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Abstract—Big data and its applications are attracting more and more research interests in recent years. As the new generation 
distributed computing platform, cloud computing is believed to be the most potent platform. With the data no longer under users' 
direct control, data security in cloud computing is becoming one of the most obstacles of the proliferation of cloud. In order to 
improve service reliability and availability, storing multiple replicas along with original datasets is a common strategy for cloud 
service providers. Public data auditing schemes allow users to verify their outsourced data storage without having to retrieve the 
whole dataset. However, existing data auditing techniques suffers from efficiency and security problems. First, for dynamic 
datasets with multiple replicas, the communication overhead for update verification is very large, because verification for each 
update requires O(logn) communication complexity and update of all replicas. Second, to the best of our knowledge, there is no 
existing integrity verification schemes can provide public auditing and authentication of block indices at the same time. Without 
authentication of block indices, the server can build a valid proof based on data blocks other than the block client requested to 
verify. In order to address these problems, in this paper, we present a novel public auditing scheme named MuR-DPA. The new 
scheme incorporated a novel authenticated data structure based on the Merkle hash tree, which we name as MR-MHT. For 
support of full dynamic data updates, authentication of block indices and efficient verification of updates for multiple replicas at 
the same time, the level values of nodes in MR-MHT are generated in a top-down order, and all replica blocks for each data 
block are organized into a same replica sub-tree. Compared to existing integrity verification and public auditing schemes, 
theoretical analysis and experimental results show that the MuR-DPA scheme can not only incur much less communication 
overhead for both update and verification of datasets with multiple replicas, but also provide enhanced security against 
dishonest cloud service providers.  
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1 INTRODUCTION

IG data has been one of the most intensive research 
topics in recent years. People from almost all major 

industries are increasingly realizing the values in their 
explosively growing datasets. Research directions for big 
data are always  into 4 v's: Velocity, Variety, Veracity and 
Volume, in which cloud can help in a big way. Cloud 
computing is the new-generation distributed computing 
platform that is extremely useful for big data storage and 
processing. With the pay-as-you-go payment model, elas-
tic and scalable resource allocation and various levels of 
services in IaaS (Infrastructure-as-a-Service), PaaS and 
SaaS, cloud is widely recognised as the most promising 
technological backbone for solving big data problems [5]. 
Cloud can also save a lot of investments in purchasing 
and maintenance of hardware, which is also great for big 
data applications. A vision is that cloud, providing com-
putational resources, can one day be integrated into our 
daily life so close as other utilities such as electricity, gas 
and water [11].  

Security/privacy is one of the major concerns in the 
usage of cloud computing [19, 26]. As data are no longer 
under users' direct control, users are reluctant to move 
their valuable data onto cloud, especially public cloud 
with high consolidation and multi-tenancy. Also, from an 
efficiency perspective, querying and retrieving with cloud 
server requires a lot more efforts than with local servers.  

Datasets in big data applications are always dynamic. 

In fact, except for a few examples of large static datasets 
such as libraries and e-archives, datasets in most big data 
applications needs constant updating. In many applica-
tions data updates are very frequent, such as in social 
networks and business transactions. Therefore,  it is of 
extreme importance for a cloud security mechanism, such 
as a public auditing scheme, to efficiently support dy-
namic data. 

Three main dimensions in security are confidentiality, 
integrity and availability. Aiming at integrity assurance, 
public auditing of cloud data has been an extensively in-
vestigated research problem in recent years. As user data-
sets stored on cloud storage servers (CSS) are out of the 
user's reach, auditing from the client herself or a third 
party auditor is a common request, no matter how power-
ful the server-side mechanisms claim to be. With provable 
data possession (PDP) and proofs of retrieveability (POR), 
the data owner or a third-party auditor can verify integ-
rity of their data without having to retrieve their data. In 
such schemes, a small metadata called 'homomorphic 
authenticator' or 'homomorphic tags' are stored along 
with each data block. When the client needs to verify data 
integrity, the server will generate a proof with the authen-
ticators of the selected data blocks, and data auditing is 
done by the client or a third-party auditor through verify-
ing the proof with the public keys.  

Existing public auditing schemes can already support 
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public auditing and various kinds of full dynamic data 
updates at the same time [17, 31]. However, there are a 
few problems that we aim to address in this work. First, 
not much work has been done in support multiple repli-
cas. Storing multiple replicas is a common strategy for 
reliability and availability in cloud. For highly dynamic 
data, each update will lead to update to every replica. 
Given the fact that update verifications in current verifica-
tion schemes are of O(logn) communication complexity, 
verifying these replicas one by one will be very costly in 
terms of communication. Second, current schemes for 
dynamic public auditing are susceptible to attacks from 
dishonest servers. Although there is an integrity verifica-
tion schemes for dataset with replicas [13] and schemes 
with index verification [14], they cannot support public 
auditing.   

In this paper, we present a multi-replica dynamic pub-
lic auditing (MuR-DPA) scheme that can bridge the gaps 
mentioned above through a newly designed authenti-
cated data structure. Research contributions of this paper 
can be summarized as follows: 

1. To address the efficiency problem in verifiable up-
dates for cloud storage with multiple replicas, we propose 
a multi-replica public auditing (MuR-DPA) scheme. The 
new scheme is based on a novel multi-replica Merkle 
hash tree (MR-MHT). Experimental results show that our 
scheme can drastically reduce communication overheads 
for update verification of cloud data storage with multi-
ple replicas. 

