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Abstract

Muramyl dipeptide (MDP) is a synthetic immunoreactive peptide consisting of N-acetyl muramic

acid attached to a short amino acid chain of L-Ala-D-isoGln. It was first identified in bacterial cell

wall peptidoglycan as an active component in Freund’s complete adjuvant. In the cell, MDP is

detected by NOD2, a cytoplasmic receptor belonging to the human innate immune system. NOD2

mutations are frequently observed in patients with Crohn’s disease, an autoimmune disorder,

suggesting the significance of the MDP-NOD2 pathway in activating immunity. For this reason,

structural modifications of MDP and its derivatives have been extensively studied in an attempt to

increase adjuvant activity and boost the immune response effectively for clinical use in the

treatment of cancer and other diseases. This review summarizes the synthetic chemistry of MDP

and its derivatives and discusses their pharmacological action and stereoselective synthesis.

Keywords

adjuvancy; anti-cancer; anti-inflammatory; MDP; MDP synthesis; medicinal application

1. Introduction

Peptidoglycan is found in the bacterial cell wall as a thin layer in Gram-negative and as a

thick layer in Gram-positive bacteria. The presence of peptidoglycan serves not only to

preserve cell integrity and to maintain a defined cell shape but also as an important scaffold

for anchoring other components such as lipoproteins 1. Peptidoglycan consists of an N-

acetylyglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) disaccharide chain and

intercalating amino acid chains linked from the lactyl group of one N-acetylmuramic acid to

the other. This chain is typically composed of four to five amino acids starting with L-Ala

and D-Glu as the first and the second amino acids, respectively. L-Lys or DAP

(diaminopimeric acid) often follows as the third amino acid (Fig. 1).

Smaller products of peptidoglycan containing MurNAc are called muropeptides. The

minimum component that remains biologically potent is muramyl dipeptide (MDP), which
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consists of MurNAc and two amino acids, D-Ala and D-isoGln (or D-Glu). While MDP is

recognized by the NOD2 protein immune receptor, muropeptides containing DAP activate

the related protein NOD1 2, 3. Synthetic immunoactive peptides that activate NOD1 include

FK-156 (D-lactoyl-L-alanyl-gamma-D-glutamyl-(L)-meso-diaminopimelyl-(L)-glycine),

which will be described later.

2. Discovery of MDP

In 1974, MDP was discovered to be the minimal structure required for the efficacy of

Freund’s Complete Adjuvant (FCA), one of the most potent and widely used adjuvants in

animal experimental models to date 2. FCA was developed in 1937 by Freund and

colleagues 3. Composed of heat-killed mycobacterial components in an oil emulsion, FCA

can strongly elicit both humoral and cellular immune responses. Unfortunately, its strong

toxicity hampers the possibility of its use in a clinical setting. A search for smaller yet

biologically active components in FCA resulted in the discovery of a tripeptide-

monosaccharide by Lederer’s laboratory at the Université Paris-Sud 2. A series of similar

peptide-monosaccharides were synthesized and tested in rabbits for adjuvant activity

through their ability to elicit immunoglobulin production 4, 5. These peptides included MDP

as well as DAP (diaminopimeric acid)-containing peptides, which we know today is a ligand

for NOD1 6, 7. MDP was the smallest compound found to elicit adjuvant activity and could

thus replace FCA for its ability to induce both humoral and cellular activity. However, it did

not induce immunoglobulin production as it is a pure adjuvant lacking the antigens

contained in the FCA complex 2, 5, 8.

3. Medical and research applications

3.1. Biological activity

3.1.1. Adjuvant activity of MDP—An adjuvant is an agent that enhances the stimulatory

response elicited by compounds having few if any direct effects on their own. MDP and

other muropeptides are effective adjuvants and may be used for boosting the potency of

drugs and vaccines. They do so by enhancing the expression surface markers necessary for

cell adhesion and antigen presentation, thereby increasing phagocytic and anti-microbial

activity and facilitating antibody-mediated cytotoxicity 9–12, 13, 14. Moreover, MDP and

other muropeptides (tripeptides and disaccharide tri- and tetrapeptides) induce immune

responses by increasing IFN-γ and other cytokine production, stimulating the differentiation

and proliferation of lymphocytes, a subset of white blood cells that play and integral role in

the body’s defense against foreign intruders 15–17. MDP has also been shown in vitro and in

vivo to be the minimal structure required for the priming of cells, where pre-exposure to the

peptide augments immune responses to a later challenge 18, 19. Analogues where the D-

isoglutamine residue is replaced by D-glutamine, D-glutamic acid, or D-isoasparagine have

a reduced priming effect, whereas analogues replaced with L-glutamic acid, L-glutamine, or

L-isoglutamine are inactive 15, 19. Furthermore, muropeptides express strong synergy with

other ligands, where together they elicit a greater immune response than each alone would.

