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Abstract. We present the derivation, implementation, and analysis of a multiresolution adaptive grid framework for numerical simulations on octree-based
3D block-structured collocated grids with distributed computational architectures. Our approach provides a consistent handling of non-lifted and lifted inter-
polating wavelets of arbitrary order demonstrated using second, fourth, and sixth order wavelets, combined with standard finite-difference based discretization
operators. We first validate that the wavelet family used provides strict and explicit error control when coarsening the grid, and show that lifting wavelets increase
the grid compression rate while conserving discrete moments across levels. Further, we demonstrate that high-order PDE discretization schemes combined with
sufficiently high order wavelets retain the expected convergence order even at resolution jumps. We then simulate the advection of a scalar to analyze convergence
for the temporal evolution of a PDE. The results shows that our wavelet-based refinement criterion is successful at controlling the overall error while the coarsening
criterion is effective at retaining the relevant information on a compressed grid. Our software exploits a block-structured grid data structure for efficient multi-
level operations, combined with a parallelization strategy that relies on a one-sided MPI-RMA communication approach with active PSCW synchronization. Using
performance tests up to 16,384 cores, we demonstrate that this leads to a highly scalable performance. The associated code is available under a BSD-3 license at
https://github.com/vanreeslab/murphy.
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1. Introduction. Solutions to partial differential equations (PDEs) are typically characterized by unsteady spatial scale sepa-
rations. In incompressible fluid dynamics, for example, flows within a boundary layer include important structures on the smallest
viscous length scales, whereas the wake is characterized by much larger, inertial structures. Moreover, these flows are intrinsically
unsteady and often coupled with the motion or deformation of immersed boundaries, making the resolution requirements dif-
ficult to predict a priori. Especially in three-dimensional problems, where performance and memory constraints of computing
resources constrain the range of applications, it is desirable to construct methods that can adapt the local resolution of the grid
to the physical requirements of the PDE solution evolved on that same grid. To achieve accurate solutions, such methods need
to be able to discretize and evolve the PDE consistently across different resolutions; detect the need to refine or opportunity to
coarsen; and perform the actual coarsening or refinement of the field. Further, their (parallel) implementation needs to be suf-
ficiently efficient so that any increase in computational overhead due to the required memory access patterns, load balancing,
and synchronizations does not cancel the gains from the reduction in computational elements, compared to uniform resolution
grids. Consequently, the algorithms and implementations of such adaptive grid refinement methods are significantly more com-
plex than uniform grid methods, and have seen significant development over the last three to four decades of research in scientific
computing.

An established family of methods is formed by the patch-based adaptive mesh refinement (pAMR) approach, which considers
nested overlapping grids of increasing resolution [2, 3]. This approach is prevalent across many application domains and has
mature implementations inside several software frameworks such as Chombo [1], SAMRAI [25], and AMReX [45]. Overlapping grids
simplifies the use of coarsening and refinement operators, and provide straightforward integration with multigrid-based elliptic
solvers. Excluding more expensive adjoint approaches [18], grid adaptation decisions in pAMR are typically made on the basis of
either a heuristic measure of the field values and/or their derivatives, or an estimate of the truncation error through a Richardson
extrapolation technique [2], or some combination of both [35]. If the chosen measure is larger than a user-defined threshold, the
grid is refined, and if it is smaller than a second user-defined threshold, the grid is coarsened. Such heuristic measures are easy
to implement but generally provide no a priori sense of the error made. The Richardson extrapolation method is more rigorous
but also more challenging to implement [1], and requires the simultaneous evolution of the discrete equations on multiple levels.
After the decision to adapt a grid has been made, the actual coarsening/refinement approaches and the evaluation of differential
operators across resolution boundaries are most often based on polynomial interpolation. Most approaches achieve second-order
accuracy in space throughout these operations, though extensions to fourth order have been demonstrated as well [41, 44].

Our work falls under a different family of methods which does not consider overlapping grids but instead uses an octree-based
approach. This was demonstrated first in Gerris [32] and has a more general distributed implementation in p4est [6], which itself
is successfully used across different application clients such as the finite-volume solver ForestClaw [7]. The dyadic recursive struc-
ture associated with these approaches can be combined with a wavelet-based multiresolution analysis of any signal on the grid
[30, 31]. Combining wavelet-based grid adaptation with node-based collocated PDE solution methods such as finite-difference
techniques leads to the wavelet-collocation method [8, 24, 36]. Wavelet collocation methods typically rely on interpolating wave-
lets, which distinguish the information between two levels through the deviation of fine-level values from an interpolating polyno-
mial constructed from coarse-level values [13]. The interpolating wavelets have been cast in a formal basis through the addition of
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the biorthogonality [9] and extended to include moment-preservation and reduce aliasing through the lifting scheme [10, 37, 38].
The lifted interpolating wavelets form the basis of so-called second generation wavelet collocation methods [43]. Existing codes
using wavelet-based grid adaptation with finite-difference based PDE evolutions are MRAG [34, 42], which uses non-lifted interpo-
lating wavelets for incompressible flow simulations with shared-memory parallelism, and wabbit [15], using non-lifted and lifted
interpolating wavelets on distributed memory architectures for weakly compressible flow simulations. Overall, despite the po-
tential advantages of high-order grid adaptation, formal multiresolution analysis, explicit error control, and parallel performance,
there is a significantly smaller body of work on the implementation details and performance analysis of non-lifting and lifting
wavelets on block-structured grids, as compared to pAMR methods.

In this work, we describe the derivation, implementation, and analysis of a parallel, scalable implementation of a 3D mul-
tiresolution adaptive grid solver for partial differential equations on collocated grids, supported by non-lifted or lifted wavelets for
scale detection, grid adaptation, and ghost reconstruction. In section 2 we provide a brief background of the wavelet theory and
show how this translates to block-structured multi-level grids. We emphasize here the consistent treatment of resolution jumps to
preserve polynomial order and lifting properties in multiple dimensions. Section 3 details our implementation, using one-sided
MPI-RMA communication strategies to handle parallel communication. In section 4 we validate our approach on static grid adap-
tation tests by demonstrating error control and convergence of high-order finite-difference schemes for all wavelets, and moment
conservation for lifted wavelets. Section 5 applies the resulting software to solve partial differential equations, where we provide
detailed analysis of the error as a function of the wavelet-based thresholding parameters. Here we limit ourselves to linear and
nonlinear scalar advection equations as examples of challenging problems involving dynamically changing scales, though our
framework as presented can already handle a wider set of problems including advection-diffusion and reaction-diffusion equa-
tions, and will be further extended in future work. In section 6 we demonstrate that our code retains parallel efficiency across more
than sixteen thousand compute cores and conclude our work with a perspective and future work in section 7.

2. Wavelet-based multiresolution. Our work relies on a few key contributions that have been made to the field of wavelets
theory that include the multiresolution analysis, biorthogonal interpolating wavelets, and the lifting scheme. Though a complete
overview of wavelet theory is beyond the scope of this manuscript, we provide a concise review of the concepts required to detail
the mathematical framework for our multiresolution grid adaptation below.

2.1. Interpolating wavelets. Throughout our work we use interpolating wavelets. These were first introduced by [13], and
generalize the polynomial interpolation procedure on nested dyadic grids presented in [11, 12] using wavelet theory, as detailed in
[14]. Interpolating wavelets can be constructed through polynomial interpolation, thus avoiding the Fourier transform. Through
the introduction of the orthogonal multiresolution analysis first, and the biorthogonal multiresolution analysis second, they have
been formalized within the framework of second-generation wavelets, and through the lifting scheme they can be generalized to
achieve moment-conservation properties and reduce aliasing. Here we will briefly touch upon these concepts and their mathe-
matical background.

2.1.1. The orthogonal multiresolution analysis. The multiresolution analysis [9, 29, 37] defines nested orthogonal sub-
spaces decomposition of L2(R) indexed by L. Mathematically the nested spaces can be written as V L ⊂ V L+1 for L ∈ Z, where
the union ∪L∈ZV L is dense and orthogonality implies that the intersection ∩L∈ZV L is empty. The subspaces are further defined
with dilation and translation characteristics that guarantee the existence of a unique function ϕ(x), such that for any L ∈ Z the
translated and dilated family of functions ϕL

k (x) =
p

2L ϕ(2L x −k) for k ∈ Z is an orthonormal basis of V L [29]. Orthonormality

here means that
〈
ϕL

k (x) , ϕL
i (x)

〉 = δi ,k ∀ {k, i } ∈ Z, where
〈

f (x) , g (x)
〉 = ∫ ∞

−∞ f (x)g (x) dx. The difference between two spaces V L

and V L+1 is characterized by a new subspace W L as the orthogonal complement of V L to V L+1, so that W L = (
V L ∩V L+1

)⊥
, hence

V L ⊕W L = V L+1. Similarly to V L , a basis for W L is obtained through the dilatation and translation of the wavelet function ψ(x),
such that ψL

m(x) =
p

2L ψ(2L x −m) with m ∈Z.

With these definitions, a given function f (x) ∈ L2(R) can be projected onto either basis to define the scaling coefficients λL
k

and detail coefficients γL
k

(2.1) λL
k ,

〈
f (x) , ϕL

k (x)
〉

and γL
m ,

〈
f (x) , ψL

m(x)
〉

.

We can then build a hierarchy of projections of f (x) into the wavelet subspaces. We start with the projection of f (x) onto level L
denoted as

(2.2) P L[
f
]

(x),
∑
k
λL

k ϕ
L
k (x) ,

Further, given that V L ⊕W L = V L+1, we can relate the projection of f (x) onto level L +1 to lower levels through the refinement
relation:

(2.3) P L+1[ f
]

(x),
∑

j
λL+1

j ϕL+1
j (x) =

∑
k
λL

k ϕ
L
k (x) +

∑
m
γL

m ψL
m(x) .
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Applied recursively, (2.3) can be used to create a hierarchy of nested decompositions from level L0 to level L:

(2.4) P L+1[ f
]

(x) =
∑

j
λL+1

j ϕL+1
j (x) =

∑
k
λ

L0
k ϕ

L0
k (x) +

∑
L0≤l≤L

∑
m
γl

m ψl
m(x) .

2.1.2. Biorthogonality and linear filters. To generalize the multiresolution analysis to a broader class of wavelet functions
such as the symmetric or interpolating ones, one can relax the criteria for finding scaling and corresponding wavelet functions
using the dual multiresolution analysis based on biorthogonality [9, 38]. With biorthogonal wavelets, the basis of V L , ϕL

k (x), does

no longer need to be orthonormal. Instead, one uses another subspace Ṽ L and the associated basis functions ϕ̃L
k (x) such that:

(2.5)
〈
ϕL

i (x) , ϕ̃L
k (x)

〉= δi ,k with {i ,k} ∈Z .

The spaces V L and Ṽ L have non-orthogonal complements W L and W̃ L , respectively, such that V L ⊥ W̃ L and Ṽ L ⊥W L . This leads
to the definition of the primal (dual) scaling functions ϕ (ϕ̃), and the primal (dual) wavelet functions ψ (ψ̃), which form bases of
their respective subspaces and satisfy

(2.6)
〈
ϕ̃L

i (x) , ψL
k (x)

〉= 〈
ψ̃L

i (x) , ϕL
k (x)

〉= 0 and
〈
ϕ̃L

i (x) , ϕL
k (x)

〉= 〈
ψ̃L

i (x) , ψL
k (x)

〉= δi ,k .

The definitions of the scaling and detail coefficients become

(2.7) λL
k ,

〈
f (x) , ϕ̃L

k (x)
〉

and γL
m ,

〈
f (x) , ψ̃L

m(x)
〉

,

and the refinement relation remains unchanged

(2.8) P L+1[ f
]

(x) =
∑

j
λL+1

j ϕL+1
j (x) =

∑
k
λL

k ϕ
L
k (x) +

∑
m
γL

m ψL
m(x) .

Following the nested subspace decomposition a linear filter can be associated to each primal/dual basis function [38], binding
two levels together

(2.9) ϕL
k (x) =

∑
j

hk, j ϕ
L+1
j (x), ψL

m(x) =
∑
n

gm,n ϕ
L+1
n (x), ϕ̃L

k (x) =
∑

j
h̃k, j ϕ̃

L+1
j (x) and ψ̃L

m(x) =
∑
n

g̃m,n ϕ̃
L+1
n (x) .

