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ABSTRACT

We present observations of high-amplitude rapid (2 s) variability toward two bright, compact extragalactic radio
sources out of several hundred of the brightest radio sources in one of the 30 30 ´  Murchison Widefield Array
(MWA) Epoch of Reionization fields using the MWA at 155MHz. After rejecting intrinsic, instrumental, and
ionospheric origins we consider the most likely explanation for this variability to be interplanetary scintillation
(IPS), likely the result of a large coronal mass ejection propagating from the Sun. This is confirmed by roughly
contemporaneous observations with the Ooty Radio Telescope. We see evidence for structure on spatial scales
ranging from <1000 to 106> km. The serendipitous night-time nature of these detections illustrates the new regime
that the MWA has opened for IPS studies with sensitive night-time, wide-field, low-frequency observations. This
regime complements traditional dedicated strategies for observing IPS and can be utilized in real-time to facilitate
dedicated follow-up observations. At the same time, it allows large-scale surveys for compact (arcsec) structures in
low-frequency radio sources despite the 2¢ resolution of the array.

Key words: radio continuum: galaxies – scattering – Sun: coronal mass ejections (CMEs) – Sun: heliosphere –

techniques: interferometric

1. INTRODUCTION

Interplanetary scintillation (IPS)—the rapid (<1–10 s) flux

density variability of distant compact radio sources due to

radio-wave propagation through inhomogeneities in the ionized

solar wind—was discovered by Clarke (1964) and published by

Hewish et al. (1964); the discovery led to high-time-resolution

instrumentation that, in turn, led to the discovery of pulsars

(Hewish et al. 1968). IPS is an important technique in

monitoring the structure and evolution of the solar wind (e.g.,

Coles 1978; Manoharan & Ananthakrishnan 1990; Jackson

et al. 1998), particularly as a probe of major perturbations

caused by solar flares and Coronal Mass Ejections (CMEs;

e.g., Tokumaru et al. 2003; Manoharan 2010), and in

constraining the nature of background radio sources (Little &

Hewish 1968).
Observations of IPS are typically made at low radio-

frequencies, 400< MHz, where the effects of plasma

inhomogeneities are most apparent. At facilities such as the

Ooty radio telescope (Manoharan 2010), the Mexican Array

Radio Telescope (Mejia-Ambriz et al. 2010), and the

Solar Wind Imaging Facility, Toyokawa (Tokumaru et al.

2011)/Solar-Terrestrial Environment Laboratory (Kojima &

Kakinuma 1990), observations measure the modulation of

hundreds of pre-selected radio sources each day and follow

solar-wind events identified elsewhere. The new generation of

low-frequency, wide-field radio telescopes such as the

Murchison Widefield Array (MWA; Lonsdale et al. 2009;

Tingay et al. 2013) and Low Frequency Array (LOFAR; van

Haarlem et al. 2013) can undertake both dedicated observations

of IPS (Oberoi & Benkevitch 2010; Bisi et al. 2011; Fallows

et al. 2013)—often at high time resolution—and make

serendipitous discoveries, as discussed here. These ground-

based radio IPS facilities complement space-based heliospheric

imagers such as STEREO (Eyles et al. 2009), SDO (Schou
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et al. 2012), and Hinode (Culhane et al. 2007), and in situ solar
wind measurements from other spacecraft.

The MWA is a low frequency (80–300MHz) interferometer
located in Western Australia, with solar, heliospheric, and
ionospheric studies as one of its major focuses (Bowman
et al. 2013). The advantages of the MWA for IPS are: its
southern hemisphere location (all major IPS facilities are in the
northern hemisphere); its very wide field of view (over
600 deg2 at 150MHz); its high sensitivity for short integrations
(∼100 mJy/beam rms for a 1 s integration); and its capability
to make sub-second flux density measurements. Here we
present the first serendipitous, exploratory observations of IPS
using the MWA in its normal imaging mode with 2 s time
resolution.

2. OBSERVATIONS AND DATA ANALYSIS

Data for this investigation were from commensal MWA
proposals19 G0009 (“Epoch of Reionisation, EoR”) and G0005
(“Search for Variable and Transient Sources in the EoR Fields
with the MWA”). The observations are of one of the MWA
EoR fields (designated EoR0, and centered at J2000 R.A.