2. As the previous usage of Merkle hash tree (MHT) in 
public auditing of dynamic data did not involve authenti-
cation of node indices, such schemes are susceptible to 
cheating behaviours from a dishonest server. In this pa-
per, with the support of MR-MHT, we proposed the first 
MHT-based public auditing scheme for dynamic data 
with authentication of index information, which is safe 
against dishonest servers. The main strategy is top-down 
levelling and verification of indices from both sides. 

3. With MR-MHT, we also designed a novel public au-
diting protocol for verification of all replicas at once. Ex-
perimental results show that our scheme can not only 
provide efficient verification for multiple replicas, but 
also incur less extra storage overhead at server side.  

Paper Organization: The rest of this paper is organ-
ized as follows. Section 2 discusses related work. Section 
3 provides an analysis of our research problem. Section 4 
provides a detailed description of our proposed scheme 
in detail. Section 5 provides security and efficiency analy-
sis for our design. Section 6 provides experimental results. 
Section 7 provides conclusion for this research. 

2 RELATED WORK 

Compared to traditional systems, scalability and elasticity 
are key advantages of cloud [1, 5, 11]. As such, efficiency 
in supporting dynamic data is of great importance. Secu-
rity and privacy protection on dynamic data has been 
studied extensively in the past [9, 14, 15, 31]. Frequent 
updates exist in many cloud applications such as business 

transaction logs, health records from hospitals and online 
social networks (e.g. Twitter [21]).  

Data security/privacy is one of the most pressing con-
cerns related to big data and cloud [22, 33, 37]. There is a 
lot of research to enhance cloud data security/privacy 
with technological approaches on cloud server side, such 
as [18, 34]. They are of equal importance as external veri-
fication approaches such as our focus of public auditing.  

Integrity verification for outsourced data storage has 
attracted extensive research interest. The concept of 
proofs of retrievability (POR) and its first model was pro-
posed by Jules, et al. [16]. Unfortunately, their scheme can 
only be applied to static data storage such as archive or 
library. In the same year, Ateniese, et al. proposed a simi-
lar model named ‘provable data possession’ (PDP) [7]. 
Their schemes offer ‘blockless verification’ which means 
the verifier can verify the integrity of a proportion of the 
outsourced file through verifying a combination of pre-
computed file tags which they call homomorphic verifi-
able tags (HVTs) or homomorphic linear authenticators 
(HLAs). Work by Shacham, et al. [23] provided an im-
proved POR model with stateless verification. They also 
proposed the first public verification scheme in the litera-
ture that based on BLS signature scheme [10]. In this 
scheme, the generation and verification of integrity proofs 
are similar to signing and verification of BLS signatures. 
When wielding the same security strength (say, 80-bit 
security), a BLS signature (160 bit) is much shorter than 
an RSA signature (1024 bit), which in turn brings shorter 
proofs for a POR scheme. They also proved the security of 
both their schemes and the PDP scheme by Ateniese, et al. 
[6, 7]. Ateniese, et al. extended their scheme for enhanced 
scalability [9], but only partial data dynamics and a pre-
defined number of challenges is supported.  

Erway, et al. proposed the first PDP scheme that can 
support verification for full dynamic data updates [14]. A 
modified authenticated data structure (ADS) is used for 
verification of updates, which became the popular way of 
supporting verifiable updates in the following PDP/POR 
works. The ADS they used is called rank-based authenti-
cated skip list (RASL). However, public auditability and 
variable-sized file blocks are not supported in their 
framework. Wang, et al. [31] proposed a scheme based on 
BLS signature that can support public auditing (especially 
from a third-party auditor, TPA) and full data dynamics. 
To support verification of updates, they used another 
ADS called Merkle hash tree (MHT). However, their us-
age of ADS was flawed, which will be patched in this 
work. A follow-up work by Wang et al. [30] added a ran-
dom masking technology on top of [31] to ensure the TPA 
cannot infer the raw data file from a series of integrity 
proofs. In their scheme, they also incorporated a strategy 
first proposed in [23] to segment file blocks into multiple 
‘sectors’. for trading-off of storage and communication 
costs. Work by Liu et, al. [17] investigated support for 
fine-grained updates and efficiency for verification of 
small updates. However, their scheme is under a strong 
assumption, where they assumed the server remains hon-
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est answering queries to file blocks. Also, none of the 
above schemes has considered the commonly employed 
multi-replica strategy in clouds. 

For cloud storage with multiple replicas, Curtmola, et 
al. [13] proposed a scheme named MR-PDP that can 
prove the integrity of multiple replicas along with the 
original data file. Although the scheme only requires only 
one authenticator for each block, it has two severe draw-
backs. First, it does not support public auditing, which 
means the verifications can only be done by the client 
herself. Second, it does not support dynamic data.  To-
date, to allow a third-party auditor to verify datasets with 
multiple replicas, the client needs to store and build dif-
ferent ADS for every replica.  