Combined with the biorthogonal refinement relation, the filters provide the relations for the forward wavelet decomposition (also
known as the analysis operation):

(2.10) λL
k =

∑
j

h̃k, jλ
L+1
j , H̃k, j λ

L+1
j and γL

m =
∑

j
g̃m, jλ

L+1
j , G̃m, j λ

L+1
j ,

where we used the Einstein summation convention to simply the notation. The inverse wavelet decomposition (also known as
synthesis operation) is obtained as

(2.11) λL+1
j =

∑
k

h j ,k λ
L
k +

∑
m

g j ,m γL
m , H j ,k λ

L
k +G j ,m γL

m .

Both the forward and inverse transforms have linear computational complexity in the number of degrees-of-freedom and are
easily represented as a block diagram, as illustrated in Figure 2.1b.

2.1.3. Interpolating wavelets. Our work relies on the interpolating wavelets first proposed by [13] based on the Deslauries-
Dubuc interpolation filters [11, 12]. This wavelet family provides a non-orthogonal basis [13] but their construction can be framed
within the context of a biorthogonal multiresolution analysis as detailed in [37, 38].

Like the orthogonal wavelets, interpolating wavelets are characterized by the dilatation and translation of a (non-orthonormal)
scaling function ϕL

k =ϕ(2L x −k) [13]. The interpolating property of the scaling function is given by ϕ(i −k) = δi ,k for i ,k ∈Z. It is

convenient at this point to define xL,k , k2−L as the coordinate associated to an index k ∈Z at level L such thatϕL
k (xL,i ) =ϕ(i −k).

The interpolating nature then implies that the evaluation of the projection of the function at xL,i is equal to the associated scaling
coefficient at that coordinate, λL

i :

(2.12) P L[
f
]

(xL,i ) =
∑
k
λL

k ϕ
L
k (xL,i ) =λL

i .
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4 THOMAS GILLIS AND WIM M. VAN REES

Interpolating wavelets can be classified by their degree of interpolation N , which corresponds to the number of moments of the
scaling function,

(2.13)
∫ ∞

−∞
xp ϕ(x) dx = δp 0 ≤ p < N .

This relation guarantees the ability of the scaling functions to exactly reproduce polynomials of order N −1.

Interpolating wavelets are well suited to wavelet collocation methods because it is convenient to use function evaluations
at xL,k interchangeably with scaling coefficients λL

k . However, in general this does incur an error associated with the truncation

of detail coefficients at any given level. This error can be captured by comparing the exact function with the function P
L[

f
]

(x)

defined as P
L[

f
]

(x) ,∑
k f (xL,k )ϕL

k (x). This corresponds to a similar projection as (2.12), but replacing λL
k with f (xL,k ). A bound

on the difference can be found as [39]:

(2.14)
∣∣∣P L[

f
]

(x)− f (x)
∣∣∣≤O

(
2−L N )

.

Specifically at location xL,k we then find
∣∣ f (xL,k )−λL

k

∣∣≤O
(
2−L N

)
. Since 2−L = xL,k+1 −xL,k ∼ h relates to the grid spacing on level

L, this relation implies that using function values in an N th order interpolating wavelet-based projection incurs a discretization
error of O (hN ).

The simplest family of interpolating wavelets are the Donoho interpolating wavelets [13, 37, 38], which are classified here
with the code N .0, with N the degree of interpolation. For the Donoho interpolating wavelets, the dual scaling function is a Dirac
impulse located at the origin [37], ϕ̃L

k (x) = δ(x −xL,k ). Hence, it follows that at any level

(2.15) λL
k = 〈

f (x) , ϕ̃L
k (x)

〉= f (xL,k ) ,

which means the scaling coefficients at level L do not just equate the function projection evaluation at level L, as in (2.12), but they
equate the function evaluation itself: P

[
f
]

(xL,k ) = P
[

f
]

(xL,k ) = f (xL,k ) = λL
k . However, these wavelets do not conserve moments

when compressing information, and are characterized by considerable aliasing in the wavelet transform as reported in [37]. One
potential avenue to address these issues is by increasing Ñ , the number of zero moments of the wavelet function. This can be done
through the lifting approach proposed in [37] as discussed in the next section.

2.1.4. Lifted interpolating wavelets. The lifting scheme has been introduced as a general and convenient way to construct
biorthogonal and second generation wavelets and their associated linear filters [10, 37, 38, 40]. Although the scheme can be
generalized to any wavelet family, we restrict ourselves here to the interpolating wavelet. Starting with a set of scaling coefficients
on level L +1, the lifting scheme uses the following three different steps to obtain the set of scaling and detail coefficients on level
L:

1. The splitting step splits the fine scaling coefficients into temporary coarse scaling (even indices) and detail (odd indices)
coefficients. This step is also known as the application of the “Lazy wavelet”, and can be captured by the filters H̃k, j = δ2k, j

and H̃m, j = δ2m+1, j . After this first step, we have a set of coarse scaling and detail coefficients

(2.16) λL
k =λL+1

2k , γL
m =λL+1

2m+1 .

2. The dual lifting applies the filter S̃ to the scaling coefficients and uses the result to update the detail coefficients:

(2.17) γL
m ← γL

m + S̃m,k λ
L
k .

3. The primal lifting applies the filter S to the detail coefficients and uses the result to update the scaling coefficients:

(2.18) λL
k ←λL

k +Sk,mγ
L
m .

The successive application of the three steps is illustrated in Figure 2.1, and can be expressed through composite filters H a and Ga

that combine all stages into single operators. Reversing the sequence of operations and individual steps leads to the corresponding
inverse transform, captured by the H s and G s filters.

The Donoho interpolating wavelets discussed in the previous section can be cast in the format of the lifting scheme by setting
S̃ to the filter coefficients of [11, 12], which ensure exact interpolation for polynomials of degree up to N −1, and setting all primal
lifting filter coefficients S̃ = 0.

To ‘lift’ these wavelets, following [37], one can choose the primal filter S̃ in such a way that the first Ñ moments of the primal
wavelet function vanish:

(2.19)
∫ ∞

−∞
xp ψL

k (x) dx = 0 0 ≤ p < Ñ .
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λL+1 split

+

S̃

+

S

λL

γL

−

S

−

S̃ merge λL+1

Forward Inverse

(a) The dual/primal lifting filters

λL+1

H a

Ga

λL

γL

H s

G s

λL+1

Forward Inverse

(b) Biorthogonal filter bank

Figure 2.1: The forward and inverse wavelet transform as the combination of the dual and primal lifting steps, expressed through
the dual/primal filters (a) and through the full biorthogonal filter bank (b).

If this holds, we ensure the conservation of the first Ñ moments across levels:

(2.20)
∫ ∞

−∞
xp

[∑
k
λL+1

k ϕL+1
k (x)

]
dx =

∫ ∞

−∞
xp

[∑
k
λL

k ϕ
L
k (x) +

∑
m
γL

m ψL
m(x)

]
dx =

∫ ∞

−∞
xp

[∑
k
λL

k ϕ
L
k (x)

]
dx ,

for 0 ≤ p < Ñ . Using the moment properties on ϕ(x) from the interpolating wavelet, the pth moment on level L can be expressed
as:

(2.21)
∫ ∞

−∞
xp P L[

f
]

(x) dx =
∑
k
λL

k

∫ ∞

−∞
xp ϕL

k (x) dx = 2−L
∑
k
λL

k

(
xk,L

)p ,

which allows us to rewrite the moment conservation identity of lifted interpolating wavelets (2.20) between two levels L+1 and L
as

(2.22)
∑

j
λL+1

j

(
xL+1, j

)p = 2
∑
k
λL

k

(
xL,k

)p ,

for 0 ≤ p < Ñ .

To satisfy (2.19), on a uniform grid and assuming Ñ ≤ N it can be shown that SÑ = −1/2 S̃Ñ [37, theorem 12], where S̃ are
the dyadic interpolation coefficients from [11, 12] and given in Table 2.1. The lifting scheme thus results in an interpolating filter
bank for interpolating wavelets indexed by the corresponding interpolation and moment properties N .Ñ , which can be used for
refinement (H̃ = H a and G̃ = Ga) and coarsening (H = H s and G = G s ) operations. Non-lifted (Donoho) interpolating wavelets
have Ñ = 0, whereas lifted wavelets have Ñ > 0; numerical values for the filters are given in section SM1. All our results in this work
are restricted to N ∈ {2,4,6} and Ñ ∈ {0,2}.

N S−2 S−1 S0 S1 S2 S3

2 −1/2 −1/2
4 1/16 −9/16 −9/16 1/16
6 −3/256 25/256 −75/128 −75/128 25/256 −3/256

Table 2.1: Dual-lifting coefficients, S̃i [4, Appendix B.3]. For uniform grids the filter is symmetric, i.e. S̃−i = S̃i .

Lastly, we note that lifting the interpolating wavelets leaves the primal scaling function ϕ(x) unaffected, but does change the
dual scaling function ϕ̃(x) from a delta function to a continuous distribution. This means the identity f (xL,k ) =λL

k of the Donoho

interpolating wavelets is lost, and instead we fall back on the general error bound
∣∣λL

k − f (xL,k )
∣∣≤O

(
2−L N

)
provided in (2.14).

2.1.5. Compression. Relying on the multiresolution theory, compression can be achieved by discarding all the detail coeffi-
cients whose absolute values are smaller than a tolerance ε. This yields a coarser (or compressed) representation of the informa-
tion,

(2.23) P L[
f
]
ε (x) =

∑
k
λ

L0
k ϕ

L0
k (x) +

∑
L0≤l≤L

∑
|γm |>ε

γl
m ψl

m(x) .

It can be shown [13, 26, 43] that the error committed by this approximation is of the order of ε,

(2.24)
∣∣∣∣P L[

f
]

(x)−P L[
f
]
ε (x)

∣∣∣∣∞ ≤C1ε ,

This manuscript is for review purposes only.



6 THOMAS GILLIS AND WIM M. VAN REES

where C1 depends on f (x). In practice, with a reasonably smooth function the value of C1 ≈ 1, which means that ε is an accurate
estimate of the local error committed.

2.2. Extension to block-structured grids. In this section we describe how to adapt the multiresolution analysis described
above to block-structured grids. Throughout this work, we limit the jump of resolution between two adjacent blocks to 1 (denoted
as the 2:1 constraint), which considerably simplifies the operations and the implementation complexity. Below we discuss three
fundamental operations that are required in the implementation: coarsening describes the compression of data in 2d blocks into
a single block at the next lower resolution level, with d the number of spatial dimensions of the grid; refinement describes the
refinement of data in a single block into 2d new blocks at the next higher resolution level; and ghost point reconstruction relates
to the construction of ghost points for blocks across a resolution jump, so that finite-difference stencils can be evaluated on each
block at its own local uniform resolution.

We describe each of these operations in 1D in more detail below, focusing on the wavelet 2.2 wavelet for simplicity. Sub-
sequently, we will discuss how implementation choices lead to the treatment of grid points near resolution jumps, and how we
define the criteria for compressing or refining a block. We note beforehand that our sketches use grid ‘blocks’ and associated num-
bering that do not reflect a practical setting, but rather provide the minimum number of points needed to explain the respective
operations for ease of interpretation.

2.2.1. Coarsening. Starting from a uniform resolution one can coarsen a block using the filter Ha . The coarsening pattern is
illustrated in Figure 2.2 for wavelet 2.2 where the ‘left’ (green) and ‘right’ (blue) fine scaling coefficients at level L +1 = 1 (top row)
are converted into coarse scaling coefficients at level L = 0 (bottom row) through subsequent application of the dual lifting (S̃) and
lifting (S) filters. After these steps, only the scaling coefficients at level L are retained while the detail coefficients are discarded.
Due to the lifting step, ghost points are required for a block to coarsen when using wavelets with Ñ > 0, with the precise number
specified in the first column of Table 2.2. In the example of Figure 2.2a for wavelet 2.2, the green region needs one ghost point at
the back (λ1

4, needed to compute λ0
1) and the blue region needs two ghost points at the front (λ1

8 and λ1
9, required to compute λ0

5).