0h= , decl. 27= - ; see Figure 1) and occurred between
11:30 and 14:14 UT on 2014 November 6, while the field was
within approximately two hours of transit. The observations
(see Loi et al. 2015a for more details) used 40 kHz fine
channels across a 30.72MHz bandwidth centered at 155MHz
and 2 s integrations; the correlated data were written to files of
2 minutes each, with gaps of 16–24 s between adjacent files.

Images were searched for Fast Radio Bursts (Lorimer

et al. 2007; Thornton et al. 2013) using a processing

pipeline which will be described elsewhere (Tingay et al.

2015). A by-product of this processing is the total power

variability for every object in the MWA field of view at 2 s

cadence. Very strong detections were triggered at the position

of PKS B2322−275 (a redshift 1.27 quasar; McCarthy et al.

1996) during a two minute period (13:30:00–13:32:00 UT).

This variability prompted the detailed follow-up analysis

described below.

2.1. Real-time System Analysis

Once the initial variability from PKS B2322−275 was

identified, we searched for variability from other objects in

the field. We analyzed data from the MWA Real-time System

(RTS; Mitchell et al. 2008; Tingay et al. 2013), which derives

calibration solutions including flux densities for hundreds of

sources over the MWA field of view during each integration.

For each of the sources measured by the RTS (down to

155MHz flux densities of about 1 Jy/beam, depending on the

position in the MWA primary beam) we examined the

modulation during the observation. Most of the sources had

no substantial excess variability (confirming the results of Bell

et al. 2014 and Hurley-Walker et al. 2014). However, we did

identify a second source that had significant ( 30> % over a

2 minute interval) modulation, which we identified as PKS

B2318−195. We focus on these two sources; both are bright

and have no nearby neighbors to corrupt the flux density

measurements (Figure 1).

Figure 1. MWA 155 MHz image of the EoR0 field, centered on PKS B2322−275. The image is a single 2 minute integration from 2014 November 6 and is roughly

17 on a side. We show 1 deg2 boxes around PKS B2322−275, PKS B2318−195, and PKS B2331−312, with expanded views around these sources in the insets to
the right.

19
http://www.mwatelescope.org/astronomers
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2.2. Imaging Analysis

To refine our analysis, we retrieved the observations from
2014 November 6 11:30 UT to 06 14:14 UT from the MWA
archive. The processing followed standard MWA procedures
(e.g., Hurley-Walker et al. 2014). We calibrated the data using
an observation of 3C 444, then rotated the phases of the
visibilities to center the field on PKS B2322−275. We
imaged individual 2 s integrations in the XX and YY
instrumental polarizations using WSClean (Offringa
et al. 2014), performing 200 CLEAN iterations on each and
making images with 3072 3072´ 0.45¢ pixel, with synthe-
sized beam full-width at half maximum of 2.3¢ . Finally, we
corrected the instrumental polarization to Stokes I (total
intensity) using the primary beam from Sutinjo et al. (2015).
For a single 2 s integration, the average image noise was
0.16 Jy/beam. In Figure 1 we show a 2 minute integration
with a slightly wider field of view, which has a rms noise of
about 0.05 Jy/beam.

We then used Aegean (Hancock et al. 2012) to measure
the flux densities and positions of PKS B2322−275,
PKS B2318−195, and a number of other sources with
comparable (4–10 Jy) flux densities. Both targets had mean flux
densities consistent with catalog values (5.8 Jy at 160MHz for
PKS B2322−275, and 4.8 Jy at 155MHz for PKS B2318−195;
Slee 1995; Hurley-Walker et al. 2014). For each integration we
determined the mean fractional variation—caused by residual
instrumental/ionospheric effects—of a number of other sources
and divided it from each integration. We plot the resulting time
series in Figure 2. We also show the modulation index (rms
divided by mean over a 2 minute interval) for PKS B2322

−275 and PKS B2318−195. For comparison, we plot the flux
densities of one of the reference sources (PKS B2331−312, also
shown in Figure 1) and of PKS B2322−275 on another night
with a comparable data set (2014 October 16, chosen randomly).
During the quiescent periods both PKS B2322−275 and
PKS B2318−195 have modulation comparable to that for the
reference source and PKS B2322−275 on the comparison
night (roughly 5%, consistent with the measured noise
properties). But at the peak, both PKS B2322−275 and
PKS B2318−195 show modulation of 100> % peak-to-peak
on 2 s timescales, corresponding to rms variations of 25> %
averaged over 2 minutes. For PKS B2322−275 we see that the
brightest spike occurs first at the upper edge of the bandpass
before progressing down, giving large apparent swings in the
instantaneous spectral index. The variations for PKS B2322
−275 appear roughly 20 minutes before those in PKS B2318
−195, which is about 9 north of PKS B2322−275 and at a
slightly higher solar elongation ( 114 =  for PKS B2322
−275 versus 118 =  for PKS B2318−195) appears to start
20–30 minutes after that for PKS B2322−275. There is no
indication of increases in the amplitude of position fluctuations
during the period of most intense variability, with fluctuations
of about 5.
In Figure 3 we show temporal power spectra for PKS B2322