For example, MDP has been shown to have a synergistic effect with LPS

(lipopolysaccharides), found in the outer membrane of Gram-negative bacteria and

recognized by the cell-surface receptor Toll-like receptor-4 (TLR4). This synergy was

observed in vitro in human primary cells, including whole blood, peripheral blood

mononuclear cells (PBMCs), purified monocytes, and various human monocytic and rodent

cell lines, and in vivo in a rat model for anorexia 20–28.

3.1.2. MDP for therapies of cancer and other diseases—MDP and its derivatives

have a variety of clinical uses and therapeutic potential. Murabutide (MB), for example, is a

synthetic immunomodulator derived from MDP that enhances non-specific resistance to
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bacterial and viral infections without fever and decreases the lethality of LPS in mice 29–32.

It has also been observed to synergize with antiviral and anti-inflammatory cytokines such

as IFN-α as well as increase the anti-tumor effects of IFN-α and IL-2 in mouse models 33, 34.

Most importantly, MB regulates cytokine production without dramatically inducing

proinflammatory mediators 35. Studies have shown that injecting it in combination with IL-2

into Meth-A sarcoma-bearing mice resulted in significant tumor inhibition and complete

tumor regression in 70% of the treated mice 33. MB has also been shown to significantly

inhibit HIV-1 replication in acutely infected monocyte-derived macrophages and dendritic

cells 36. Efforts have already been made to develop other similarly MDP-derived drugs.

Macrophages activated by a liposome-encapsulated immunomodulator (MTP-PE, a MDP-

derivative) or MDP conjugated by PolyG (a 10-mer polyguanylic acid), have resulted in

tumoricidal activity 37, 38. Another reagent, Paclitaxel (Taxol®) conjugated to MDP, has not

only antitumor activity but also immunoenhancement effects 39.

3.2. Mechanism of actions

3.2.1. Nod2: MDP receptor and its signaling—MDP and its derivatives are

specifically recognized by the pathogen recognition receptor molecule NOD2 (CARD15)

that plays a role in both adaptive and innate immune systems by regulating cytokine,

chemokine, and antimicrobial peptide production 40–44. NOD2 belongs to the NLR

(nucleotide binding domain-leucine rich repeats) protein family and is characterized by three

motifs: (1) An N-terminal effector domain containing a caspase recruitment domain

(CARD); (2) An NBD (nucleotide binding domain), which has a binding site for ATP and is

required for oligomerization; and (3) A leucine rich repeats (LRR) domain 45–48. It is

expressed in the cytoplasm of several cell types involved in host defense, including

macrophages, dendritic cells, peripheral blood mononuclear cells, and intestinal epithelial

cells (especially Paneth cells) 42, 49–52.

Three mutations within NOD2 have been identified in 30 – 40% of Crohn’s Disease patients

in North American and European populations 52, 53. Inflammatory bowel diseases (IBDs)

such as Crohn’s Disease (CD) are due to genetic, epigenetic, and environmental factors

leading to the overproduction of cytokines from a chronically activated immune

system 54–58. Mapping of the IBD1 locus has led to the discovery of NOD2 encoded on

human chromosome 16q12 as the first gene linked to CD 52, 53. All three CD-associated

mutations are restricted to or are in the vicinity of the LRR domain located in the C-terminus

of the protein. While the 3020insC frameshift mutation results in a premature stop codon

that partially truncates the LRR domain, the R702W and G908R mutants are single

nucleotide polymorphisms (SNPs) 59, 60. The precise mechanism underlying how mutations

in the NOD2 gene cause CD is not yet fully understood. Proposed hypotheses include an

altered immune response by dysregulated Toll-like receptor signaling or a defective function

of Paneth cells, which regulate commensal and pathogenic bacteria thorough antimicrobial

compounds 42, 61–65.

3.2.2. Signaling cascades of MDP stimulation—Upon detection of MDP, NOD2

binds to the kinase RIP2 via CARD-CARD homophilic interactions, a step required in order

for downstream signaling to proceed 66–68. Signaling to RIP2 leads to NF-kB transcriptional

activity through the IKK (IkB kinase) complex as well as other cascades involving MAP

kinases that result in the production of pro-inflammatory cytokines and chemokines such as

interleukin-6 (IL-6), tumor necrosis factor-a (TNF-α), IL-12, and IL-8 (Fig. 2) 42, 69, 70.