D
L

L

λ1
0 λ1

1

λ0
0 γ0

0

λ1
2 λ1

3

λ0
1 γ0

1

λ1
4 λ1

5

λ0
2 γ0

2

λ1
6 λ1

7

λ0
3 γ0

3

λ1
8 λ1

9

λ0
4 γ0

4

λ1
10 λ1

11

λ0
5 γ0

5

λ1
12 λ1

13

λ0
6 γ0

6

(a) coarsening step

iD
L

iL

γ0
1

λ1
4 λ1

5

λ0
2 γ0

2

λ1
6 λ1

7

λ0
3 γ0

3

λ1
8 λ1

9

λ0
4 γ0

4 λ0
5 γ0

5 γ0
6

(b) update step

Figure 2.2: Sketch of the steps required to coarsen the left (green) and right (blue) grid regions using wavelet 2.2, with the central
(red) region remaining at fine resolution. First we apply the dual lifting (DL) and lifting (L) steps successively to compute the
coarse-level scaling coefficients, and discard the neglected detail coefficients (a). When Ñ > 0 the information encoded in the
discarded detail coefficients must also be removed from the fine-level information on the central (red) region, by using the inverse
lifting (iL) and inverse dual lifting (iDL) filters during the update step (b).

Discarding the detail coefficients on level L does not affect the scaling coefficients on that level, however when Ñ > 0 discard-
ing these details does affect the scaling coefficients of adjacent blocks whose resolution has not changed. This can be seen and
accounted for by performing an inverse wavelet transform from level L back to level L+1 after discarding the details, and updating
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the values of the affected scaling coefficients:

(2.25) λL+1
j ←λL+1

j −G s
j ,nγ

L
n .

where γL
n are all the detail coefficients that we have discarded. To perform the update step on a fine block whose neighbor has

coarsened, the fine block needs to have enough ghosts points to compute the values of γL
n that are discarded, which increases

significantly the ghost point requirements of the update step as shown in Table 2.2. The distance (in index space) to the farthest
detail to be discarded depends on the wavelet order and Ñ , and is shown in Table 2.2 under the column coarse region extension.

In the specific example of Figure 2.2, though the middle red region does not change resolution, we must still remove all the
information associated with the discarded detail coefficients of the coarsened green and blue regions. For wavelet 2.2, this corre-
sponds to discarding the information associated with γ0

1 on the left and γ0
5 on the right. To achieve this, starting from the original

uniform grid on the top line of Figure 2.2a, the red region requires two ghost points in front (λ1
2 and λ1

3, needed to compute γ0
1)

and three ghost points in the back (λ1
10, λ1

11, and λ1
12, needed to compute γ0

5), in order to perform the update step associated with
the coarsening of both its neighboring grid regions. Lastly, as indicated in Figure 2.2, for wavelet 2.2 we additionally discard the
detail coefficient γ0

2 when the left region coarsens, and γ0
4 when the right region coarsens, which will be explained further in the

next two sections below.

2.2.2. Ghost point reconstruction. For any grid configuration with blocks at multiple levels of resolution, we have to be able
to compute ghost points for each block at their local resolution level. We choose here to rely on the wavelets to do so for all ghosting
operations, in order to be consistent with the grid adaptation operations.

Figure 2.3 shows the computation of the ghost points for a fine region (in red) surrounded by neighboring coarse regions
(in green and blue) for wavelet 2.2 in 1D. Ghost points to be computed are shown with open circles (on the coarse level) and
open squares (on the fine level), whereas known scaling coefficients are shown in colored symbols with black outlines. A naive
wavelet transform indicates the immediate problem that the ghost points for the finer region and those for the coarser region
are interdependent: for instance, to compute λ1

3 we would need to apply inverse lifting on λ0
2, but λ0

2 is in turn dependent on λ1
3

through the dual lifting. This interdependency gets more intricate in higher dimensions and for higher-order wavelets. Though
these systems can be solved as proposed in [34] for non-lifting wavelets, the associated implementation requires expansive look-up
tables that significantly increase the memory footprint of the solver, especially in 3D [42]. To avoid this complication, we choose
to discard the fine-region detail coefficients that cause the interdependency between the wavelet transforms on the two levels,
which we denote the ‘coarse-extension assumption’. In the case illustrated in Figure 2.3 specifically, this means we discard the
detail coefficients γ0

2 and γ0
4. On a more abstract level, this choice means that we effectively extend the coarse-level region across

the resolution jump into the first few grid points on the neighboring fine resolution block. To consistently follow-through with
this assumption requires additional steps in our implementation that we will discuss more below. For now, with this assumption
in place the ghost reconstruction across a resolution jump can be done in two steps. First, we can use the wavelet transform to
compute ghost values for the fine resolution block through what is essentially a local refinement of the coarse grid, which can now
be done explicitly.

iD
L

iL

λ1
2 λ1

3

λ0
1

λ1
4 λ1

5

λ0
2 γ0

2

λ1
6 λ1

7 λ1
8 λ1

9

γ0
4

λ1
10 λ1

11

λ0
5

λ1
12

λ0
6

Figure 2.3: Sketch of the process used to reconstruct ghost points (open symbols) for a 1D fine-resolution grid region (in red) sur-
rounded by coarse grid regions on the front (green) and back (blue), using wavelet 2.2. The arrows denote the flow of information
from grid values to the unknown ghost points. After the ghost points for the fine region have been computed, the ghost points for
both coarse regions can be found from a standard coarsening procedure (Figure 2.2a)

In Figure 2.3 we illustrate this approach for the computation of the fine ghost values with the wavelet 2.2. Focusing first on
the right resolution jump, our assumption of explicitly discarding γ0

4 formally sets the ghost point λ1
10 = λ0

5 and further allows us
to directly evaluate λ1

11 as λ1
11 = 1/2(λ0

5 +λ0
6). This is essentially a refinement procedure where we take the coarse-level scaling co-

efficients and refine them under the assumption that all unknown detail coefficients involved in this process are zero, irrespective
of the side of the interface where they exist.
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For the left resolution jump, the specific grid layout enables us to proceed in one of two ways. The first way is conceptually
similar to how we describe the right interface, where by assumption γ0

2 = 0 even though this detail resides in the fine resolution
grid. Under this assumption, λ0

2 = λ1
4 and the ghost point λ1

3 = 1/2
(
λ0

1 +λ0
2

)
is obtained from the inverse wavelet transform of the

coarse-level data. The second way relies on the inverse of the dual lifting step: we can directly write λ1
3 = 1/2

(
λ1

4 +λ0
1

)
without

explicitly considering γ0
2. The two approaches are identical if γ0

2 = 0. Note that this is only possible on the left interface; on the
right interface, the value of λ1

10 is not readily available unless γ0
4 = 0, since λ1

10 belongs to the coarse region. In practice, we use the
first approach and explicitly assume that both γ0

2 and γ0
4 are zero. We do so because the implementation of the inverse dual lifting

in multiple dimension is not trivial (see subsection 2.3), which would complicate the second approach.

This concludes the computation of the ghost points for the fine level; afterwards, we can treat the region of the fine resolution
as a local uniform grid that we coarsen in order to obtain the ghost points for the coarse grid levels. This procedure poses no
further difficulties and is identical to the coarsening described above.

2.2.3. Refinement. The refinement operation of a block away from resolution boundaries is trivially done through the sub-
sequent application of the lifting and dual lifting filters. Near resolution boundaries, we retain the coarse-extension assumption
introduced for the computation of ghost points described in the previous subsection, which enables the explicit computation of
the fine-level scaling coefficients. This process is illustrated in Figure 2.4 for the special case of the wavelet 2.2, in which case only
the ghost point λ0

5 is required on the right resolution jump to compute the new scaling coefficient λ1
9. The number of ghost points

needed for a block to refine for any other wavelet considered here is shown in the last column of Table 2.2.

iD
L

iL

λ1
4 λ1

5

λ0
2

λ1
6 λ1

7

λ0
3

λ1
8 λ1

9

λ0
4 λ0

5

Figure 2.4: Sketch of the refinement procedure of a 1D coarse grid region (in red) using wavelet 2.2. Starting from the coarse-
level scaling coefficients (bottom line), we use inverse lifting (iL) and inverse dual lifting (iDL) to compute the fine-level scaling
coefficients (top line). For this wavelet, only one ghost point on the back of the refined region is required, indicated in blue.

2.2.4. Substitution. In the previous subsections we motivated and detailed the coarse-extension assumption, where we ne-
glect specific fine-level detail coefficients near coarse-fine resolution jumps to facilitate explicit ghost reconstruction and refine-
ment operations. We explained that this is essentially equivalent to an extension of the coarse-level region into a small band of
the adjacent fine-level block. In practice however, these specific detail coefficients on the fine-level block may not be zero due to
field operations on the associated fine-level scaling coefficient, such as during the evolution of a PDE. Without addressing this, we
would inconsistently neglect high-frequency information during the grid adaptation and ghost reconstruction due to our coarse-
extension assumption.

To avoid that this spurious information persists and leads to an inconsistent wavelet transform on the two sides of the in-
terface, we perform an additional “substitution” step where we overwrite each fine-level scaling coefficient associated with a ne-
glected detail coefficient locally with wavelet-reconstructed values that will enforce a zero detail coefficient. To achieve this step,
we use the dual lifting relationship

(2.26) γL
m = 0 ⇒ Ga

m, j λ
L+1
j = Ga

m, j 6=(2m+1) λ
L+1
j 6=(2m+1) +λL+1

2m+1 = 0 ⇒ λL+1
2m+1 ←−Ga

m, j 6=(2m+1) λ
L+1
j 6=(2m+1) ,

where we used the fact that Ga
m,0 = 1 for all wavelets considered in this work. We note that in 1D, the proposed approach is

exactly the inverse of the dual lifting step, as illustrated in Figure 2.5. This substitution step is subtle so we point out that this step
does not affect the order of accuracy of the wavelet operations, only removes detail coefficient values that are generated during the
PDE evolution starting from values below the coarsening threshold, and can be rigorously understood as the consistent enforce-
ment of the coarse-extension assumption. In practice, we apply the substitution step as part of the ghost point reconstruction,
immediately after the computation of the fine ghost points and before computation of the coarser ghost points.

2.2.5. Block adaptation criteria. Subsection 2.1.5 describes how to compress a signal in 1D given its wavelet transformation.
Here we explain how we transform this condition to compress data on a block-structured grid, detect emerging scales and manage
the need to refine during a simulation.
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iD
L

iL

λ1
4 λ1

5 λ1
6 λ1

7 λ1
8 λ1

9 λ1
10

Figure 2.5: Sketch of the substitution process, where spurious information associated with neglected detail coefficients in fine-
resolution grid regions adjacent to coarse-resolution regions is explicitly discarded. For wavelet 2.2 in 1D, as shown here, substi-
tution is equivalent to the inverse dual lifting.

Compression. Starting with the former, for each block at level L we compute all associated details γL−1 through the forward
wavelet transform, and take the maximum value for each block b as ||γL−1||b∞. Consistent with our coarse-extension assumption
above, we consider within this local infinite norm also the set of details that we require to be negligible when computing ghost
points, the refinement relation, and the coarsening steps, even though these detail coefficients might physically reside in adjacent
blocks. The number of additional details considered beyond the block boundary is given in the column coarse region extension in
Table 2.2. Once we have the maximum detail coefficient on each block, we decide on an action to take. Due to the octree nature
of our grid, we can only coarsen all leaf blocks within a single tree node simultaneously. Therefore, for each set of 2d leaf blocks
in the grid where d is the spatial dimension, we reduce them to a single coarser level block if each of the leaf blocks b satisfies
||γL−1||b∞ < εc , with εc the coarsening threshold. This criterion constitutes a generalization of (2.23) to a block-structured grid. This
approach implies that the compression rate of a given signal decreases as the block size increases, due to a reduced granularity in
the grid. We emphasize here that by including the details neglected during the coarse-extension assumption within our definition
of ||γL−1||b∞, the compression approach remains consistent with (2.23).

Refinement. The criterion to refine is necessarily more ad-hoc, as it aims to predict where new scales are expected during
the evolution of the equations based on an instantaneous analysis of the field. Different approaches exist within existing wavelet-
based adaptive grid methods, such as increasing the resolution of neighboring blocks to take into account the smallest scales
created by the PDE [26]. Here we follow [34] to rely on a user-specified tolerance εr > εc that determines whether refinement is
necessary. Using this approach, a block b is refined if ||γL−1||b∞ > εr , i.e. if the detail coefficients of the current information exceed
a user defined threshold. We will analyze this choice in the validation and result sections below.