−275 and PKS B2318−195 (again with PKS B2331−312 and
with PKS B2322−275 from another night for comparison)
created from the parts of Figure 2 with strong variability. Both
PKS B2322−275 and PKS B2318−195 have considerably
more power at frequencies above roughly 0.06 Hz than the
comparison observation. Below this point the power spectra are
similar, suggesting that this is the transition to “normal”

Figure 2. Bottom section: flux densities of PKS B2322−275 on 2014 November 6 (blue), PKS B2322−275 on 2014 October 6 (black), PKS B2318−195 on 2014
November 6 (red), and PKS B2331−312 on 2014 November 6 (green) measured with the MWA. The flux densities were measured from individual 2 s integrations,
with uncertainty of about 0.2 Jy. Note that the y-axis ranges for all four panels are the same. Bottom panel: the modulation index (rms flux density variation over a
2 minute interval divided by the average flux density for that interval) for the same data sets. The expected uncertainty on the modulation index under the assumption
of no extra variability is 1< %. The top section shows the flux density of PKS B2322−275 along with the dynamic spectrum, measuring the flux density across eight
different sub-bands (3.84 MHz each, with frequency increasing from the bottom) for the period indicated. The gaps are from the intervals between subsequent
2 minute observations.
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variability (likely dominated by the ionosphere, which should
affect all sources roughly equally). Above the transition both
scintillating sources are similar, declining with spectral slopes
of roughly 1.

3. DISCUSSION

3.1. Origin of Variability

We can reject intrinsic variability since it appears for more
than one source at roughly the same time. Moreover, light
travel time arguments for an active galactic nucleus (AGN) rule
out the 2 s timescale we see, and the extreme apparent spectral
swings do not resemble any known source behavior. Instru-
mental effects are also ruled out, since the timescales for
instrumental changes (30 minutes) are far longer than the
fluctuations we see and only two sources vary. We are then left
with propagation effects, i.e., scintillation due to inhomoge-
neous, turbulent plasma along the line of sight. We must
consider whether scintillation is of interstellar, interplanetary,
or ionospheric origin.

Refractive interstellar scintillation causes much slower
(minutes to months) tens-of-percent variations in the flux
densities of compact radio sources, with the timescale
increasing at lower frequencies (e.g., Rickett 1986), hence
can be clearly ruled out. Diffractive scintillation can be
substantially faster (Cordes & Rickett 1998), but would require
sizes that imply brightness temperatures of 1012 K—
impossible for an AGN (Readhead 1994).

Ionospheric scintillation affects sources with angular sizes
10 ¢ (Loi et al. 2015b), causing joint position and amplitude

fluctuations on timescales of 20 s (Thompson et al. 2001),
with the former a significant source of position wander in
MWA data (Hurley-Walker et al. 2014; Loi et al. 2015b) and
the latter usually not very significant (although see Fallows
et al. 2014). Therefore, ionospheric refraction should affect the
thousands of unresolved sources in each image. In contrast,
here the very strong amplitude fluctuations without any

position shifts for unresolved sources and the rather small

number of scintillating sources argue strongly against scattering

by ionospheric plasma.
In contrast, IPS requires significant source structure on

scales 1<  (Hewish et al. 1964; Little & Hewish 1968). All
three sources discussed here are regularly monitored for IPS

with Ooty: both PKS B2322−275 and PKS B2318−195 are
often seen to scintillate with Ooty, consistent with angular

sizes of 0. 1  (at 327MHz), while Ooty sees very little (if

any) scintillation toward PKS B2331−312. Note that Ooty
does not observe past 100 = , so it could not monitor

PKS B2322−275 during this event, although it did observe a

number of nearby sources at 90 >  (Figures 3 and 4) that
showed enhanced scintillation on 2014 November 6 at

frequencies 2> Hz.
Moreover, the two scintillating sources are detected at

frequencies up to 20 GHz (Murphy et al. 2010), suggesting the
presence of compact structure20 (Chhetri et al. 2013). In contrast,