Research in this area also includes the work of Ateni-
ese, et al. [8] on how to transform a mutual identification 
protocol to a PDP scheme; scheme by Zhu, et al. [36] 
which allows different service providers in a hybrid cloud 
to cooperatively prove data integrity to data owner. As 
cloud data sharing is happening in many scenarios, Wang 
et, al. worked on secure data verification of shared data 
storage [27] and also with efficient user management [29] 
and user privacy protection [28]. Zhang et, al. proposed a 
scheme with a new data structure called update tree [35]. 
Without conventional authenticated data structures such 
as MHT, the proposed scheme has a constant proof size 
and support fully data dynamics. However, the scheme 
also does not support public auditing. Cash et, al. [12] 
proposed a novel POR scheme based on oblivious RAM 
(ORAM). ORAM, or oblivious file system, was mostly 
used to hide data access patterns through shuffling and 
noise addition on outsourced data storage [25, 32]. Shi et, 
al. also proposed a more efficient scheme based on 
ORAM [24], but such schemes are still not practical to use. 

3 PROBLEM STATEMENT AND ANALYSIS 

3.1 Multiple Replicas 

For availability, storing multiple replicas is a default set-
ting for cloud service providers. Storing replicas at differ-
ent servers and/or locations will make user data easily 
recoverable from service failures. A straightforward way 
for users to verify the integrity of multiple replicas is to 
store them as separate files and verify them one by one. 
Currently, the most common technique used to support 
dynamic data is authenticated data structure (ADS).  
Given the        communication complexity and storage 
complexity of ADS (n is the total number of blocks, a very 
large number when file is large), different replicas. More 
importantly, an update for each data block will require 
update of the corresponding block in every replica. If all 
replicas are indexed in their own separated ADS, the cli-
ent must verify these updates one by one to maintain 
verifiability. The 'proof of update' for each block contains 
log(n) hash values as auxiliary authentication information 
(AAI). Therefore, the communication cost in update veri-
fications will easily become a disaster for users whose 
cloud datasets are highly dynamic. In previous schemes, 
researchers have considered support for public auditing, 

data dynamics and multiple replicas, but none has con-
sidered them all together.In this work, we try to address 
this problem with a new ADS which links together all 
replicas for each block. 

In [13], the authors proposed a multi-replica verifica-
tion scheme with great efficiency by associating only one 
authenticator (HLA) for each block and all replica blocks. 
Although this approach can bring great benefits such as 
lower storage cost at server side and less pre-processing 
time at client side,  their scheme do not support public 
auditability. The verification needs the privately kept 
padding randoms (or at least the pseudo-random func-
tion that used to generate them). If leaked, another party 
will know how to compute the original message based on 
it and how to compute an arbitrary replica based on an 
original file block, which is also the inherent reason why 
this setting cannot even be transferred into a scheme with 
public verifiability.  

To sum up, from our considerations, desired proper-
ties of a multi-replica verification scheme should include 
the following: 

1. Public Auditability and Support for Dynamic Data -- 
Enables a third-party auditor to do the regular verifica-
tion for the client and allow the client to verify data up-
dates. It will be unreasonable for the client to conduct 
verification herself on a regular basis, where she only 
wants to know when something went wrong about her 
data; and dynamic data exists in most applications. 

2. All-round Auditing -- Enables efficient verification 
for all replicas at once so that the verifier will get better 
confidence. If any of the replicas fails, the server will be 
notified on time. 

3. Single-Replica Auditing -- Enables verification for an 
arbitrary replica for some specific blocks; because the 
verifier may only wants to know if at least one replica is 
intact for less important data.   

 

3.2 Secure Dynamic Public Auditing 

As demonstrated in Fig.1, the three parties in a public 
auditing game -- the client, the cloud service provider and 
third-party auditor -- are not fully trusted. by each other, 
Authenticated data structures (ADS) such as MHT or 
RASL can enable other parties to verify the content and 
updates of data blocks. The authentication for a block is 
accomplished with the data node itself and its auxiliary 
authentication information (AAI) which is constructed 
with node values on or near its verification path.  Without 
verification of block indices, a dishonest server can easily 
take another intact block and its AAI to fake a proof that 
could pass authentication. This will cause several security 
holes. First, the proofs of updates are no longer reliable. A 
dishonest server can store new data block anywhere, as 
long as it transfers back a consistent pair of hash       
and AAI that can be used to compute the correct root 
value. Second, for auditing of dynamic data,      , the 
hash value of the block itself, is needed in authenticator 
computation instead of hash of any value that contains 
block indices such as      or        , otherwise an in-
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sert/delete will cause change of authenticators of all fol-
lowing blocks, which will be disastrous, especially that 
the client is the only one who can compute authenticators. 
Therefore, in order for each authenticator to include a 
block-specific hash value,        seemed to be the only 
choice. In this case, as the verifier (client or TPA) does not 
possess the original dataset, the client will solely rely on 
cloud server -- who keeps the actual dataset -- to compute       for verification of data integrity. As the only way 
for the client to verify the correctness of       is through 
ADS, the server can cheat the client with another hash 
and AAI pair. In other words, the server can take any 
other healthy block to replace the block that should be 
verified, which denies the primary aim of integrity verifi-
cation. To the best of our knowledge, there is no existing 
public auditing scheme that supports full dynamic data 
can deal with this problem. 