Several proteins are postulated to regulate NOD2 signaling, including Erbin 58, 71–74.

Currently, it has been shown that Erbin serves as a negative regulator of NOD2 by binding

to the protein via its CARDs and thus inhibiting its ability to induce NF-kB activity upon
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MDP stimulation 58, 73. NOD2 and RIP2 are also involved in the regulation of cell death and

inflammation through the caspase-1-dependent maturation of IL-1β and IL-18. It has been

shown in vitro and in vivo that upon MDP stimulation NOD2 and RIP2 are both required for

Caspase-1 activation and IL-1β production 75.

4. Synthetic approach of MDP analogs

4.1. Background of MDP synthesis

The first synthesis of N-acetylmuramic acid was reported by Jeanloz and Flowers in 1963 76.

Since then, several reviews have followed 77–81. In general, MDP (N-acetylmuramyl- L-

alanyl-D-isoglutamine) can be synthesized by the coupling reaction of 3 subunits; N-acetyl-

D-glucosamine, lactic acid or its equivalent and dipepide. In 4.1) and 4.2), a synthetic

approach of the N-acetylmuramic acid (MurNAc) moiety is mainly discussed. MDP has (R)-

configuration at the lactic acid moiety, while N-acetylisomuramyl-L-alanyl-D-isoglutamine

has (S)-configuration. Treatment of the N-acetylisomuramyl-derivative ((S)-isomer) in acetic

acid at 80 °C for 1 h caused decomposition to give the intramolecular ester and the dipeptide

in about 50% yield through an N to O migration of the amide bond. In comparison, MDP

((R)-isomer) decomposed only 5%, suggesting that the (S)-isomer undergoes migration more

easily than its (R)-isomer (Scheme 1). Furthermore, a biological assay for the induction of

delayed-type hypersensitivity to N-acetyl-3-(4-arsonophenylazo)-L-tyrosine in guinea pigs

revealed that the (S)-isomer dramatically reduced its adjuvant activity 82. It should be noted

that this chiral center has an impact on chemical stability as well as biological activity.

Therefore, it is important to obtain a diastereochemically pure MurNAc moiety.

4.2. Synthesis of MurNAc moiety

Two examples of synthetic procedures are described in Schemes 2 and 383–87. To achieve

diastereomerically pure MurNAc derivatives, D-Glucosamine and its equivalents are often

used as starting materials. Anomeric isomers are separable by chromatography. In the

following introduction step of the lactic acid moiety to the masked-form of D-Glucosamine,

the desirable (R) isomer 2 in Scheme 2 or 2′ in Scheme 3, is also separable respectively. In

general, the syntheses of MurNAc in protected forms for the preparation of MDP analogues

involve laborious multi-stage procedures. 2 is an important intermediate for modifying the

C4 and C6 positions, whereas 2′ acts to more easily diversify the synthetic analogs.

On the other hand, 2-methyl-(1,2-dideoxy-5,6-O-isopropylidene-α-D-glucofurano-[2, 1-

d])-2-oxazolin 3 (Scheme 4) is accessible from 2-acetamido-2-deoxy-D-glucose in one step

on a large scale 88. The oxazoline moiety already contains the NAc group of MurNAc in a

masked form. Therefore, under the treatment of sodium hydride, a lactate side-chain can be

introduced at the HO-3 selectively without further protection (Scheme 4) 89, 90.

Protected MurNAc is coupled with dipeptide ester (L-Ala-D-Glu(OR)-NH2, R = Bzl, tBu,

CH3) 85, followed by the de-protection to afford MDP (Scheme 5). A number of synthetic

approaches to MDP analogs have been made to improve its pharmacological properties by

changing the peptide chain or sugar parts.

