named MuR-DPA. The new scheme incorporated
a novel authenticated data structure based on the Merkle
hash tree, which we name as MR-MHT. For support of
full dynamic data updates, authentication of block indices

and efficient verification of updates for multiple replicas
at the same time, the level values of nodes in MR-MHT
are generated in a top-down order, and all replica blocks
for each data block are organized into a same replica sub-
tree. Compared to existing integrity verification and pub-
lic auditing schemes, theoretical analysis and experimen-
tal results have shown that the MuR-DPA scheme can not
only incur much less communication overhead for both
update and verification of datasets with multiple replicas,
but also provide enhanced security against dishonest
cloud service providers.

ACKNOWLEDGMENT

This work is supported in part by ARC LP0990393.

REFERENCES

[1] Available: http://aws.amazon.com/apac/awssummit-au/,

accessed on 25 March, 2013.

[2] Hadoop MapReduce. Available: http://hadoop.apache.org, accessed

on 25 March, 2013.

[3] KVM Hypervisor. Available: www.linux-kvm.org/, accessed on 25

March, 2013.

[4] OpenStack Open Source Cloud Software. Available:

http://openstack.org/, accessed on 25 March, 2013.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.

Zaharia, "A View of Cloud Computing," Communications of the

ACM, vol. 53, pp. 50-58, 2010.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L.

Kissner, Z. Peterson, and D. Song, "Remote Data Checking Using

Provable Data Possession," ACM Transactions on Information and

System Security, vol. 14, p. Article 12, 2011.

[7] G. Ateniese, R. B. Johns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song, "Provable Data Possession at Untrusted

Stores," in Proceedings of the 14th ACM Conference on Computer and

Communications Security (CCS '07), 2007, pp. 598-609

[8] G. Ateniese, S. Kamara, and J. Katz, "Proofs of Storage from

Homomorphic Identification Protocols," in Proceedings of the 15th

International Conference on the Theory and Application of Cryptology

and Information Security (ASIACRYPT '09), Tokyo, Japan, 2009,

pp. 319 - 333.

[9] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, "Scalable

and Efficient Provable Data Possession," in Proceedings of the 4th

Fig. 10. Extra storage overhead at server side for support of public
auditability and data dynamics

Fig. 11-a. Total communication for auditing of all replicas when s = 1

Fig. 11-b. Total communication for auditing of all replicas when s = 10

Fig. 12. Communication for auditing of 1 chosen replica for a data-
set with 1, 4 and 8 total replicas with different s

12

International Conference on Security and Privacy in Communication

Netowrks (SecureComm '08), İstanbul, Turkey, 2008, pp. 1-10.

[10] D. Boneh, H. Shacham, and B. Lynn, "Short Signatures from the

Weil Pairing," Journal of Cryptology, vol. 17, pp. 297-319, 2004.

[11] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,

"Cloud Computing and Emerging IT Platforms: Vision, Hype,

and Reality for Delivering Computing as the 5th Utility," Future

Generation Computer Systems, vol. 25, pp. 599-616, 2009.

[12] D. Cash, A. Küpçü, and D. Wichs, "Dynamic Proofs of

Retrievability via Oblivious RAM," in Proceedings of the 32nd

Annual International Conference on the Theory and Applications of

Cryptographic Techniques (EUROCRYPT '13), Athens, Greece,

2013, pp. 279-295.

[13] R. Curtmola, O. Khan, R. C. Burns, and G. Ateniese:, "MR-PDP:

Multiple-Replica Provable Data Possession. ," in Proceedings of the

28th IEEE International Conference on Distributed Computing

Systems (ICDCS '08), Beijing, China, 2008, pp. 411-420.

[14] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia,

"Dynamic Provable Data Possession," in Proceedings of the 16th

ACM Conference on Computer and Communications Security

(CCS’09), Chicago, USA, 2009, pp. 213-222.

[15] Y. He, S. Barman, and J. F. Naughton, "Preventing Equivalence

Attacks in Updated, Anonymized Data," in Proceedings of the 27th

IEEE International Conference on Data Engineering (ICDE '11), 2011,

pp. 529-540.

[16] A. Juels and J. B. S. Kaliski, "PORs: Proofs of Retrievability for

Large Files," in Proceedings of the 14th ACM Conference on

Computer and Communications Security (CCS '07), Alexandria,

USA, 2007, pp. 584-597.

[17] C. Liu, J. Chen, L. T. Yang, X. Zhang, C. Yang, R. Ranjan, and K.

Ramamohanarao, "Authorized Public Auditing of Dynamic Big

Data Storage on Cloud with Efficient Verifiable Fine-grained

Updates," IEEE Transactions on Parallel and Distributed Systems,

2013.