Erway et, al.'s RASL [14] can provide authentication 
for indices, which is resilient to the above attacks. Aside 
from the effective ADS, they did propose a scheme where 
the authenticator is computed as     , but it is too 
simple (without hash value, they can be inte-
grated/separated too easy) to support public auditing. In 
fact, the RASL cannot be directly applied into a public 
auditing scheme supporting dynamic data. As stated ear-
lier,       is to be used in authenticators for support of 
dynamic data. Therefore, the client needs       com-
puted by and transferred from the cloud server for verifi-
cation. In order to achieve verifiability of index informa-
tion, the leaf nodes no longer stores the hash value of file 
blocks, but the hash value of a concatenation of multiple 
values in the form of                                  . 
Therefore, the server need to send back both values of      and     , and the client will need to verify     . In 
an RASL, a common case is that multiple leaf nodes are in 
the same verification path, such as          in Fig. 2. Let's 
say          represents message blocks         . As 
stated earlier, the client needs       computed by and 
transferred from the cloud server for verification. In this 
case, if verification of    is needed, the server not only 
needs to return all 3 values on          as part of AAI, 
but also needs to compute and transfer all                      . As only a small fraction of 
blocks (460 for 99% confidence when auditing 1GB file), it 

is not likely that these consecutive blocks are chosen for 

one audit, which means much excessive overheads. Also， 

the bottom-up levelling restricts the insertions. If leaf 
nodes are level 0 as defined in [14], any insertion that cre-
ates a new level below level 0 will cause update of all 
level values (therefore all hash values of all nodes), which 
is hardly possible for the client to verify. For these reasons, 
we choose to use MHT with top-down levelling, instead 
of RASL, to design the new ADS. Now that the leaf nodes 
are on different levels, we will need both the client and 
verifier to remember the total number of blocks and ver-
ify the block index from both directions (leftmost to 
rightmost, rightmost to leftmost) to make sure the server 
do not cheat the client with another node on the verifica-
tion path.   

4 MUR-DPA 

4.1 Preliminaries 

4.1.1 Bilinear Pairing 

Assume a group   is a gap Diffie-Hellman (GDH) group 
with prime order  . A bilinear map is a map constructed 
as          where    is a multiplicative cyclic group 
with prime order. A useful   should have the following 
properties:  

1. Bilinearity –                            ;  
2. Non-degeneracy –                  ; 

and 
3. Computability –   should be efficiently computable.  
As denoted in [10], a more efficient asymmetric bilin-

ear map            may also be applied. For simplic-
ity, we will use this symmetric bilinear map in our 
scheme description. 

4.1.2 Merkle Hash Tree 

The Merkle Hash Tree (MHT) [20] has been intensively 
studied in the past. Similar to a binary tree, each node   
will have a maximum of 2 child nodes. In fact, according 
to the update algorithm, every non-leaf node will con-
stantly have two child nodes.  Information contained in 
one node   in an MHT   is constructed as follows. For a 
leaf node based on a file block   , node value is com-
puted as         . A parent node of    and    is con-
structed as               . A leaf node   ’s auxiliary 
authentication information (AAI)    is a set of hash values 
chosen from every of its upper level so that the root value   can be computed through        .   
4.2 MuR-DPA: Multi-replica Dynamic Public 

 

Fig. 1. Relations between the participating parties in public auditing 
of cloud data 

 

Fig. 2. A Rank-based Authenticated Skip List (RASL) 
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Auditing 

4.2.1 MR-MHT  

A multi-replica Merkle hash tree (MR-MHT) is a novel 
authenticated data structure designed for efficient verifi-
cation of data updates, as well as authentication for block 
indices. Each MR-MHT is constructed based on not only a 
logically segmented file, but also all its replicas, as well as 
a pre-defined cryptographic hash function H. An example 
of MR-MHT, constructed based on a file with 4 blocks 
and 3 replicas, is shown in Fig. 3. The differences from the 
MHT are as follows: 

1. Value stored in the leaf nodes are hash values of 
stored replica blocks. In MR-MHT, leaf nodes represents 
replica blocks     , namely the jth replica of the ith file 

block. 
2. Value stored in a node v from a none-leaf level is 

computed from the hash values of its child nodes and two 
other indices      and     .      is the level of node   and      is the maximum number of nodes in the leaf(bottom) 
level that can be reached from v. Different to RASL in [14], 
the levels are defined in an top-down order, i.e., the level 
of root node   is defined as 0, and levels of its child nodes 
are defined as 1, etc.. The values stored in leaf nodes 

are                      ; the value in each none-leaf node 

is computed as                        where       and        
denotes the values stored in its left child node and right 
child node, respectively. In Fig. 3, under our definition,         (and for all leaf nodes) is 4,          . For example, 

the value    is computed as:                                                               

and                         ,                   , etc.. 

3. The AAI      is different from the MHT in [31] as fol-

lows. They now contain not hash values of the intermedi-
ate nodes only, but tuples in the format of          , one 
tuple for each node. h is the hash value stored on this 
node, l is the level of this node, q is the maximum number 
of leaf nodes reachable from this node, and d is a Boolean 
value that indicates this node is to the right (0) or left (1) 
of the node on the verification path, i.e. the nodes from 
leaf node to the root  . For example, in Fig. 3,      for rep-
lica block      is defined as                                                                          , and its verification path is                            .  