4.3. Peptide modifications and their biological activities

4.3.1. Peptide effect on adjuvant activity—Many peptide variations were introduced

on N-acetyl muramic acid and their impact on adjuvant activity was evaluated in two

different guinea pig models: Immunization with MDP-supplemented water in mineral oil

emulsions containing (1) heterologous protein antigens or azobenzenearsonate-N-acetyl-L-

tyrosine (induction of delayed type hyper sensitivity) or (2) encephalitogenic proteins and

peptides (induction of experimental allergic encephalomyelitis). A study of the structure-
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activity relationship suggested that the L-configuration of an amino acid linked to the

muramyl part and D-configuration of the glutamic acid residue was important in retaining or

increasing biological activity. L-Alanine of N-acetylmuramyl-L-alanyl-D-isoglutamine

(MDP-L-D) could be replaced with another L amino acid such as L-serine, while

replacement of L-alanine with D-alanine (MDP-D-D) dramatically decreased adjuvant

activity. As for the replacement of D-isoglutamine, the functionality of D-glutamic acid is

important and the α-amide is not essential. For example, the D-aspartic, D-norleucine as

well as the L-isoglutamine analogs (MDP-D-L) were inactive, while the D-glutamic acid

α,γ-dimethyl ester analogs showed high adjuvant activity 77, 91, 92.

4.3.2. Lipophilic peptides as prodrugs—Given that it can be modified to eliminate the

drawbacks posed by poor macrophage penetration and rapid elimination, MDP has the

potential of becoming a useful immunomodulator. From a synthetic standpoint, the peptide

moiety is the easiest part of the MDP structure to modify.

One important parameter to consider in improving the pharmacological properties of MDP

is lipophilicity. The lipophilic MDP analogs are described in Figure 3. MTP-Cholesterol

contains a hydrolyzable ester, while MTP-octadecane and MTP-heptadecafluorooctadecane

have non-hydrolyzable ethers. MTP-Cholesterol was active as free MDP in the stimulation

of RAW264.7 cells, measured by nitrite production as an indication of NO-synthase activity,

a major effector of macrophage-mediated cytostatic activity in rodent systems responsible

for antimicrobial, antiparasitic and antitumoral effects. On the other hand, the lipophilic

ether derivatives were not active, suggesting that lipophilic MDP analogs need to be

hydrolyzed inside the cells to produce a hydrophilic metabolite in order to activate

macrophages 85, 93.

4.3.3. Methods to derivatize MDP structures: Solid-phase synthesis—Solid-

phase is conventionally used for peptide, oligosaccharide, DNA and RNA syntheses. The

advantages of using solid phase are easy handling and simple product separation from the

reaction mixture, although there are several drawbacks such as difficulty in monitoring the

reactions or the requirement of an excess amount of reagents. Solid-phase synthesis would

be the best way to make a diverse MDP derivative library with potential application for drug

screening. The use of macro crowns with a loading capacity of 5–8 mmol/pin from Chiron

Mimotopes for MDP analog synthesis is described in Scheme 694, 95.

N2-[α-O-benzyl-N-(acetylmuramyl)-L-alanyl-D-isoglutamyl]-N6-trans-(m-nitrocynnamoyl)-

L-lysine; MDP-C could be synthesized in a similar way on an MBHA amide resin, and it

induced strong cytolytic activity by macrophages on P388 leukemia cells and cytotoxic

activity by cytotoxic T lymphocytes on P815 mastocytoma cells (Scheme 7) 96.

Furthermore, a hyper acid-sensitive Sieber amide resin was used for the synthesis of MDP

and spacer modified MDP 4. The neoglycopeptide polymers 5 could be prepared from 4 and

pre-activated poly(N- acryloyloxysuccnimide) (pNAS). 5 increased the production of NF-α
compared to monomeric MDP (Scheme 8) 97.

4.4. Sugar modifications

4.4.1. Effect of lactic acid moiety (C3)—As described in 4.1), the chirality of MDP at

the lactic acid moiety has an impact on stability as well as activity. In contrast, nor-MDP,

which does not have a methyl group at the same position, is known to exhibit comparable

biological activity and less toxicity 98.

4.4.2. D-Glucosamine with various aglycones (C1)—The hydroxy group at the C1

position can be removed 99 and replaced by thiol or substituted by α- or β-benzyl-glycoside.
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Lipophilic 1-O-acyl and 1-S-acyl groups do change MDP adjuvant activity 100. A recent

synthetic approach of O-glycoside is described in Scheme 9101–105. It was reported that as

the aglycone carbon number increased (R= 6d<6a<6b<6c), the ability of MDP derivatives to

stimulate NK cytotoxic activity also increased.

MDP containing S-glycoside could be synthesized in a similar way (Scheme 10). 1-O-aryl

and 1-S-aryl analogs stimulated antibacterial resistance. The substitution on the aromaic ring

may change the cytolytic activity on E-562 cells, since non-substituted phenyl thioglycoside

did not display significant cytolytic effect toward K-562, whereas substituted analogs

did 106.