[18] C. Liu, X. Zhang, C. Yang, and J. Chen, "CCBKE - Session Key

Negotiation for Fast and Secure Scheduling of Scientific

Applications in Cloud Computing," Future Generation Computer

Systems, 2012.

[19] T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security and

Privacy: An Enterprise Perspective on Risks and Compliance.

Sebastopol: O'Reilly Media, 2009.

[20] R. C. Merkle, "A Digital Signature Based on a Conventional

Encryption Function," in Proceedings of A Conference on the Theory

and Applications of Cryptographic Techniques on Advances in

Cryptology (CRYPTO '87), 1987, pp. 369-378.

[21] E. Naone. What Twitter Learns from All Those Tweets. Available:

http://www.technologyreview.com/view/420968/what-twitter-

learns-from-all-those-tweets/, accessed on 25 March, 2013.

[22] S. E. Schmidt. Security and Privacy in the AWS Cloud. Available:

http://aws.amazon.com/apac/awssummit-au/, accessed on 25

March, 2013.

[23] H. Shacham and B. Waters, "Compact Proofs of Retrievability,"

in Proceedings of the 14th International Conference on the Theory and

Application of Cryptology and Information Security (ASIACRYPT

'08), 2008, pp. 90 - 107

[24] E. Shi, E. Stefanov, and C. Papamanthou, "Practical Dynamic

Proofs of Retrievability," in Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security (CCS '13), 2013,

pp. 325-336.

[25] E. Stefanov, M. v. Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S.

Devadas, "Path ORAM: An Extremely Simple Oblivious RAM

Protocol," in Proceedings of the 2013 ACM SIGSAC Conference on

Computer & Communications Security (CCS '13), 2013, pp. 299-310.

[26] S. Subashini and V. Kavitha, "A Survey on Security Issues in

Service Delivery Models of Cloud Computing," Journal of

Network and Computer Applications, vol. 34, pp. 1-11, 2010.

[27] B. Wang, S. S. M. Chow, M. Li, and H. Li, "Storing Shared Data

on the Cloud via Security-Mediator," in 33rd IEEE International

Conference on Distributed Computing Systems (ICDCS '13),

Philadelphia, USA, 2013.

[28] B. Wang, B. Li, and H. Li, "Oruta: Privacy-Preserving Public

Auditing for Shared Data in the Cloud," in Proceedings of the 2012

IEEE Fifth International Conference on Cloud Computing (CLOUD

'12), Hawaii, USA, 2012, pp. 295-302.

[29] B. Wang, B. Li, and H. Li, "Public Auditing for Shared Data with

Efficient User Revocation in the Cloud," in Proceedings of the 32nd

Annual IEEE International Conference on Computer Communications

(INFOCOM'13), Turin, Italy, 2013, pp. 2904-2912.

[30] C. Wang, Q. Wang, K. Ren, and W. Lou, "Privacy-Preserving

Public Auditing for Data Storage Security in Cloud Computing,"

in Proceedings of the 29th Annual IEEE International Conference on

Computer Communications (INFOCOM'10), San Diego, USA, 2010,

pp. 1 - 9.

[31] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, "Enabling Public

Auditability and Data Dynamics for Storage Security in Cloud

Computing," IEEE Transactions on Parallel and Distributed Systems,

vol. 22, pp. 847 - 859, 2011.

[32] P. Williams, R. Sion, and A. Tomescu, "PrivateFS: A Parallel

Oblivious File System," in Proceedings of the 2012 ACM Conference

on Computer and Communications Security (CCS '12), 2012, pp.

977-988.

[33] J. Yao, S. Chen, S. Nepal, D. Levy, and J. Zic, "TrustStore: Making

Amazon S3 Trustworthy with Services Composition," in

Proceedings of the 10th IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing (CCGRID '10), Melbourne,

Australia, 2010, pp. 600-605.

[34] X. Zhang, C. Liu, S. Nepal, S. Panley, and J. Chen, "A Privacy

Leakage Upper-bound Constraint based Approach for Cost-

effective Privacy Preserving of Intermediate Datasets in Cloud,"

IEEE Transactions on Parallel and Distributed Systems, 2012.

[35] Y. Zhang and M. Blanton, "Efficient Dynamic Provable

Possession of Remote Data via Update Trees," 2012.

[36] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, "Cooperative Provable

Data Possession for Integrity Verification in Multi-Cloud

Storage," IEEE Transactions on Parallel and Distributed Systems, vol.

23, pp. 2231-2244, 2012.

[37] D. Zissis and D. Lekkas, "Addressing Cloud Computing Security

Issues," Future Generation Computer Systems, vol. 28, pp. 583-592,

2011.