4. All replicas of one file block are organized into a 
same sub-tree which we call replica sub-tree (RST), see 
Fig. 3. Note that each RST has the same structure. Each 
block has exactly c replicas because there are c replica files 
for the original data file. The total number of leaf nodes 
for every RST is the total replica number c. Different from 
[13], replica blocks are treated independently and each 
replica block has its own authenticator. The root of each 
RST, which we denote as   , will play a vital role in the 
newly proposed multi-replica verification and update 
verification in the following sections. We use    to denote 

the AAI for   , i.e., one can verify the content and index of    with    and  , similar to      discussed earlier but has 

less hash values. Although roots of RSTs are non-leaf 
nodes, they can still be authenticated in the same way as 
leaf nodes. In addition, we define    as the set of tuples           for all   intermediate nodes in each RST   . t is 
the sequence number from 1 to  , ordered from top to the 
bottom right. For example, in Fig. 3,    contains only one 
node    where                . As the number of repli-
cas is only a small number (less than 10), for simplicity of 
description, we assume the structure of    is stored at cli-
ent (and TPA) side, which applies to every RST and takes 
only a negligible amount of storage. In this case, the client 

can compute   , therefore   , based on         and         

without requesting    it from the server. But keep in mind, 
for less client-side storage, the client may also request    
from the server and verify them via           and     . 

Based on this new ADS, we now describe our scheme 
in detail.  

4.2.2 Setup  

The user and cloud server will first establish common 
parameters, including a bilinear map         , and a 
cryptographic hash function H.           : The client generates a secret value      

and a generator   of  , then compute      where     
are the public key and   is the secret key. Another secret 
signing key pair           is chosen with respect to a des-
ignated provably secure signature scheme whose signing 
algorithm is denoted as      . This algorithm outputs         as the secret key    and           as the public 
key   .                    :  

1) For a dataset to be stored on cloud server, the client 
will first make c replicas based on the original files. In 
order to enable the verifiability of these replicas, they 
should be different from one another; otherwise, the 
server may cheat the client by responding to challenges 
with the correct proofs but actually storing only one rep-
lica. From an original file               , we denote 

its jth replica file as                               . The 

replica blocks      are transformed from   , and the trans-

form is reversible, i.e., the client can recover the original 
file   through retrieval and reversed transformation of 

any replica    . Therefore, the client do not have to upload  ; she can recover   with any intact replica if needed. For 

 

Fig. 3. An example of MR-MHT 
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example, a method described in [13] is to choose   
pseudo-random functions   to compute random values              then output      as               ; the repli-

cas may also be computed with other methods such as 
public-key techniques.  

2) The client constructs a MR-MHT based on     , com-

putes the root value R, and computes its signature     
with    .  

3) The client will compute an authenticator                      for every replica block     .  

Finally, this algorithm outputs                   and then 

uploads them all to the cloud server. 

4.2.3 Data Updates and Verification  

In this paper, types of updates considered are whole-
block insertion I, deletion D and modification M. These 
are the minimum requirements for support of full data 
dynamics [14]. In multi-replica scenario, when a block    
needs to be updated, all its corresponding replica blocks      are also needed to be updated in the same way to 

maintain consistency. For insertion and modification, the 
client needs to upload new data block. As the only one 
that has the capability to compute replica blocks      based 

on the original file block   , the client will compute the 
new replica blocks       then send them to the server along 

with the update type I, D or M.                          : The server will parse            into                  and perform the update to 

file blocks, indices and ADS according to the update re-
quest. Specifically, the server will need to update the   
value for nodes in insertions and deletions. Note that val-
ues in none-leaf nodes in    stays the same after the up-
date process.  

For insertions and deletions, the situations are more 
complex than in past schemes [14, 17, 31]. In a traditional 
MHT, level or rank information is not contained in the 
nodes; in an RASL, all leaf nodes stays constantly on level 
0. Therefore, there is no need to change the hash value in 
other nodes. In this top-down levelled MHT however, the 
levels of all leaf nodes in adjacent RST have also changed 
by +1 with insertion/-1 with deletion, as the level value is 
a part in computation of node value. For example, in Fig. 

4-a, with the insertion of        , the levels of        have 

increased by 1, which will cause change to all          ; 
while in Fig. 4-b, with the deletion of       , levels of the 

old         (i.e., old       ) have decreased by 1. To output 

the correct   , these updates are needed to be performed 
in the hash tree as well. For insertions and modifications, 

The server will then output                               

and returns it to the client. For deletions, the server will 

need to additionally transfer          .                         : In order to verify this up-

date, the client first need to parse        . Let the   tuples 

in    be               for each node    in an decreasing 
order of levels, i.e.,                       . A  little 
different from the definition,    is the max number of RST 
roots, instead of leaf nodes, that can be reached from   . 
Since the structure of RST    is known to the client, she 
will be able to compute    and    , the old and new roots 

of   , with         (got from the server) and          alone 

respectively. 
1. The client will first iteratively compute tuples               for nodes on the verification path with 

nodes    in    as follows,        :             ,                      ,            
and         if     ,  

or:             ,                      ,         and           , if     , 

where           ,     ,     ,     .  

After              is obtained, client will verify      
with    , and verify if        and        hold at 
the same time. If the three values passed authentication, 
the authenticity of    (also     ) and its index   can be con-

firmed.  

 

Fig. 4-a. An Insertion before the 3rd block into the MR-MHT in Fig. 3 

 

Fig. 4-b. A Deletion of the 3rd block for the MR-MHT in Fig. 3 



AUTHOR ET AL.:  TITLE 7 

 

2. For deletion, the client needs to verify         . Note 

that          represented the same block and replicas 

whose root of RST was stored as the first tuple in    , e.g., 

in Fig. 4-b,          and         represented the same set of 

data; the only difference is that                   . 