Under the above compression policy, we are guaranteed by the wavelet framework to discard only information encoded by
detail coefficients that do not exceed εc . With the refinement approach, the maximum detail coefficients during the evolution of
the equations are guaranteed to never exceed εr , since we would refine when that happens. Specifically, if we refine a block at level
L for which ||γL−1||b∞ > εr , we create new blocks at level L + 1, each one of which is characterized by ||γL ||b∞ = 0. This means we
have to make sure we do not coarsen blocks just after they have been refined, even though technically their detail coefficients are
smaller than the coarsening threshold. The implementation of this requirement is discussed in section 3.

Ratio between compression and refinement thresholds. From (2.14) we know that ||γ||b∞ ∝ hN with N the interpolation order
of the wavelet. This means that coarsening a block will generally increase its detail coefficient by a factor 2N . Consequently, if we
choose εr /εc < 2N and a block with ||γ||b∞ only slightly below the coarsening threshold is coarsened, its details will exceed εr after
coarsening. In this case, the block will be flagged for refinement again, leading to flip-flops in the grid adaptation. Conversely,
choosing εr /εc > 2N can lead to a non unique grid: if we consider a block with ||γ||b∞ slightly above the coarsening threshold and
therefore admissible on the grid, the same block coarsened by one level would also be admissible on the grid. In this case the
adaptation is therefore not unique and the obtained grid depends on external factors such as the initial level.

In practice, we observe εr to be the threshold that determines the overall accuracy of the simulation, since this is the threshold
that sets the maximum value of detail coefficient admissible on the grid. Then εc determines the compression rate, or how much
information we are willing to discard for a given εr . This can be controlled by the ratio εr /εc , which we make sure to set to εr /εc > 2N

to prevent the flip-flopping described above. The effect of both εr and the ratio εr /εc is discussed through numerical experiments
below.

Adaptation frequency. For transient problems we have to choose a frequency of adaptation that balances the need to adjust
the grid to dynamically evolving scales against the computational cost of changing the grid. In general, lowering the mesh adap-
tation frequency will lead to wavelet detail coefficients in the grid that fall more and more below the compression threshold in
some regions, and increase more and more beyond the refinement threshold in others. The former will not increase the errors
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made during the simulation, but the latter could potentially lead to the grid not capturing emerging or transported scales that are
relevant to the PDE evolution. A counter point to this is that the block-structured grid contains significant ‘inertia’, which grows
with the block size, due to the fact that we refine even when one single detail in a block exceeds the threshold.

To put the adaptation frequency into context, we can consider a transport problem with characteristic velocity U . In this case,
the time it takes for the solution to travel α grid points at level L is 2−Lα/U (assuming a unit cube as root domain). If we adapt
every Na timesteps and follow a CFL-based timestep constraint, the solution has traveled CFL Na grid points between successive
adaptations. Though in practice likely problem-dependent our results in subsection 5.1 show that for a smooth signal and suitably
small refinement threshold this number is allowed to be of comparable value as the block size Nb leading to Na ∼ Nb/(CFL).

coarsening update after neighbor has coarsened refinement

wavelet order # ghost points coarse region extension # ghost points # ghost points
N Ñ front back front (1D / 3D) back (1D / 3D) front (1D / 3D) back (1D / 3D) front back
2 0 0 0 0 / 0 0 / 1 0 / 0 0 / 1 0 1
2 2 2 1 1 2 2 3 0 1
4 0 0 0 0 / 2 0 / 3 0 / 4 0 / 5 1 2
4 2 4 3 3 4 6 7 1 2
6 0 0 0 0 / 4 0 / 5 0 / 8 0 / 9 2 3
6 2 6 5 5 6 10 11 2 3

Table 2.2: Ghost points requirement for a block when coarsening (see Figure 2.2a); for a block at level L+1 performing the update
step when a neighbor at level L has coarsened (see Figure 2.2b); and when refining a block (see Figure 2.4). The coarse region exten-
sion indicates how many additional scaling and detail coefficients at level L have to be computed outside of the blocks boundaries
to perform the update step. The associated ghost points are required at the level L+1 of the block whose neighbor has coarsened.
The size of these regions can vary between 1D and 3D, as explained in subsection 2.3.

2.3. Extension to multiple dimensions. Here we detail the extension of the above methodology to multiple spatial dimen-
sions, starting with the coarsening operation and subsequently emphasizing some of the implementation details to consider.

The filter application in 3D relies on the successive application of the corresponding 1D filters in each dimension. To clarify
the notation we use a superscript on all the filters to denote the direction in which the filter is applied. For coarsening we then
obtain

(2.27) λL
kx ,ky ,kz

= [
H a

X ×H a
Y ×H a

Z

]
λL+1 ,

which exclusively relies on the H a filter applied tensorially on the scaling coefficients at level L+1.

To compute the detail values we alternatively apply the filters H a or Ga depending on the scaling or detail behavior in the con-
sidered dimension, as dictated by whether the associated index in that dimension is even or odd. This means we can distinguish
different “degrees” of detail coefficients, given by the number of directions in which the coefficient behaves as a detail information.
Specifically, the first degree detail coefficients, which we collectively denote as γL

1◦ , have an odd index in one direction only and
are given by

(2.28) γL
mx

= [
Ga

X ×H a
Y ×H a

Z

]
λL+1 γL

my
= [

H a
X ×Ga

Y ×H a
Z

]
λL+1 γL

mz
= [

H a
X ×H a

Y ×Ga
Z

]
λL+1 .

Similarly the second degree detail coefficients, which we collectively denote as γL
2◦ , have two odd indices and we obtain

(2.29) γL
mx ,my

= [
Ga

X ×Ga
Y ×H a

Z

]
λL+1 γL

mx ,mz
= [

Ga
X ×H a

Y ×Ga
Z

]
λL+1 γL

my ,mz
= [

H a
X ×Ga

Y ×Ga
Z

]
λL+1 .

Finally, the third degree scaling coefficient, which we collectively denote as γL
3◦ , are obtained as

(2.30) γL
mx ,my ,mz

= [
Ga

X ×Ga
Y ×Ga

Z

]
λL+1 .

In order to relax further the notation, for all detail coefficients γL = {γL
1◦ ,γL

2◦ ,γL
3◦ } we will refer to the fine scaling coefficients located

at the same positions as {λL+1
1◦ ,λL+1

2◦ ,λL+1
3◦ }, respectively. We also have the ‘zeroth’ degree scaling coefficients associated with even

indices in all three directions, which we denote by λL+1
0◦ so that λL+1 = {λL+1

0◦ ,λL+1
1◦ ,λL+1

2◦ ,λL+1
3◦ }.

Revisiting the coarse-extension assumption we made in 1D, its extension to three dimensions can be formulated as discarding
any first, second and third degree detail coefficients in a fine block adjacent to a resolution jump that are involved in the multi-
dimensional refinement scheme. This is reflected by the higher 3D values in the column coarse region extension of Table 2.2,
which represents the index-space distance from the block boundary to the farthest detail coefficient that is discarded. As before,
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we discard this information through the substitution procedure, which inverts locally the inverse dual lifting step. In 3D, the
substitution on first degree scaling coefficients is performed as

(2.31) γL
1◦ =

[
Ga]

(i )6=(0) λ
L+1 +λL+1

1◦ ⇒ λL+1
1◦ ← [

Ga]
(i )6=(0) λ

L+1 ,

where we used that [Ga](i )=(0) = 1 for all wavelets considered in this work. For second degree scaling coefficients, this becomes

(2.32) γL
2◦ =

[
Ga ×Ga]

(i , j )6=(0,0) λ
L+1 +λL+1

2◦ ⇒ λL+1
2◦ ← [

Ga ×Ga]
(i , j )6=(0,0) λ

L+1 ,

and for third degree, we find

(2.33) γL
3◦ =

[
Ga ×Ga ×Ga]

(i , j ,k)6=(0,0,0) λ
L+1 +λL+1

3◦ ⇒ λL+1
3◦ ← [

Ga ×Ga ×Ga]
(i , j ,k)6=(0,0,0) λ

L+1 .

At first it seems that each equation is interdependent since the first, second, and third degree scaling coefficients are all included
in λL+1. However, analyzing the filter Ga reveals that the first degree scaling coefficients λL+1

1◦ only need λL+1
0◦ to be updated, the

second degree coefficients λL+1
2◦ need λL+1

0◦ and λL+1
1◦ , and so forth. This means we can consistently and explicitly perform the

substitution step in 3D by first updating the first degree, then the second degree, and finally the third degree scaling coefficients
according to the values of the respective neglected detail coefficients.

2.4. Boundary conditions. All theory described above is for infinite signals and grids, and the validation and results cases be-
low rely on fields with compact support, so that boundary conditions are not relevant. In practice, we do need an implementation
of boundary conditions for finite signals, which we created by relying on interpolation and extrapolation at the domain boundary.
Our solver currently supports zero value (Dirichlet), zero flux (Neumann), plain zeros filling and extrapolation boundary condi-
tions. They all rely on polynomial interpolation done at the order of the wavelet used, which is compatible with the non-lifted
wavelet theory but doesn’t conserve the moments when used with lifted wavelets. To improve the numerical properties of the in-
terpolation we use Neville’s algorithm [33]. Wavelets on the interval [13] would provide more consistent implementations of such
boundary conditions, and the lifting scheme provides avenues for moment conservation [17], but we reserve this for future work.

3. Implementation and algorithms. In this section we discuss high-level implementation choices of the ghost reconstruc-
tion and grid adaptation operations, deferring the details to section SM2 in the Supplementary Materials. Our entire code base
relies on the external library p4est [6] to handle the meta-data infrastructure of the octree, while all grid adaptation and block op-
erations have been implemented directly in our solver. Within p4est, we define each ‘tree’ as a unit cube domain, which forms the
root (level L = 0) of an octree data structure that can be refined, and the leaves are uniform resolution blocks of size N 3

b . Following
p4est, the trees can be tiled to create a ‘forest’ of trees, which enables us to create rectangular domains of arbitrary aspect ratios.
We currently have implemented wavelets with N ∈ {2,4,6} and Ñ ∈ {0,2}.. Extension to higher N is straightforward if needed; higher
Ñ on the other hand will potentially deteriorate the efficiency of the solver as we will have to significantly increase the number of
adjacent detail coefficients that needs to be discarded in accordance with our coarse-extension assumption. Throughout our im-
plementation we apply the 2:1 constraint on levels of adjacent blocks, enforcing it during grid adaptation and exploiting it during
all multiresolution wavelet operations.

Ghost reconstruction procedure. The implementation of the ghost reconstruction consists of two parts: the first recovers the
value from coarser neighbors and same level neighbors (see Algorithm 1 in section SM2), and the second computes the values
from finer neighbors (see Algorithm 2 in section SM2). The inter-rank communication during both parts is handled using MPI-
RMA with a Post-Start-Complete-Wait (PSCW) synchronization strategy, chosen to target massively parallel infrastructures [23]. In
the first step, we copy (or use MPI_Get) the required scaling coefficients from the coarse- and same-level neighbors to the current
block, where the actual ghost points are computed locally once the required values are gathered. This choice reduces the size of the
communications and the required memory for the buffers. For similar reasons, to retrieve ghost values from a finer neighbor block,
we first compute the required ghost values from the perspective of the neighboring block, which then copies (or uses MPI_Put) the
coarsened values to our block. Throughout these steps, we have implemented the ghost point computation for vector- or tensor
fields in a “component-by-component” way, so that we can overlap communication and computation by performing wavelet-
based refinement/coarsening operations on one component while the ghost exchange is performed for the next one.

Grid adaptation. The implementation of the grid adaptation follows an iterative procedure. During each iteration we start
by computing the maximum detail criterion for each block as explained in section subsection 2.2.5, which in turn dictates the
block’s desired actions. Then we enforce global policies that include the 2:1 condition, possible user-defined limits of mini-
mum/maximum level (not used in this manuscript), and the prohibition of coarsening blocks that have been refined at earlier
iterations; a detailed description is included in section SM2. This finalizes the adaptation decision on each block, after which
we perform the refinement and/or coarsening on the affected blocks and use the update step to adjust the scaling coefficients of
blocks whose neighbors have just been coarsened. Finally, we use the p4est grid partitioning algorithm to distribute the blocks
among ranks and ensure load balancing of the current grid. This ends the current iteration, after which we recompute the ghost
values. The iterative process ends when, under our policy, no blocks have changed their resolution, which ensures that ||γ||∞ < εr

on all blocks.
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4. Validation. We present here the numerical validation of our framework on three different aspects: the grid adaptation and
the error control, the moment conservation for the lifted wavelets, and the convergence of finite difference operators on multi-
level grids. For all cases, we set the linear dimension of each block to Nb = 24, so that each block contains N 3

b = 13824 unknowns.