The methyl β-glycoside of MDP was reported to be more adjuvant-active than the

corresponding methyl α-glycoside 107. The size and orientation of the aglycon in MDP also

influence its biological activities. For example, loss of activity occurred when a p-

aminophenyl group was introduced at the anomeric center (Figure 4). However, when the

inert p-aminophenyl β-glycoside was cross-linked with glutaldehyde, several biological

activities could be recovered and the cross-linked oligomer was more active than MDP in

protecting mice nonspecifically against bacterial challenge 108.

Biological evaluation of MDP analogs indicated that lipophilicity of the molecule caused

various important effects on biological activity by increasing adjuvant activity and

decreasing pyrogenicity, which is one of the major side effects of MDP 93, 109. As an

example, introduction of a perfluoroalkyl group at the anomeric position of the sugar moiety

is described (Scheme 11) 110.

4.4.3. Effect of N-acetyl moiety (C2)—The acetoamide group could be replaced by an

OH, NH2 or N-methylacetoamide group, but deamino/deoxy compounds lost the ability to

induce delayed-type hypersensitivity to azobenzenearsonate-N-acetyl-L-tyrosine as

examined in guinea pigs. In contrast, the introduction of a lipophilic acylamide group

increased adjuvant activity 111,112,

4.4.4. 4, 6-O-Substitution of D-glucosamine (C4, C6)—N-Acetyl-β-D-glucosaminyl-

(1–4)-N-acetylmuramyl-L-alanyl-D-isoglutamine was more potent than MDP for the

induction of delayed-type hypersensitivity and circulating antibodies to ovalbumin in guinea

pigs 113, 114.

At C-6, the hydroxyl could be replaced by a thiol, amino, or a non-acylated amino

function 112. In contrast to lipophilic 6-S-acyl-MDP derivatives, lipophilic 6-O-acyl-MDP

derivatives were potent compounds 115. Acylation at 6-position of the carbohydrate with

several mycolic acids, hydroxy fatty acids and quinonylalkanoic acids enhanced anti-HIV-1

and antitumor activity 116, 117. B30-MDP displayed adjuvant activity on the induction of

antibody response antigens and vaccines (Scheme 12) 114, 118. Acridine N-substituted w-

aminoalkanocarboxylic acid derived MDP (Scheme 13) showed an immunostimulating

effect on the cytotoxic activity of the NK cells obtained from the spleen of healthy and

Abmelanoma bearing animals 119, 120.

4.4.5. Desmuramylpeptides—A carbocyclic MDP analog (7) and (8) (Figure 5), which

have cyclohexanol moieties instead of N-acetylmuramic acid, were inactive as adjuvants for

the induction of delayed-type hypersensitiviy to azobenzenearsonate N-acetyl-L-tyrosine in

guinea pigs 112. A carbocyclic MDP analog (9) was synthesized via Ferrier rearrangement as

a key step 121, 122 and its derivatives exhibit the common activity of MDP, especially the

stimulation of unspecific resistance against bacterial and viral infections, liberation of
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colony-stimulating factors, induction of IL-1 production in macrophages and antitumor

activity (Scheme 14) 123.

A carbocyclic nor-MDP analog (10) in which the N-acetylmuramyl moiety was replaced by

a trans-2-[[2′-(acetylamino)cyclohexyl]oxy]acetyl group and D-isoglutamine by D-glutamic

acid retained the immunostimulating properties of MDP and also displayed antitumor

activity. In contrast to MDP, compound 10 was neither pyrogenic nor toxic 124. Moreover,

cyclopropanoid analog 11 and its analogs have been reported, although no biological data is

available 125.

In addition to NOD2, the related protein NOD1 is also activated by muropeptides. FK-156

activates NOD1 but not NOD2 and is a potent stimulant of antibody production. It is free of

pyrogenicity. Its analog FK-565 is a strong anticancer reagent (Figure 6) 126, 127.

N-Acetylmuramic acid can also be replaced by various N-phthaloylated amino acids or

phthalimido substituted aminoethoxyacetic acid (Figure 7) 128, 129.

LK423 augments the capacity to produce IL-10 in the spleen cells of cyclophosphoramide

treated mice and alleviates dextran sulfate sodium-induced colitis in rodents. Thus, LK423 is

a candidate substance for the development of an anti-inflammatory pharmaceutical agent.