Therefore, the client has enough information to verify          with        ,    and R. The verification processes 

are similar to those above. As for insertion,         has 

already been verified along with   ; the client can safely 
compute the new        without additional verifications, 

see Fig. 4-a. 
3. With RST structure, the client will then compute     

with         , then compute      with    and     and com-

pare      with   .  
If all 3 verification passed, it means that the server has 

performed the update to all replicas honestly. The client 
will update the total block number n, then compute       

(the authenticators for      ) and store them on server.  

The protocol for verification of updates is demon-
strated in Fig. 5. 
 
4.2.4 Challenge and Verification for Multi-replica Public 
Auditing 
Within our top-down levelled setting, the verifier will 

need         to verify the auditing equation as it is not 

stored in the MR-MHT. Here we discuss how to conduct 
verification on all replica blocks for a given set of indices 
in one go.  

                             : The third-party 
auditor TPA generates challenge message with the give 
accuracy Acc, and sends an  authorization. For example, 
same as before, for a 99% accuracy, the verifier needs to 
verify 460 blocks out of a 1GB file. The challenge message 

is                      where         is for authorization, I 

is the random set of indices chosen for verification, and      are random numbers for integration of     .                       : The cloud server will first 
verify         , same as in [17]. Then, it will compute             and               for every replica, and send  

                                     back to TPA.              : Since the verifier knows the structure of 

RSTs, it will compute R with              and verify     

for each ith chosen block. The verification process is simi-
lar as in section 4.2.3, with iterative triples and verifica-
tion of         of . Also, it needs to verify the authen-

ticity of         by verifying if                               , where         can be in-

ferred from       which equals level of the first node in   . 
For example, in Fig. 3,    . When we know that         from          (  is the first node in   ), we can 

easily derive                              . If this veri-

fications passed, TPA will trust the retrieved         are 

genuine, then it can verify c replicas one by one by verify-
ing the following c equations:                                        

If these equations holds then the verification will out-
put 'ACCEPT', otherwise output 'REJECT'. The process is 
demonstrated in Fig. 6. 

4.3 Discussions and Extensions 

Since each replica block      has its own authenticator     , 
our scheme also supports single replica verification. The 
process will be similar to the verification in [31] with ad-

ditional verification of         and the index of        . 

Except for the rank verifications of     are now                and               . other details 
will be similar as the verifications described above. 

In [23], the authors proposed a value   for trade-off of 
storage and communication overheads. In this strategy, 
every file block    is segmented into s segments     
(length of each segment equals the length of a block with-
out s, typically 20bytes), and the authenticators are com-

puted as                       . In this case, the proof 

size has increased by    because there will be multiple           , instead of one, to be included in the proof. 
However, the storage overhead has decreased to 1/s as 
there is only one authenticator stored along with s sectors. 
As our scheme is also based on BLS signature, with same 

 

Fig. 5. Data update and verification 
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block segmentation strategy, the trade-off can easily be 
applied to our scheme to support dynamic data with mul-
tiple replicas. We will show our experimental results un-
der different s values in Section 6.  

Based on the segmented blocks, Liu, et, al. have inves-
tigated fine-grained updates for variable-sized file blocks 
with different segmentations and RMHT in [17]. If we 
extend MR-MHT to let the nodes to store the 'rank' in-
formation computed from different sizes of blocks, our 
scheme can also support fine-grained updates and en-
hance the scheme in [17] with efficient support for update 
of multiple replicas. 

Wang et, al. have proposed a random masking tech-
nology for privacy protection against the third-party 
auditor [30]. In their scheme, the server will mask the 
proof   (integrated blocks) with a random r and generate 
a new         so that TPA will not learn the users 
data from multiple challenging of the same set of blocks. 
In the multi-replica setting, the proof   is computed based 
on replica blocks      instead of the message blocks   . 
Therefore, in most scenarios it is not necessary to apply 
another masking from the server. Even TPA can infer      

from multiple challenges, it will not get any information 
of the user data    without knowing the transformation 
method, which is known only by the client, from      to   . 
If there is any need to protect replica blocks against the 
TPA, our scheme can be extended with the same server-
side padding strategy.  

5 SECURITY AND EFFICIENCY ANALYSIS 

As before, the security of our scheme is based on : 
1. collision-resistance of the hash function, 
2. difficulty of gap Diffie-Hellman problem, and  
3. unforgeability of the chosen signature scheme.  

5.1 Verifiable Multi-Replica Updates 

Lemma 1. With    , RST structure, total number of blocks n 
and a given block index    , if a returned block-AAI combi-
nation         for an RST root passed the authentication, then 
either it is computed with the actual replica blocks, or the server 
has found a way to find collisions in the hash function H. 

Proof. The client will first infer      , the level of   , from   . 

Let   be the number of tuples in   , then        . If the a 
dishonest server does not have the ability to find arbitrary 
collisions of hash functions, it must select an existing node 
N and its corresponding AAI    in MR-MHT in order to 
let the client to compute R, thereby verify    , through it-
erative hashing.  
1. If N is not on the verification path of   , then either the 
server provides wrong level or rank values, which will lead 
to failure in computing the right R; or verification of both 
values of    and    will fail.  
2. When the queried node is a left child node, choosing any 
hash value and its AAI from the verification path will let 
the verification process output the correct   , but not the 
correct   . 
3. When the queried node is a right child node, choosing 
any hash value and its AAI from the verification path will 
let the verification process output the correct   , but not 
the correct   . 
Therefore, except for finding hash collisions, the server 
must return the exact     in order to let all three values 
pass the verification.                                                      

With the Lemma above, we can now describe the 
soundness and security of the update verification process 
in MuR-DPA through the following theorems. 