4.1. Grid adaptation and error control. The grid adaptation test, referred to as the “epsilon test”, measures the error between
a coarsened field and the original, non-compressed information. According to the wavelet theory and (2.24) this error must be
bounded by C1εc , where we observed in practice C1 =O (1). For a fixed value of εc , the epsilon test proceeds as follows:

1. initialize an analytic field on a fine level Lmax,
2. given εc , coarsen the grid according to the block adaptation policy described above,
3. refine the grid back to the Lmax level and compare the error with the initial condition.

We have chosen the analytical field to be a scalar Gaussian function centered within a cubic computational domain of size 2:

(4.1) f (x, y, z) = exp

[
− r 2

σ2

]
r 2 = (x −1)2 + (

y −1
)2 + (z −1)2 ,

where we set σ= 2/15. The field is initialized at Lmax = 5. In Figure 4.1a we show the evolution of the infinite norm of the error E∞
depending on the value of εc , for a range of different wavelets, where the error is defined as

(4.2) E∞ =
∣∣∣∣P Lmax[ f

]
(x)−P

Lmax[ f
]
εc

(x)
∣∣∣∣∞ .

The results validate that the εc is an accurate prediction of the compression error, consistent with the 1D wavelet theory described
above. For high values of εc , the error plateaus as the block granularity in the grid is too low to allow further coarsening. Looking
at the number of blocks as a function of the E∞ in Figure 4.1b, we observe that for a given error the number of blocks required to
represent the compressed field decreases significantly as the wavelet order N increases. Further, the lifting wavelets characterized
by Ñ = 2 consistently require a slightly smaller number of blocks than their non-lifting counterpart characterized by Ñ = 0, for the
same error and interpolation order N .
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Figure 4.1: Epsilon-test: effect of the compression threshold εc on error (left) and number of blocks (right) for a static grid adapta-
tion using wavelet 2.0 ( ), 2.2 ( ), 4.0 ( ), 4.2 ( ), 6.0 ( ), 6.2 ( ).

4.2. Moment conservation. The moment-preserving properties of lifting wavelets described above can be validated by com-
paring the moments on a given uniform level Lmax, both before and after discarding the detail coefficients according to εc . Using

the same setup as for the epsilon-test, we compare moments between P
Lmax[ f

]
(x) and P

Lmax[ f
]
εc

(x) and define their difference
as

(4.3) Mp,q,r =
∫

R3
P

Lmax[ f
]

(x) xp y q zr dx−
∫

R3
P

Lmax[ f
]
εc

(x) xp y q zr dx ,

where 0 ≤ p, q,r < Ñ . Each moment can be evaluated from the scaling coefficients using (2.21). The results of this test are shown
for the different wavelets in Figure 4.2a and Figure 4.2b respectively for the zeroth moment p = q = r = 0 and the norm of the three
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first moments. This validates that the lifted interpolating wavelets conserve both the zeroth and the first moment of the scaling
coefficients throughout the adaptation process. When considering the non-lifted wavelet family, we notice that the error in the
moments is negligible for the higher εc values, then suddenly increases at a certain εc and gradually decrease when εc is reduced. At
the largest values for εc , the adaptation process coarsens the grid uniformly, and by virtue of the dual scaling functions with Ñ = 0
we retain the original function values on the remaining grid points. Refinement does not affect the moments of the field for any
interpolating wavelet (see (2.13)) and so in this case our test will compare moments between function values on two uniform grids
at different resolutions. On a uniform grid the moment integration rule is equivalent to a spectrally accurate trapezoid quadrature
due to the compactness and smoothness of the Gaussian function, and it turns out that even for the relatively high values of εc

considered the coarsening does not affect the error of this approximation, leading to zero values in the moment error. For each of
the three wavelets with Ñ = 0, there exist a “critical” value of εc for which the coarse grid first contains multiple levels, thus breaking
the favorable convergence properties associated with a uniform grid quadrature and showing the real effect of grid adaptation on
the lack of moment conservation for these wavelets.
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(a) M0 =M0,0,0
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Figure 4.2: Moment test: effect of the compression threshold εc on the conservation of zero (left) and first (right) moments before
and after static grid adaptation, for the wavelet 2.0 ( ), 2.2 ( ), 4.0 ( ), 4.2 ( ), 6.0 ( ), 6.2 ( ).

4.3. Wavelets and spatial discretization. As a third measure of a static validation of our 3D wavelet-based multiresolution
grid framework, we consider convergence of various finite-difference operators across a resolution jump as a function of the wave-
let order and refinement level. We consider an advection term discretized using conservative upwind finite difference schemes of
third order (CONS-3) and fifth order (CONS-5), as well as central laplacian operators of second order (DIFF-2) and fourth order
(DIFF-4). More details about the finite-difference schemes used can be found in section SM4.

The analytical field is the same Gaussian blob as in the previous two subsections, and is initialized on a uniform fine level
characterized by grid spacing h f . To simplify the measure of convergence, we do not consider the automatic mesh adaptation in
this subsection and instead focus on a grid with two levels of resolution that are fixed in space. Starting from the initial condition
at level h f , we coarsen one eighth of the grid by one level, making sure we cover all possible resolution jumps between blocks
(jumps across faces, edges, and corners). We then compute the ghost points as described above and evaluate the finite-difference
stencil on the entire grid. To compute the error, we compare the discrete values to the analytic solution of applying the continuous
differential operators to the analytic field.

The convergence of the infinite norm (E∞) of the error is shown in Figure 4.3 as a function of h f , for different wavelet orders
N and Ñ . The results show that if the wavelet order is sufficiently high, the expected convergence order is reached for all finite-
difference operators even in the infinity norm, indicating a correct treatment of the resolution jump. For lower-order wavelets, the
error instead is bound by the polynomial order of the wavelet used to interpolate the fine-level ghost points. Specifically, in this
case the error is bound by N −n, where N is the wavelet order and n is the order of the derivative operator, consistent with the
accuracy order of numerically differentiating an N th degree polynomial n times. Across all cases, the convergence of the error can
thus be given as hp with p = min(k, N −n), where k is order of the finite-difference stencil.

In practice we should therefore only consider wavelets with N ≥ 4 to obtain a scheme that is at least second-order accurate on
first- and second-order PDEs.
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Figure 4.3: Convergence order of spatial derivatives for third and fifth order conservative advection (top row) and a second and
fourth order laplacian (bottom row) on a two-level grid with finest level h f , obtained using ghost points reconstructed with wave-
let 2.0 ( ), 2.2 ( ), 4.0 ( ), 4.2 ( ), 6.0 ( ), 6.2 ( ).

5. Convergence analysis for a linear advection equation. Having validated the correct implementation of the grid adapta-
tion for non-lifted and lifted wavelets, as well as the ghost point reconstruction and finite-difference operators, we focus here on
the behavior of grid adaptation during the evolution of a partial differential equation. We consider the transport of a scalar field in
a divergence-free flow field ∇·u = 0 as a simple case of a hyperbolic conservation law:

(5.1)
∂φ

∂t
+∇· (uφ

)= 0 .

Through this section, we compute the right-hand side using the third-order finite-difference scheme CONS-3, perform time
integration using a third-order RK3-TVD scheme [21, 22] (detailed in section SM3), and fix the block size to 243.

We note that this problem poses a sufficiently challenging test case to allow us to analyze our methodology and differentiate
between the wavelets. Nevertheless, as shown above, the presented software framework in its current form is also able to handle
time-dependent problems involving diffusion and reaction terms, as well as vector-based quantities.

5.1. Translation of a Gaussian blob. To assess the convergence behavior of our algorithm and implementation, we consider
a simple case of the advection of a Gaussian blob in a uniform velocity field. The computational domain is chosen as a rectangular
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box of size 3×3×6 with each unit cube represented by a separate tree, leading to 54 trees in the domain. We set the velocity as
[0 ; 0 ; 1], and advect a Gaussian blob (σ= 1/5) initially centered at (3/2,3/2,3/2) over a distance of 3, so that we can evaluate the
exact solution as a mirror of the initial condition. The time-step is controlled by setting the CFL = 1/4 (based on the finest-level grid
spacing), which is small enough so that the spatial discretization errors dominate the time integration errors. We adapt the grid
every 6 time steps, so that the information travels at most 1/16th of the finest-level block between adaptation steps. Within this
setting we vary εr and εc to control the grid adaptation during the evolution of the PDE, focusing on wavelet 4.0 and wavelet 4.2
only. For context of the discussion, in Figure 5.1 we illustrate the obtained grid for the case of wavelet 4.2, with εr = 10−6 and
εc = 10−8. In this case the maximum level during the simulation is 4, leading to an effective grid spacing of h f = 2.6×10−3 or, if
the grid was uniformly refined to this level, a domain with about 3 trillion grid points. The 2D projections highlight the front/back
asymmetry in the grid refinement which is due to the difference between the refinement and coarsening threshold in combination
with the moving field: the mesh coarsening will be triggered at larger distances behind the blob than the refinement in front of the
blob.

(a) t = 0 (b) t = 0.78 (c) t = 1.5 (d) t = 2.27 (e) t = 3

Figure 5.1: 2D Projection in the X Z -plane of the gaussian blob for wavelet 4.2 and εr = 10−6 with εr /εc = 100. The 2D projections
are illustrated with isolevels at

[
10−6,10−5,10−4,10−3,10−2,10−1

]
.

Effect of refinement threshold. We first consider the effect of varying the refinement threshold εr , keeping the ratio εr /εc = 100
fixed.

The time evolution of the error during the advection is presented at Figure 5.2a for wavelet 4.0 (in blue) and wavelet 4.2
(in orange) across a range of εr values, showing that the error decreases with εr without significant differences between the two
wavelets. The evolution of the maximum detail coefficient on the grid (||γ||∞) is shown in Figure 5.2b, which confirms that the
maximum detail is always bound by εr . Further, the time evolution shows that the maximum detail varies over time in a non-
smooth manner, which is explained by noting that the location at which ||γ||∞ is computed can jump in space as individual blocks
refine or coarsen.

Studying the convergence behavior of a simulation on a multi-level grid is not trivial. On a uniform grid, one would show
convergence evaluating the maximum error E∞ as a function of the grid spacing h. On adaptive grids, however, the grid spacing h
varies in space and time, we have no direct control on the minimum grid spacing h, and there is no guarantee that the maximum
error E∞ is measured at a single physical location when adapting the grid. Alternatively, one can use a parameter like the effective
number of degrees-of-freedom in the simulation to measure convergence. We show associated results briefly at the end of this
subsection. However, we consider this convergence metric less relevant to the point of this work, because the effective number of
degrees-of-freedom is an outcome of the simulation and will likely vary in time. Instead, we control the error primarily by varying
εr , and so a more suitable convergence analysis relates the maximum error at the end time of the simulation as a function of
the input parameter εr (Figure 5.3a). The result demonstrates that εr is successful at controlling the error and moreover its value
provides an estimate of the error made in a simulation, albeit with a problem-specific prefactor of O (10) in this case.

We can decompose this convergence behavior into different components. First, through our adaptation policy we guarantee
that εr bounds the maximum detail coefficient ||γ||∞. In Figure 5.3b we show the relation between the error and the maximum
detail coefficient, where we included a uniform resolution line (in gray) obtained by varying the constant grid spacing h, and
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Figure 5.2: Effect of εr (using εr /εc = 100) on the time evolution of the maximum error (left) and max detail coefficient (right) for a
linear advection testcase with CONS-3, using wavelet 4.0 ( ) and wavelet 4.2 ( ).

computing for each h the maximum error E∞ as well as the maximum detail coefficient evaluated by a single-level wavelet 4.0
transform. Both uniform and multiresolution results show a clear 3/4 slope, where the wavelet results vary as the locations of the
maximum scaling coefficient and the maximum error jump independently across different locations in the grid between individual
simulations. The 3/4 slope can be explained by two observations. First, we know that the order of the CONS-3 spatial discretization
is third, so that E∞ ∝ h3. This is confirmed in Figure 5.3c, showing the error as a function of the finest-level grid spacing h f ; both
the uniform and the wavelet 4.2 lines follow a third-order slope (wavelet 4.0 will be discussed below). Second, according to (2.14),
the detail coefficients associated with a projection of a given smooth function onto a level with spacing h scale as ||γ||∞ ∝ hN ,
where here N = 4 is the polynomial interpolation order of the wavelet. For our data this convergence is confirmed in Figure 5.3d,
where we plot the maximum detail coefficient as a function of the finest grid spacing h f . Combining these relations we find that
E∞ ∝||γ||3/4

∞ .