PKS B2331−312 has a similar flux density at 155MHz (Hurley-

Walker et al. 2014) but is not detected above 5 GHz (implying a
steeper spectral index 1.2a » - , with S nµn a) and hence

likely has more extended emission. This can explain why

PKS B2322−275 and PKS B2318−195 were observed to be the
only significant bright scintillators. That would not be the case

for an ionospheric origin.
Finally, NASAʼs Omniweb database21 suggests that only

weak auroral and ionospheric activity occurred on both nights,
with no clear CME arriving at Earth, modest Kp indices22

(global average magnetic activity) of about 2, and temporal

behavior over the whole field typical of quiet ionospheric

Figure 3. Left: temporal power spectra of the flux densities for PKS B2322−275 (blue, with 62 minutes of data), PKS B2318−195 (red, with 37 minutes of data), and
PKS B2331−312 (green, with 235 minutes of data), using the data from Figure 2 when large-amplitude scintillations are evident. The power spectra are estimated
using Welchʼs method, averaging spectra with 256 data-points and 50% overlap. We also show the power spectrum of PKS B2322−275 from our comparison night
(black). The cyan dashed lines show power-laws with slopes 0a = , 1- , and 2- as labeled. Right: temporal power spectra of the flux density for PKS B2211−388,
measured by the Ooty radio telescope at 327 MHz. The power spectrum for 2014 November 5 (blue) shows substantially less power above 1 Hz than that for 2014

November 6 (green; note that both power spectra have been normalized below 0.1 Hz). The model fit (red dashed line) is for a solar wind velocity of 500 km s 1» - .

20
PKS B2322−275 is one of only two sources in this field brighter than 5 Jy

at 180 MHz which is unresolved at 20 GHz (determined by its 6 km baseline
flux density). PKS B2318−195 is partially resolved at 20 GHz, suggesting
some arcsecond-scale structure but also significant compact emission.
21

See http://omniweb.gsfc.nasa.gov/.
22

See http://www.ngdc.noaa.gov/stp/GEOMAG/kp_ap.html.
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conditions23 (S. T. Loi 2015, private communication). In the

absence of any other viable explanation for what we see, and

since what we see agrees with all of the known properties

(amplitude, timescale, and source selection) of IPS (as in

Hewish et al. 1964), we conclude IPS is the most likely origin

of the anomalous variability. This is largely confirmed by the

Ooty Radio Telescope observations.

3.2. Variability Properties

The modulation of PKS B2318−195 appears to start

20–30 minutes after that for PKS B2322−275, and that the

period of enhanced modulation lasts for about 30 minutes for

both sources (although some of the modulation may extend

past the end of our observing period). Assuming the

modulation is caused by IPS from a CME, the elongation

difference implies a speed of 500 km s 1~ - for a distance of

0.1 AU. This speed is consistent with those inferred from Ooty

observations on 2014 November 6, where a number of sources

at elongations 90>  that were in the same direction as PKS

B2322−275 and PKS B2318−195 showed significantly

enhanced scintillation (see Figure 3 for an example). For a

solar wind speed of v500 km s500
1- , we infer a minimum

transverse size of the CME of v9 10 km5
500´ from the

duration of the modulation. However, given typical radial

expansion of CMEs (e.g., Manoharan et al. 2000) we expect

radial sizes of 0.2–0.4 AU. Therefore we believe that the

duration of the IPS is set by the thickness of some sub-structure
within the putative CME.
As there is significant variability down to our sampling of

2 s, we infer CME structure on scales down to 1000 v500 km.
We see an apparent transition from a flat power spectrum to a
decline in Figure 3. This may be associated with the Fresnel
scale, above which IPS is suppressed (Manoharan &
Ananthakrishnan 1990). However, actually measuring the
Fresnel scale and directly constraining the turbulent properties
generally requires considerably faster sampling. Instead, since
the rms fluctuations are 100< %, it is likely that the sources are
partially resolved by IPS, the change in spectral slope could
have more to do more with intrinsic source sub-structure (this
would be consistent with the change in scintillation with radio
frequency in Figure 2).