Theorem 1. If there is any fault to the new data content or 
index in the server execution of an update request                 , the client verification will fail. 

Proof. According to Lemma 1, the RST root    and its AAI    returned by the server are the correct representative 

for the RST where        resided, otherwise the verifica-

tion of R will fail. 

 1. For insertions and modifications, if       was updated 

incorrectly, then     , therefore R', will be computed in-
correct due to the collision resistance of hash function H. 
According to the property of MHT,    stays the same 
throughout the update. As the client has the right       

and   , the values     and R' at client side will be correct. 
Therefore, the verification will fail.  

 2. For deletions, the returned          will be incorrect 

once there is any fault in this update. As          is in-

cluded in the        , the client will identify if          is 

 
Fig. 6. Public auditing of all replicas at once 
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incorrect.  

 Therefore, through the verification, the client will be 
able to detect any fault caused by accident or dishonest 
behaviours in the update.  

This concludes the proof that the MuR-DPA scheme 
can support public auditing of dynamic data without 
cheated by a dishonest server. As for efficiency, the AAI    will be taking the majority of data transfer because it is 
composed of log(n) hash values and rank/level informa-
tion for each update. For updating of multiple replicas 
(which is a must for cloud storage with multiple replicas), 
only one, instead of c AAIs, is needed to be transferred for 
verification of c replica blocks. Therefore, the more replica 
there is, the more efficiency advantage our scheme would 
have. 

5.2 All-at-once Multi-Replica Verification 

Same as verifiable updates, there is need for verification of   .  
Theorem 3. In MuR-DPA scheme, If integrity of any replica      of the i-th block was breached, the server cannot build a 

response                                     that can successfully pass the 

verification, unless any of the 3 assumptions at the begin-
ning of this section fails to hold. 

Proof. As the structure of RST is known by the verifier, the 
verifier will be able to re-build the RST under     , 

thereby compute      based on        . With Lemma 1, 

the authenticity of         can be verified via    , i and n. 

Therefore, if                         are not all correct, 

then      will be incorrect; with   , the verification for 

R will fail. Because         was computed with                 and        , if all these 3 values are cor-

rect, then the returned         must be correct, other-

wise the client will fail to verify the equation                                     . Therefore, our design can 

make sure the returned         are indeed the hash 

values of the designated replicas for the ith block. On 
the other hand, the soundness and security of verifica-

tion equation                               itself has 

already been proven in [23] and [31]. Therefore, any in-
tegrity breach will be identified with MuR-DPA. 
The proof above is based on the assumption that the 

verifier knows the structure of RST. In fact, even when 
the RST structure was unknown to the verifier, the verifi-
cation for all replicas may still be resilient to dishonest 
servers as exchanging the orders of replicas under an RST 
does not affect the verification. We leave this problem as 
future work. 

As a drawback, MR-MHT introduced more levels 
(depth of RSTs) than each MHT in SiR-DPA to store rep-
lica blocks. Therefore, the verification cost for one replica 
in MuR-DPA will be slightly larger than in SiR- 
PA. However, as replica number is small (usually less 
than 10), the depth of RSTs are only less than 4 levels. 
Therefore, no significant overhead for the client to verify 

a single replica. Details will be discussed in the next sec-
tion. 

6 EXPERIMENTAL RESULTS AND ANALYSIS 

6.1 Experimental Environment 

We conducted our experiments on U-Cloud -- a cloud 
computing environment located in University of Tech-
nology, Sydney (UTS). The computing facilities of this 
system are located in several labs in the Faculty of Engi-
neering and IT, UTS. On top of hardware and Linux OS, 
We installed KVM Hypervisor [3] which virtualizes the 
infrastructure and allows it to provide unified computing 
and storage resources. Upon virtualized data centers, 
Hadoop [2] is installed to facilitate the MapReduce pro-
gramming model and distributed file system. Moreover, 
we installed OpenStack open source cloud platform [4] 
which is responsible for global management, resource 
scheduling, task distribution and interaction with users. 
The structure of U-Cloud is demonstrated in Fig. 7. 

6.2 Experimental Evaluations 

We compare our new scheme, MuR-DPA, against the 
direct extension of the existing scheme in [31] with tags of 
each replica indexed in separate MHTs and MHTs are 
with levels and ranks for index authentication. We name 
this scheme as SiR-DPA - Dynamic Public Auditing with 
Separately-indexed Replicas. As the computation time is 
not the primary concern in public auditing schemes, we 
will mainly measure communication and storage costs. 
All experiments are conducted on an 1GB randomly gen-
erated dataset and its replicas computed as             ,  , on a virtual server launched in U-Cloud with 4 cores 
and 16GB RAM. BLS parameters are chosen with 80-bit 
security. 