Looking more closely at Figure 5.3c and Figure 5.3d indicates that though the overall behavior in Figure 5.3a is consistent
between wavelet 4.0 and wavelet 4.2, the associated grid adaptation strategies are different. Figure 5.3c shows that wavelet 4.2
behaves similarly to the uniform resolution grid, which is impressive as the uniform grid result represents the smallest possible
error for any given h f ; the wavelet 4.2 does not compromise that error despite the continuous grid adaptation during the simula-
tion. The behavior of wavelet 4.0 instead demonstrates that this wavelet transform generates detail coefficients that do not predict
the error committed by the PDE and therefore cause a spurious coarsening and belated refinement. This is emphasized by the last
two points on the left (associated with εr = 10−6 and εr = 10−7) where the error goes down even though the finest grid spacing
stays the same. This means that at εr = 10−6 the error was associated with a coarser level than the maximum, and refining that
level without affecting the finest level successfully reduced the error. Similarly, in Figure 5.3d the gaps between the uniform grid
and the adapted grids are associated with coarsening, which increases the maximum detail coefficients. We see again that the be-
havior between wavelet 4.0 and wavelet 4.2 is different: the reduced aliasing of the lifted wavelet 4.2 leads to a better correlation
of the maximum detail coefficients, the finest grid spacing, and the maximum error, compared with the non-lifted wavelet 4.0. We
emphasize however, that despite the different strategies both wavelets successfully control the error during the evolution of this
PDE as a function of εr , as evidenced by the overlapping lines in Figure 5.3a.

The different strategies of wavelet 4.0 and wavelet 4.2 are further reflected by the number of blocks required throughout the
simulation, as a function of εr . The evolution of the number of blocks over time is shown in Figure 5.4a. For early times, as the
Gaussian blob translates through the grid the trailing side of the blob gets coarsened since the small details there fall below εc . The
leading side does not get refined yet as the small details do not yet exceed εr , so the number of blocks decreases, leading to the
front/back asymmetric grid structure as shown in Figure 5.1. Once the leading side of the blob gets picked up by εr the number
of blocks increases again , though the asymmetry persists.. At later times, the number of blocks plateaus for wavelet 4.2 across
all values of εr , indicating that the grid structure is largely constant. For wavelet 4.0, on the other hand, the number of blocks
increases throughout the simulation. This is consistent with the convergence analysis above, where we observed that wavelet 4.0
produces detail coefficients that do not accurately reflect the PDE error, and thus refines the grid in locations without strongly
reducing the error.
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Figure 5.3: Convergence characteristics for linear advection with CONS-3 for wavelet 4.0 ( ), wavelet 4.2 ( ), and a uniform
grid ( ), as a function of εr (using εr /εc = 100), with the error evaluated at end time t = 3. In each plot, the subsequent data
points for multiresolution simulations are obtained by systematically varying εr , whereas the uniform resolution data points are
obtained by systematically varying the grid spacing h f . Each marker symbol is associated with a unique value of h f to facilitate
the comparison across subgraphs.

Plotting the error made in the simulation as a function of the number of blocks (Figure 5.4b) shows a slope of 1 with respect
to the effective number of degrees-of-freedom for both uniform and multiresolution simulations. Since the number of blocks
is inversely proportional to an ‘effective’ linear grid spacing to the power of 3, this thus recovers the third-order convergence of
the discretization scheme. Comparing the two wavelets, we find that wavelet 4.0 requires up to twice more blocks compared to
wavelet 4.2 at the lowest error values. Both wavelets provide significant gains over the uniform resolution simulation (fewer blocks
by a factor of ≈ 30−40 for wavelet 4.0 and ≈ 70 for wavelet 4.2), though this metric is heavily dependent on the scale separation
of the simulation. A rough estimate implies that the ratio of the volume occupied by a sphere of radius 3σ and the volume of the
rectangular domain is ≈ 70, similar to the compression rate of wavelet 4.2.

Effect of coarsening threshold. In the previous section we varied εr while keeping the ratio εr /εc fixed. Repeating the analysis
for a range of values for εr /εc does not significantly change the results, as shown in Figure 5.4b. Here the dotted, dashed, and solid
lines correspond to εr /εc = 16, εr /εc = 100, and εr /εc = 104 respectively, and each data point for each simulation is associated with
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Figure 5.4: Evolution of the number of blocks in the grid over time (left), and maximum error against number of blocks (right) for
the linear advection testcase with CONS-3 using wavelet 4.0 ( ), wavelet 4.2 ( ), and a uniform grid ( ), for various values
of εr ’s. In (b), we also show the effect of varying εr /εc using different line styles.

a given value of εr . For both wavelets, the number of blocks associated with a given error decreases slightly when εr /εc decreases,
reflecting the more aggressive coarsening of the grid when εc increases. At all points, except the finest εr for wavelet 4.0, increas-
ing εc for a given εr decreases the number of blocks without significantly changing the error. This emphasizes the capability of
wavelets to detect where to compress information without degrading the overall accuracy of the solution, and shows that generally
a simulation should take εr /εc close to the lower bound of 2N (explained in subsection 2.2.5), with N the wavelet order.

Effect of adaptation frequency. For a fixed εr = 10−5, εr /εc = 100, and wavelet 4.2 we vary the adaptation frequencies rang-
ing from every 6 (as in the cases above) to every 768 time steps. With constant value of CFL = 1/4 this corresponds to the signal
traveling from 1/16th of a block to 8 blocks at the finest scale between adaptations. As mentioned in subsection 2.2.5, there are
two expected effects that occur when increasing the adaptation frequency: a delayed coarsening of blocks where the detail coeffi-
cient falls below the coarsening threshold, and a delayed refinement of blocks where the detail coefficient exceeds the refinement
threshold. Compared to a more frequently adapted grid, the former will reduce the compression rate of the adapted grid whereas
the latter will increase the error of the PDE solution.

The results of our numerical experiment are shown in Figure 5.5 with the error and maximum detail evolution for all cases
over time (left) and the evolution of the number of blocks (right). Increasing the adaptation frequency up to and including every
192 time steps increases the number of blocks as grid compression is delayed, but does not strongly affect the error. When the
adaptation frequency is every 384 time steps or lower, we observe that there are prolonged periods of time where the maximum
detail coefficient exceeds the refinement threshold 10−5, and the error starts to increase significantly compared to the other cases.
For the lowest frequency (adaptation every 768 time steps), the maximum level in the grid drops to 2 compared to 3 for all other
cases, as details of the signal are progressively lost and the grid is compressed accordingly. For this particular testcase, we thus find
some robustness in the results to the adaptation frequency between values of 6 and 192, partly due to the smooth nature of the
function and partly due to our 2:1 constraint in adaptation approach. Both features ensure that the grid adapted at a single time is
able to capture and evolve the solution well when the signal travels up to 2 fine-level blocks afterwards.

5.2. Deformation of a Gaussian blob. Here we present the results of our framework on a more challenging scale separation
problem, and showcase the ability of the wavelet-based adaptation to track the need for computational resources. Specifically, we
use the advection equation to transport a Gaussian blob in a non-linear periodic incompressible flow field defined as

(5.2)
u(x) = sin2(π x) sin(2π y) sin(2π z)
v(x) = sin(2π x) sin2(π y) sin(2π z)

w(x) = sin(2π x) sin(2π y) sin2(π z)
,

which was proposed originally in [27] and has been used extensively since in the level-set community since [16]. Following the
latter we multiply the velocity components by cos(πt/3), and here evaluate only the ‘forward’ evolution up to t = 1.5. As initial
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Figure 5.5: Effect of adaptation frequency for the linear advection testcase with CONS-3 using wavelet 4.2. The number of timesteps
between successive adaptations shown is 6 ( ), 96 ( ), 192 ( ), 384 ( ), and 768 ( ). With CFL = 1/4, this corresponds to the
information traveling 1/16th of a block, 1 block, 2 blocks, 4 blocks, and 8 blocks respectively.

condition we choose a compact spherically symmetric Gaussian blob defined in terms of the radial coordinate r as

(5.3) φ0(r ) = exp

[
− r 2/σ2

1− r 2/β2

]
,

for r < β and with σ = 0.1 and β = 2σ, centered at [0.35 , 0.35 , 0.35] within a unit cube. We apply grid adaptation tolerances of
εr = 10−2 and εr /εc = 100, use CFL = 0.5, and adapt the grid every 12 time steps.

At t = 0, the grid contains only 92 blocks on levels 2 and 3, as the Gaussian is smooth and can be captured by the fourth-order
wavelets at relatively coarse resolution. As the blob deforms, it thins rapidly near the center of the domain, as shown through
visualization of an isosurface in Figure 5.7. This process triggers refinement throughout the evolution leading eventually to ap-
proximately 11,500 blocks, and levels between 2 all the way to 8. The refinement pattern at the final time is interesting, as the grid
reflects the subtleties in the wavelet analysis: the maximum levels are localized concentrated exactly where we expect a fourth-
order polynomial interpolation to show the largest errors, near the center of the domain. The ‘tips’ of the deformed shape are still
smooth and, despite relatively large gradients, still captured well on much coarser resolutions. From a user perspective, we note
that we do not need to bound the maximum level; instead, the consistency of the refinement criterion with the wavelet-based grid
adaptation ensures that setting a suitable εr is sufficient to keep the levels in the grid within reasonable bounds.

Finally, we study the ability of the εr criterion as an input to control the solution error in this non-linear problem. As the
equations have no analytical solutions, we perform a self-convergence study where the result of a uniform-grid simulation at level
5 (or 7683 grid points) at time t = 0.5 is used as reference solution. For the multiresolution cases, we use wavelet 4.2 and consider
four different refinement thresholds εr ∈

{
1 ; 10−1 ; 10−2 ; 10−3

}
. We set the time step as ∆t = 1/2 h f /U , with h f the instantaneous

finest spacing in the grid, and U fixed to be U = 1 at all times. None of these multiresolution simulations reaches level 5 within this
time window. Once the multiresolution simulations has reached t = 0.5, we refine their multi-level grids uniformly to level 5 using
the chosen wavelet, and then compute the maximum error between the refined uniform grid and the reference uniform resolution
simulation result.

The evolution of the error with the refinement criterion is shown in Figure 5.6a where we observe that the slope matches the
theoretical convergence rate of 3/4 for both the refinement criterion εr and the measured maximum detail in the domain ||γ||∞
reasonably well. In Figure 5.6b we show the error as a function of the number of blocks at the final time. This metric is more
sensitive as the number of blocks varies in time; in this particular case, the second-last point at εr = 10−2 just refined the grid prior
to t = 0.5 which has moved the data point to the right compared to the expected slope. Nevertheless, this convergence analysis
demonstrates that the main results of the linear transport problem described in subsection 5.1 can still be reproduced for this
more challenging, non-linear transport problem as well.
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Figure 5.6: Advection of a compact gaussian scalar field using a deformation velocity field: wavelet-based convergence analysis.

(a) 3D view (b) plane YZ (c) plane XY

Figure 5.7: Advection of a compact gaussian scalar field using a deformation velocity field: 3D and perspective views of the grid
together with an isosurface of the field at valueφ= 0.25, for t = 1.5. We have visualized the outlines of individual blocks to highlight
the structure of the grid.

6. Weak scalability and performance analysis. In this section we present the results of the weak scalability campaign we
have done on Cori, a Cray XC40 supercomputer whose CPU partition contains 2388 nodes of 32 cores each1. The testcase is
the execution of 50 times steps for the advection of a Gaussian tube aligned with the z-direction in a rectangular domain. The
size of the domain, and therefore the size of the simulation S, is adapted to maintain the number of blocks per core constant:
S (Nc ) = [1×1×Nc /32], with Nc the number of cores. To get a significant sample of each operation, we perform the adaptation
every time step, although in practice we would adapt less frequently. The domain is initialized with 75.5 blocks per rank and one
rank per core, which with a block size of 243 leads to about 1 million unknowns per core. We used the wavelet 4.0 and CFL = 0.25.