3.3. Identification of Candidate CMEs

At the time of the observation, PKS B2322−275 was at
114 =  and a position angle of about 114 (east of north). So

any plasma structure that caused the scintillation would have to
have been outside the orbit of the Earth and below the ecliptic
(Figure 4). With typical speeds of 500–1000 km s 1- , we
searched for CMEs that were observed to occur around 3–5
days before our observations. Among the CMEs identified by
Computer Aided CME Tracking software (CACTus; Robbrecht
et al. 2009) we identified a number with reasonable ejection
times and angles. The scintillation image produced by the Ooty
Radio Telescope (Figure 4) for 2014 November 5 up to
17:00 UT shows little scintillation in the direction toward PKS
B2322−275, while the scintillation increased significantly after
20:00 UT and contiuing on 2014 November 6. Without more
detailed tracking or simulation of heliospheric structures,
especially beyond Earth, we cannot conclusively determine

Figure 4. Ooty radio telescope 327 MHz scintillation images. Left: image for the period 2014 November 5 07 UT to 17 UT. Right: image for the period 2014
November 5 20 UT to 6 18:30 UT (which spans our scintillation event at 13:30 UT). The images show the level of scintillation measured by the g parameter (e.g.,
Manoharan 2010), where g = 1 is a normal level of turbulence. Radial distance from the center shows the derived heliocentric distance of the scattering medium:
concentric circles with radii of 50, 100, 150, and 200 R are plotted and labeled. North is up, and east to the left. The arrows show the directions toward PKS B2322
−275 and PKS B2318−195 starting at a distance of 1 AU (215 R). The image from November 5 shows very little IPS, while the image from November 6 shows a
significant increase in IPS toward the southeast where the MWA data are.

23
While we do see a modest enhancement in the auroral activity (given by the

AE index) that peaks near 13:25 UT, the enhancement is not very notable, there
are multiple enhancements that day, and there are even more significant
enhancements on our comparison night which are not coincident with
scintillation.
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whether a specific CME or region resulting from multiple CME
interactions caused the observed scintillations.

4. CONCLUSIONS

Plans for observations of IPS with the new generation of
low-frequency radio telescopes, namely LOFAR and the
MWA, concentrate on dedicated high-time-resolution ( 10
ms) observations of pre-selected sources. The temporal and
frequency dependence of IPS flux variations help probe the
structure of the solar wind (including possible CMEs) (e.g.,
Oberoi & Benkevitch 2010; Bowman et al. 2013; Fallows et al.
2013). These observations are similar in strategy to dedicated
programs with existing facilities like the Ooty radio telescope
(Manoharan 2010), which measures scintillation of 400–800
sources each day distributed over 100 < .

Assuming the variability we see is related to IPS, we have
discussed a different regime. First, we used commensal night-
time observations with the MWA, so 90 > . Second, the
sources observed at facilities like Ooty correspond to 155MHz
flux densities S 10155  Jy, which have an areal density of

100 sr 0.03 deg1 2» =- - (Williams et al. 2012). Over the 600
deg2 MWA field of view that means we would detect at least
20 of these bright sources. In fact, we can sensitively probe flux
density variations of 20% in a single 2 s integration for sources
as weak as 1 Jy, which have a sky density 30´ higher.
Therefore, the density of sight-lines on the sky available to
probe IPS is a factor of five finer, and in fact weaker sources are
observed to vary (at lower confidence) along with the sources
discussed here. While the 2 s integrations used here average
over much of the higher-time-resolution IPS structure, quasi-
real time analysis (as in Mitchell et al. 2008) can be used to
identify scintillating sources which can then be followed at
higher time resolution using dedicated observations (Tremblay
et al. 2015).

One difficulty in interpreting our results, though, comes from
the fact that we are looking outside the Earthʼs orbit, where the
geometry does not allow easy identification of the distances to
turbulent structures (cf., Armstrong & Coles 1978). Even so,
we can still examine the statistics of IPS-like variability over
multi-year timescales, correlating it with dedicated ground- and
space-based solar observing. We can also probe the fraction of
compact (<arcsec) emission from the roughly 104 bright, high-
latitude (where scatter broadening will not matter; Cordes &
Lazio 2002) sources to be observed in various MWA surveys
(cf. hundreds of sources in Little & Hewish 1968; Jeyakumar
et al. 2000; although see Hajivassiliou & Duffett-Smith 1990),
providing a useful adjunct to calibrator surveys and allowing
connections between spectral and spatial properties of sources.

Finally, we note that the existence of strong IPS in nighttime
observations of a primary field for the MWA EoR experiment
using nominal imaging parameters may be concerning.
However, a detailed analysis by Trott & Tingay (2015) shows
that under all but extreme conditions, IPS will not affect the
detectability of the EoR signal.
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