Furthermore, LK423 stimulated the production of tumor necrosis factor in vitro phorol 12-

myristate 13-acetate and ionomycin-stimulated cultures of human peripheral blood

mononuclear cells 130–134. Adamantane substituted analogs LK 415 and LK 517 as well as

LK 423 are strong regulators of IL-12 synthesis and IFN-γ synthesis. The phosphonate

moiety introduced in LK 415 plays a key role for augmented T-cell cytokine production

(Schemes 15) 134, 135, 136.

5. Concluding remarks

MDP derivatives have a variety of clinical uses and therapeutic potential. Murabutide, for

example, has been used to boost immune responses as a form of cancer therapy. MDP is the

smallest compound found to elicit adjuvant activity and its multiple functional groups

provide a platform to vary its structure, as each functional group can be synthetically

modified to improve chemical as well as biological properties. Most studies thus far have

been focused on generating derivatives with a higher level of adjuvant activity, but the

development of derivatives that suppress rather than enhance immune responses is also a

promising area of study. We recently discovered DFK1012, an anti-inflammatory MDP

derivative that acts to suppress proinflammatory cytokine production in macrophages upon

stimulation of innate immune receptors such as TLR (Toll-like receptor) or NLR

(Nucleotide binding domain, Leucine rich repeats) proteins137. Together with these recent

findings, the synthetic approaches outlined in this paper will help us diversify the chemical

structure of MDP and study the relationship between its structure and function in an effort to

optimize its desirable biological activity.
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Abbreviation

MDP muramyl dipeptide

Ogawa et al. Page 7

Curr Bioact Compd. Author manuscript; available in PMC 2011 December 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



TLR Toll-like receptor

NLR Nucleotide-binding domain, leucine-rich repeat protein

LDH lactose dehydrogenase

IKK IκB kinase

HBBTU O-benzotriazol-1-yl-N, N, N′, N′-bis(tetramethylene)uronium

hexafluorophosphate

BOP benzotriazoloxy-tris-(dimethylamino)phosphonium hexafluorophosphate

DCC N,N′-dicyclohexylcarbodiimide

DIEA N, N-diisopropylethylamine

DMF N, N-dimethyl formamide

NMM N-methylmorpholine

HOSu N-hydroxysuccinimide

HOBt 1-hydroxybenzotriazole hydrate

TFA trifluoroacetic acid

AcOH acetic acid

TfOH trifluoromethanesulfonic acid

Boc-Ala-NCA Boc-alanine N-caboxyanhydride

Fmoc 9-fluoromethoxycarbonyl

Boc tert-butoxycarbonyl

Dde 1-(4,4-dimethyl-2,6-dioxocyclohexyidene)ethyl

Pin macro crown with a loading capacity of 5–8 mmol/pin from Chiron

Mimotopes

Bzl Bn, benzyl

Bz benzoyl

Ts p-toluenesulfonyl

AIBN 2,2′-azoisobutyronitrile
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Fig. 1.

MDP is a component of bacterial cell wall peptidoglycan
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Fig. 2.

A simplified schematic of the NOD2 signaling pathway
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Figure 3.

Lipophilic MDP analogs
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Figure 4.

p-Aminophenyl β-glycoside of MDP
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Figure 5.

Carbocyclic MDP analogs
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Figure 6.

Desmuramylpeptides (1)
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Figure 7.

Desmuramylpeptides (2)
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Scheme 1.

Stability of N-acetylisomuramyl-L-alanyl-D-isoglutamine
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Scheme 2.

Synthesis of MurNAc precursor (1)
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Scheme 3.

Synthesis of MurNAc precursor (2)
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Scheme 4.

Synthesis of methyl-β-glucoside of N-acetylmuramic acid
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Scheme 5.

Coupling of N-acetylmuramic acid with dipeptide
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Scheme 6.

MDP analog synthesis on solid support (1)
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Scheme 7.

MDP analog synthesis on solid support (2)
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Scheme 8.

MDP analog synthesis on solid support (3)
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Scheme 9.

An example of the synthesis of O-glycoside MDP analogs
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Scheme 10.

An example of the synthesis of S-glycoside MDP analogs
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Scheme 11.

Perfluoroalkylated MDP

Ogawa et al. Page 33

Curr Bioact Compd. Author manuscript; available in PMC 2011 December 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Scheme 12.

Synthesis of long chain fatty acid esters of MDP
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Scheme 13.

Acridine N-substituted w-aminoalkanocarboxylic acid derived MDP
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Scheme 14.

Synthesis of 9
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Scheme 15.

Synthesis of LK 423 related analogs
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