We study the performance of our framework from 1 nodes to 512 nodes, with the latter corresponding to 16,384 cores and
about 17 billion unknowns. In Figure 6.1a we show the evolution of the time spent per timestep for the grid adaptation (or-
ange) and the stencil computation (blue). We also show separately the time spent in ghost computations (green), which is the
communication-heavy part of the stencil computation. Though highly problem-dependent, for this particular problem the grid
adaptation takes roughly half the time of the stencil computation within an RK3 timestep, which is very reasonable given that we

1The MPI implementation used is OpenMPI/4.1.2
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typically would need to adapt the grid only every 10 to 100 timesteps. Further, the ghosting takes up about a third of the time of a
stencil computation, even on very large partitions.

Based on this timing data, we show in Figure 6.1b the weak efficiency ηw defined as

(6.1) ηw (Nc ) = T (Nref,S (Nref))

T (Nc ,S (Nc ))
,

where T (N ,S (N )) is the time taken by the simulation to run a problem of size S on N cores and where we used Nref = 64, i.e. 2
nodes.

Based on Figure 6.1a and Figure 6.1b, the Post-Start-Complete-Wait (PSCW) strategy allows us to reach a perfect scalability in
the case of the ghost and the stencil operation. This observation is confirmed by analyzing the break-down of the different opera-
tions illustrated in Figure SM5.1. This result is only possible because both operations are scalable and done on group of ranks with
the PSCW calls, instead of using the entire communicator.We do pay a price to achieve this scalability in the ghost computation,
because we have to re-initialize the ghost meta-data structure every time we modify the grid. As observed in Figure 6.1b, this adap-
tation process has a lower parallel efficiency. Analyzing the timing of different operations within the adaptation step (Figure SM5.3)
shows that the less scalable operations are the synchronization step, which contains a non-blocking MPI_Allreduce and various
RMA synchronizations, and the reset operation of the meta-data for the ghosting, which involves the creation and deletion of the
window on MPI_COMM_WORLD. For the latter we currently use non-dynamic windows as we do not expect the adaptation to be called
often compared to the use of the ghosting and the stencils, and so its computation cost will not dominate in practice. However, in
the future we could still improve the implementation by considering a dynamic window allocation, which might be better suited
for a policy that requires very frequent adaptations. Overall, the observed behavior of this weak scalability test is consistent with
the implementation choices, as all the global operations are less scalable by definition, while the local operations demonstrate
excellent scalability.
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Figure 6.1: Weak scaling for the three main operations involved in adaptive grid simulations: the grid adaptation ( , performed
every time step here), the stencil operations ( ), and the time spent in the ghost computations ( ) during the stencil
evaluation. The times are given in seconds per time-step, from 1 node to 512 nodes (32 cores to 16,384 cores).

7. Conclusion. This work provides a detailed explanation of the mathematical foundation and distributed computational im-
plementation of a 3D block-structured adaptive grid method based on a multiresolution analysis using wavelets, named murphy. In
our approach we apply significant emphasis on the handling of resolution jumps in block-structured grids to provide consistency
with non-lifted and lifted interpolating wavelets of second, fourth, and sixth polynomial order. We validate the implementation
through rigorous tests of error control and moment conservation on static grids.

Compared with most existing adaptive mesh refinement approaches, the wavelet-based approach provides explicit grid adap-
tation metrics that are intrinsically linked to the point-wise error made in the field compared with a polynomial interpolation. The
wavelet framework provides a consistent multiresolution perspective for adaptation metric, adaptation procedure, and ghost re-
construction across resolution jumps, with a formal separation of scales in all operations. When combined with finite-difference
schemes we demonstrate the ability of our approach to reach point-wise high order convergence on multi-level grids. Further,
the nature of the non-overlapping octree-based grids with constant-size blocks provides excellent opportunities for scalability. We
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exploit this in our implementation using state-of-the-art one-sided communication strategies that show excellent scalability of
the grid adaptation, ghost reconstruction, and stencil computation processes at least up to 16,384 cores.

We tested our multiresolution adaptive grid algorithm on the convergence of simple linear hyperbolic conservation laws in
the form of scalar advection using divergence-free velocity fields. The results demonstrate that the refinement threshold, which
provides user control over the error permitted as detected by the wavelet analysis, is an excellent indicator for the global field error
even during the evolution of this partial differential equation. As such, reducing the refinement threshold leads to convergence
of the error, along a slope that can be captured by the ratio of the convergence order of the finite-difference scheme, and the
polynomial order of accuracy of the wavelet used. For lifted wavelets we observe that the global maximum error on any multi-level
grid is very close to the error on a uniform-resolution grid of the same maximum resolution. Compared to non-lifted wavelets,
the reduced aliasing properties of lifted wavelets enable them to detect the need for refinement and opportunity for compression
more efficiently, leading ultimately to a smaller number of blocks in the grid by about a factor of two for the same maximum error.

The implementation and performance benefits of our octree-based block-structured grid implementation does lead to con-
straints in terms of the adaptation patterns that can be achieved, for instance compared to patch-based adaptive mesh refinement
techniques. The use of ‘forest-of-trees’ as offered by p4est enables us to create arbitrary aspect ratio rectangular domains, rather
than remain restricted to cubic domains as in previous codes [34]. However, our current implementation is still limited to cu-
bic blocks with isotropic grids. To gain more flexibility, one can build on domain mapping techniques [5] or consider extending
work in computer graphics that generalizes wavelets to work on arbitrary compact surfaces [28]. Closer to our approach, it should
also be relatively straightforward to use a larger set of blocks that enable separate refinement or compression in each of the three
cartesian directions. We reserve this extension for future work.

With the fundamentals and implementation of our framework presented, future work will focus on investigating the perfor-
mance of the wavelet-based refinement criterion to accurately capture refinement requirements for non-linear PDEs. Previous
work on wavelet-adapted grids is promising in this regard (e.g. [34]) but systematic investigations are lacking. At the same time,
we note that this level of rigor is also often absent from other adaptive mesh refinement methodologies, which typically rely on
heuristic or post-hoc criteria for refinement and compression that make it difficult to compare their ability to capture emerg-
ing scales, or discard information that does not affect the overall error. In our case, however, the formal wavelet multiresolution
theory provides a useful perspective to frame this discussion and analyze convergence with respect to the refinement threshold,
compared with other possible policies. Further, we wish to explore the benefits of moment conservation offered by lifted wavelets
as demonstrated in our solver, for the solution of conservative PDEs such as the hyperbolic conservation law considered in this
work. Finally, we intend to combine our multiresolution framework with an elliptic solver to handle problems such as the free-
space incompressible Navier-Stokes equations, as well as an immersed interface method [19, 20] which will enable us to perform
high-order simulations with embedded interfaces for multiphysics problems.
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SUPPLEMENTARY MATERIALS: MURPHY - A SCALABLE MULTIRESOLUTION FRAMEWORK FOR SCIENTIFIC COMPUTING
ON 3D BLOCK-STRUCTURED COLLOCATED GRIDS

THOMAS GILLIS ∗AND WIM M. VAN REES ∗†

SM1. Implementation details - filters bank. In this section we detail the exact construction of the filter banks, as used in
the software. From an implementation perspective, two approaches have been considered in the literature: the step-by-step
implementation of the lifting scheme, as in [4], or the filter-based approach as in [7]. Although the operation count is smaller in
the first approach and a factor 2 has been reported in the complexity [2], we follow the second approach which provides significant
simplifications especially in multiple dimensions. Further, the memory layout in the implementation is achieved more naturally
when interlacing the scaling and detail coefficients:

(SM1.1) uL = [
. . .λL

k−1 , γL
k−1 , λL

k , γL
k , λL

k+1 , γL
k+1 , . . .

]
.

This does not affect the Ga and H a filters used in the analysis, but requires the definition of two new filters J s and K s to replace
H s and G s during the synthesis operation, such that

(SM1.2) λL+1
2k = J s uL λL+1

2k+1 = K s uL ,

where the array uL in the left equation is implicitly assumed to be centered on λL
k , and in the right equation on γL

k . This change of
perspective is strictly equivalent to the classical H s /G s filters and has been done to simplify the implementation. Considering this
new approach, the filter coefficients for wavelet 2.0, wavelet 4.0, and wavelet 6.0 are given in Table SM1.1, and the coefficients for
wavelet 2.2, wavelet 4.2, and wavelet 6.2 are given in Table SM1.2.

H a 1

Ga − 1
2 1 − 1

2

J s 1

K s 1
2 1 1

2

(a) wavelet 2.0

H a 1

Ga 1
16 0 − 9

16 1 − 9
16 0 1

16

J s 1

K s − 1
16 0 9

16 1 9
16 0 − 1

16

(b) wavelet 4.0

H a 1

Ga − 3
256 0 25

256 0 − 75
128 1 − 75

128 0 25
256 0 − 3

256

J s 1

K s 3
256 0 − 25

256 0 75
128 1 75

128 0 − 25
256 0 3

256

(c) wavelet 6.0

Table SM1.1: Non-lifted interpolating wavelet filter coefficients as operated on interleaved scaling and detail coefficients. The
filters H a and J s are centered on (even) scaling coefficients, and the filters Ga and K s are centered on odd scaling coefficients and
detail coefficients, respectively.

SM2. Algorithms and implementation. In this section we describe in detail the different algorithms as implemented in our
presented software framework. We refer to section 3 for additional explanations and context regarding the different steps. In
Algorithm 1 and Algorithm 2 we detail the implementation of the ghosting procedure, while in Algorithm 3 we expose the imple-
mentation of the adaptation of the grid.

SM2.1. Ghost computation. We describe here the technicalities of the ghost computation implementation. To facilitate the
discussion, we introduce some notation inspired by the p4est naming convention. Any block b is part of the total set of blocks B
within the grid, which are distributed among multiple MPI ranks. In this section we understand b to contain the cartesian grid
data of size N 3

b , as well as a ghost region on the same level as b extending Ng points in each dimension on each side of the block,
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H a − 1
8

1
4

3
4

1
4 − 1

8

Ga − 1
2 1 − 1

2

J s − 1
4 1 − 1

4

K s − 1
8

1
2

3
4

1
2 − 1

8

(a) wavelet 2.2

H a 1
64 0 − 1

8
1
4

23
32

1
4 − 1

8 0 1
64

Ga 1
16 0 − 9

16 1 − 9
16 0 1

16

J s − 1
4 1 − 1

4

K s 1
64 − 1

16 − 1
8

9
16

23
32

9
16 − 1

8 − 1
16

1
64

(b) wavelet 4.2

H a − 3
1024 0 11

512 0 − 125
1024

1
4

181
256

1
4 − 125

1024 0 11
512 0 − 3

1024

Ga − 3
256 0 25

256 0 − 75
128 1 − 75

128 0 25
256 0 − 3

256

J s − 1
4 1 − 1

4

K s − 3
1024

3
256

11
512 − 25

256 − 125
1024

75
128

181
256

75
128 − 125

1024 − 25
256

11
512

3
256 − 3

1024

(c) wavelet 6.2

Table SM1.2: Lifted interpolating wavelet filter coefficients as operated on interleaved scaling and detail coefficients. The filters
H a and J s are centered on (even) scaling coefficients, and the filters Ga and K s are centered on odd scaling coefficients and detail
coefficients, respectively.

where Ng is determined from the PDE requirements or wavelet support, depending on the operation. A subset of B is the mirror
groupM, defined as the set of blocks that are the neighbor of at least one other block on another rank, and thus have to be accessed
through MPI communications. For each block b, we further define 6 different neighbor sets. All neighbors that exist on the same
level as b fall in the group G0, all neighbors that are coarser than b fall in the group G−, and all neighbors that are finer than b fall
in the group G+. Each of these group can either exist on the same rank as b, in which case they are denoted as ‘local’ G0/−/+

L , or

on another rank in which case they are denoted as ‘global’ G0/−/+
G . The ghost point computation is divided into two parts. For a

block b, the first step combines the values of coarser neighbors G−
G/L and same level neighbors G0

G/L with a coarse perspective of
the data in b to be able to compute a local refinement of the ghost region and retrieve the required ghost points (see Algorithm 1).
This step implements the process outlined in the main section in subsection 2.2.2. In the second step, block b uses the refined
region of step 1 (including ghosts) to coarsen again, leading to coarse ghost points that block b then communicates to neighbors
G−

G/L (see Algorithm 2).

Part 1: Coarser and same-level neighbors . First, due to the continuity in memory needed by the RMA window (our current
memory allocation does not guarantee continuity for a given field across blocks), we start by a copy of all the b ∈M into the buffer
reserved for the communication, bufRMA. The ghost values from same-level neighbors are trivially obtained by accessing the values
needed by the ghost region through a memory copy for G0

L and using MPI_Get() for G0
G .