TABLE 1 
PRICE OF DYNAMISM - COMMUNICATION OVERHEAD 

FOR VERIFYING UPDATES OF HALF BLOCKS IN A 1GB 

FILE 

s (number of 
sectors per block) 

Data Up-
dated (MB) 

Total Server Response 
for Verification (MB) 

1 512/1024 19.507 

5 512/1024 3,625 

10 512/1024 1,743 

20 512/1024 837 

50 512/1024 321 

100 512/1024 154 

 

Fig. 7. U-Cloud environment 
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We first measured the communication cost for verifica-
tion of updates. Table 1 shows the total communication 
overhead for update verification of only one replica, 
where overheads of SiR-PA and MuR-PA are the same. 
The testing dataset is 1 GB and we are updating half of 
the blocks with 512MB new content in total; with adjust-
ing parameter s. Communication overhead for update 
verification in the protocol in [14] and the MHT-based 
scheme in [31] will be similar to our SiR-DPA setting, as 
the communication complexities in MHT and RASL are 
both         with high propabilitiy (whp). Note that in 
this experiment, there is only one update for each block 
for all modifications. Under this setting, we can see that 
this overhead is always a large burden. Even for a large      , there's still 154MB verification data needed to be 
transferred from the server for updating of 512MB data. 
Although the communication cost will decrease for a lar-
ger block size (because the number of blocks will be 
smaller), it may take several update processes to update 
half of its content, where the communication cost will 
increase beyond the amount in Table 1. To make things 
worse, with multiple replicas, SiR-DPA scheme will mul-
tiply this communication cost, which has to be avoided if 
possible, given the fact that cloud service providers al-
ways keep multiple replicas for storage services.  

Second, we tested the communication cost for updates 
with different numbers of replicas and different sizes of 
blocks. Results are depicted in Fig. 8 and 9. From Fig. 8, 

we can see that the length of server response for modifica-
tion and insertion has been greatly reduced when there 
are multiple replicas, which means the server's crucial 
downlink bandwidth will be greatly reduced. The more 
replicas the dataset has, the more advantageous the MuR-
DPA scheme is. Overheads for deletions will be similar as 
there is only one more hash value to be included in server 
response, thus the comparison is omitted here. The total 
communication overheads for verification of updates to 
dataset with multiple replicas are also tested. For block 
insertion and modification, the new data block need to be 
uploaded. Therefore, for a larger s, (i.e. a larger block size), 
the total communication cost will rise. For block deletion, 
since there is no new data block, nothing needs to be up-
loaded. Therefore, the total communication for a single 
deletion stays unchanged with different s values.  Either 
way, for s=1 and s=10, our results show that communica-
tion overheads of verification of updates in MuR-DPA 
always has significant advantage compared to  SiR-DPA. 

Third, we tested extra storage overhead for dynamic 
public auditability, as well as communication overhead 
for auditing of multiple replicas at once. Although the 
total number of authenticators stayed the same, now it is 
only one MHT (although with more levels) as opposed to 
c MHTs in SiR-DPA. We can infer from Fig. 10 that the 
extra storage cost is reduced by a great percentage when 
there are multiple replicas stored in cloud. Communica-
tion overheads for verification of multiple replicas at once 
are depicted in Fig 11. We can see that the more replicas 
the server stored, the more advantage MuR-DPA scheme 
has against SiR-DPA scheme. We have also noticed that 
with the growth of replica number, the communication 
overhead for verifying all replicas with MuR-DPA 
scheme is close to verifying a single replica, while the 
overhead of SiR-DPA grows in a much faster pace. For 
example, when        , verifying all 5 replicas with 
MuR-DPA takes 26.8% more communication than verify-
ing only 1 replica, while this percentage for SiR-DPA is 
398.8%. Therefore, the MuR-DPA scheme is not only use-
ful for verification of dynamic data, but also especially 
useful for auditing of important datasets to ensure all 
their replicas are intact. 

 

Fig. 8. Length of server response for one verifiable modifica-
tion/insertion of one block 

      
   (a)      (b) 

Fig. 9. Total communication for one verifiable update of one block when (a) s = 1; (b) s = 10 
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We also tested the communication cost for one replica, 
under different s value. As analysed in section 5, our 
scheme will constantly incur more communication over-
head because of the extended RSTs. However, as can be 
seen from Fig. 12, the extra communication overhead is 
small. Even for an exaggerated case where         and    , the extra communication for verification of one 
replica in MuR-DPA scheme is only 15.3% compared to 
SiR-DPA scheme. For a more common choice of 4 replicas 
and     , this percentage is only 8.1%. Given that the 
MuR-DPA scheme has much less communication cost for 
verification of all replicas at once as well as verification of 
updates, we would consider this an advantageous trade-
off.  

7 CONCLUSIONS 

In this paper, we presented a novel public auditing 
scheme named MuR-DPA. The new scheme incorporated 
a novel authenticated data structure based on the Merkle 
hash tree, which we name as MR-MHT. For support of 
full dynamic data updates, authentication of block indices 

and efficient verification of updates for multiple replicas 
at the same time, the level values of nodes in MR-MHT 
are generated in a top-down order, and all replica blocks 
for each data block are organized into a same replica sub-
tree. Compared to existing integrity verification and pub-
lic auditing schemes, theoretical analysis and experimen-
tal results have shown that the MuR-DPA scheme can not 
only incur much less communication overhead for both 
update and verification of datasets with multiple replicas, 
but also provide enhanced security against dishonest 
cloud service providers.  
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