To obtain ghost values from coarser and same-level neighbors of our current block b, we have to use the refinement operation
as described in subsection 2.2. This operation relies on the grid values of G− and the even values of our current block b and G0.
We proceed by gathering all the required values for the computation of the ghost into a temporary buffer b̃ (whose size is 1/8th of
the block-size, extended with a coarsened representation of the ghost region). The contribution of the coarser neighbors are first
obtained through a copy or MPI_Get() of the required values into b̃, and we gather the even values of the same-level neighbors,
together with the even data of the current block. The data inside b̃ associated with fine-level neighbors is left blank and ignored
throughout this process. Once all the needed data are gathered into b̃, we apply any domain boundary conditions at the coarse
level. Finally, we perform the refinement operation locally on the rank associated with b and read out the computed ghost values
within the regions overlapping with G0 and G− from the refined buffer.

Part 2: Fine-level neighbors . In the second part of the algorithm, we use the data in b and its ghost points computed in
part 1 to compute coarse-level ghost points for G−, with the individual steps described in Algorithm 2. We first apply any specified
domain boundary conditions on b if required, and then perform the substitution step as detailed in subsection 2.2.4. We then
coarsen b along the lines described in subsection 2.2 and store the coarsened data into b̃. Once the coarsening is completed, block
b copies the required coarse-level ghost points to G−

L or issues a MPI_Put() for G−
G to write into the coarser neighbor’s memory.

When completed, we are left with the application of the boundary conditions as all the ghost informations are now complete.

With these two steps, all block interfaces in the domain can be handled. In the way explained above, the ghost reconstruction
would correspond to a tree traversal from the coarsest to the finest levels in part 1, and back up to the coarsest level in part 2. How-
ever, choosing Nb larger than the support of the wavelet filters together with the 2:1 constraint in resolution jumps guarantees that
our algorithm for ghost reconstruction parallelizes efficiently across the different levels, with only independent synchronizations
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for each block in the MPI_Win_Wait() call of Algorithm 1 independent of the level on which it exists.

Algorithm 1: Ghosting - Part 1

1 bufRMA ← copy(b ∈M)

2 MPI_Win_Post()
3 MPI_Win_Start()

4 foreach b ∈B do
5 b ← copy(G0

L), MPI_Get(G0
G)

6 b̃ ← copy(G−
L ), sample(G0

L)
7 b̃ ← MPI_Get(G−

G), MPI_Get(sample(G0
G))

8 end

9 MPI_Win_Complete()
10 MPI_Win_Wait()

11 foreach b ∈B do
12 b̃ ← sample(b)
13 b̃ ← BoundaryCondition()
14 b ← WaveletRefine(b̃)
15 end

Algorithm 2: Ghosting - Part 2

1 MPI_Win_Post()
2 MPI_Win_Start()

3 foreach b ∈B do
4 b ← BoundaryCondition()
5 b ← WaveletSubstitution()
6 b̃ ← WaveletCoarsen(b)
7 G−

L ← copy(b̃)
8 G−

G ← MPI_Put(b̃)
9 end

10 MPI_Win_Complete()
11 MPI_Win_Wait()

12 foreach b ∈B do
13 b ← bufRMA

14 b ← BoundaryCondition()
15 end

SM2.2. Grid adaptation. The adaptation as detailed in Algorithm 3 is an iterative procedure starting on a grid Bk , where the
iteration k is divided in multiple steps:

1. Ghost values computation and detail computation: the ghost values are updated dimension by dimension first on the
field used for the detail computation and then on the rest of the fields present on the grid.

2. In WaveletCriterion(b ∈ Bk) the detail coefficients are communicated and computed, either directly for scalar fields
or on a component-by-component basis for vector and tensor fields.

3. Every block gets a corresponding status that expresses its desired evolution given the detail coefficient values and the
refinement εr and coarsening εc tolerances:

(a) M_ADAPT_FINER: if any of the detail coefficient is ≥ εr for any dimension,
(b) M_ADAPT_COARSER: if every detail coefficient is ≤ εc for every dimension,
(c) M_ADAPT_SAME: if no other status is assigned.

4. Once all blocks have their desired status assigned, we check compliance against our grid adaptation policy to ensure that
the grid adaptation is valid and consistent with the multiresolution theory; if needed, we change the status of individual
block to enforce compliance. The policy consists of the following rules:
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(a) we give priority to the refinement: if a block’s coarser neighbor wants to refine, the latter cannot be coarsened;
(b) the need of a fine block to be refined has to be “propagated" to its coarser neighbor: if a block has a finer neighbor

which wants to refine, the latter must refine first to not break the 2:1 condition; similarly, if a block has a coarser
neighbor, that neighbor has to be refined first;

(c) if a block has been refined in a previous iteration, it cannot be coarsened.
In addition, we enable the option to enforce possible user-defined bounds on the minimum and/or maximum level per-
mitted, if needed; these bounds are not used in the results of this work.

5. Once each block has received its final status, we use the p4est library to create the meta-structure associated with a new
set of blocks B∗

k .
6. Refine or coarsen the blocks as needed to obtain the updated grid Bk+1 through the WaveletInterpolate() function.
7. Partition the grid using p4est .
8. Synchronize the executed adaptation step of each block to its neighbors.
9. Update the adapted fields in WaveletUpdateAfterCoarsening(b ∈ Bk+1) to enforce that fine blocks receive updated

scaling coefficients if one or more neighbors have been coarsened (subsection 2.2.1).
10. Obtain the number of adapted blocks over the whole grid (implemented through a non-blocking reduce operation). If no

blocks have been adapted, we have reached the final grid with ||γ||∞ ≤ εr . Else, move to the next iteration k +1.

Throughout these steps, we rely on p4est functions to support the coarsening, the refinement, and the partitioning of the
grid; however, this is mostly limited to handling the metadata, as we have implemented the block refinement, coarsening and
partitioning ourselves to exploit asynchronous and non-blocking MPI calls.

Algorithm 3: grid adaptation

1 while adapt do
2 Ghost(b ∈Bk)
3 WaveletCriterion(b ∈Bk)
4 SyncStatus()
5 EnforceStatusPolicy(b ∈Bk)

6 p4estCoarsen()
7 p4estRefine()
8 Bk+1 ← WaveletInterpolate(b∗ ∈B∗

k+1)
9 p4estPartition()

10 SyncStatus()
11 WaveletUpdateAfterCoarsening(b ∈Bk+1)

12 Bk ←Bk+1

13 end

SM3. Time integration scheme. As a time integrator we are using the RK3-TVD [5, 6] also know as RK3-SSP. This is an explicit
in time, 3 step Runge-Kutta scheme, which only requires two temporary buffers. The integration for u̇ = f (t ,u) from time t n to
t n+1 with ∆t = t n+1 − t n is given by the three stage equations:

(SM3.1) y1 =∆t f
(
t n ,un)+un , y2 =

1

4

[
∆t f

(
t +∆t , y1

)+ y1
]+ 3

4
un , un+1 = 2

3

[
∆t f

(
t + ∆t

2
y2

)
+ y2

]
+ 1

3
un .

SM4. Finite differences scheme. For the spatial discretization of the derivatives in the advection equation, we rely on the
CONS-3 scheme, which is a fixed-weight version of a WENO schemes. First, given a divergence-free velocity field, the linear advection
equation is considered in conservative form:

(SM4.1)
∂φ

∂t
+u ·∇φ= 0 ⇔ ∂φ

∂t
+∇· (uφ

)= 0 ,

with flux function f = u φ. We consider a 1D version of this equation, discretized on a uniform grid, i.e. the grid cell i spans
[xi−1/2 ; xi+1/2]:

(SM4.2)
∂φi

∂t
=−(

fi+1/2 − fi−1/2
) 1

h
,

where fi±1/2 is the flux at the cell boundary. Here we follow [8, section 2.1] to derive a conservative finite-difference form for the
flux reconstruction. To maintain stability [8, section 2.1] the flux terms must be decomposed into a positive f + and negative part
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f − such that

(SM4.3)
∂ f +

∂φ
> 0 and

∂ f −

∂φ
< 0 .

For our equations in 1D we find f + = uφ if u > 0 and f − = uφ if u < 0. Since the velocity information at the interface is not
directly available, we use a simple reconstruction, ui+1/2 = 1/2 (ui+1 +ui−1). This approximation gives the sign of the velocity at
the interface from the velocity in each grid cell, which determines the choice between f + and f − at each cell interface.

The actual flux computation can be done in different ways, leading to essentially non-oscillatory (ENO) and weighted ENO
(WENO) interpolation formulas. Using three points in the flux calculation, one can choose between two stable stencils to compute
f +

i+1/2

(SM4.4) S0 : f +
i+1/2 =−1/2 f +

i−1 +3/2 f +
i S1 : f +

i+1/2 = 1/2 f +
i +1/2 f +

i+1 .

Further, one can associate a smoothness indicator to each stencil β0 = (
f +

i − f +
i−1

)2 and β1 = (
f +

i+1 − f +
i

)2. The standard ENO
approach relies on the β indicators to choose the best stencil, i.e. we choose either S0 or S1 to evaluate the flux. The WENO
technique instead combines the stencils together relying on weights associated to each of them (w0 and w1 respectively) in order
to obtain the most accurate evaluation possible.

In the case of the stencils S0 and S1 one can combine them together to reach a third-order stencil using the “ideal” weights
w0 = γ0 = 1/3 and w1 = γ1 = 2/3. By doing so, one obtains the conservative third-order stencil CONS-3 we used in the manu-
script. Along similar lines, the fifth order conservative stencil CONS-5 can be derived from the optimal weights of WENO-5. Tables
Table SM4.1 and Table SM4.2 summarize the flux definitions and optimal weights γ for each of these schemes. For non-smooth
fields the weights can be adapted locally based on the β smoothness indicators, and we implemented the WENO-Z version [1, 3]
in our code – however for the results in this manuscript we only use the fixed-weight schemes.

f +
i+1/2

S+
0 =−1/2 fi−1 + 3/2 fi β+

0 = (
fi − fi−1

)2
γ+0 = 1/3

S+
1 = 1/2 fi + 1/2 fi+1 β+

1 = (
fi+1 − fi

)2
γ+1 = 2/3

f −
i−1/2

S−
0 = 1/2 fi−1 +1/2 fi β−

0 =β+
0 = (

fi − fi−1
)2

γ−0 = 2/3

S−
1 = 3/2 fi −1/2 fi+1 β−

1 =β+
1 = (

fi+1 − fi
)2

γ−1 = 1/3

Table SM4.1: WENO stencils - order 3. Setting the weights equal to the γ’s leads to the third-order CONS-3 scheme.
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Table SM4.2: WENO stencils - order 5. Setting the weights equal to the γ’s leads to the fifth-order CONS-5 scheme.

SM5. Weak scalability analysis. In this section we provide more details on the scalability of the different sub-operations dis-
cussed in section 6 of the main text. In Figure SM5.1 we show the breakdown of the timings during the ghost computation, where
the hatched area represent purely computational operations that are expected to scale perfectly. In Figure SM5.2 we decompose
similarly the operations involved in the stencil computation, and in Figure SM5.3 we do the same for the grid adaptation.
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Figure SM5.1: Breakdown of the time spent during ghost reconstruction in a weak scalability test. The hatched region indicates
operations only involving computations and no communications. The regions marked with “MPI PS” and “MPI CW” represent the
calls to perform the active synchronization, “MPI Get/Put“ contains the put and get accesses, and “comp.” is the time spent during
the wavelet-based refinement and coarsening required to compute the ghost values.

ghost

0.60 sec
inner

0.85 sec
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(a) 1 node - 32 ranks

ghost
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0.83 sec
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(c) 512 node - 16,384 ranks

Figure SM5.2: Breakdown of the time spent during stencil computations in a weak scalability test. The hatched regions indicates
operations only involving computations and no communications. The regions marked “inner” and “outer” are the computation
of the stencil on the the inner and outer points in a block respectively, and “ghost” represents the computation of the ghost values
overlapping with the “inner” computations as detailed in Figure SM5.1
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Figure SM5.3: Breakdown of the time spent during grid adaptation operations in a weak scalability test. The hatched regions
indicates operations only involving computations and no communications. The region marked “interp.” represents the coars-
ening/refinement of the blocks through the wavelets, “criterion” stands for the computation of the detail coefficients to evaluate
the desired status of each block (refine, compress, or unaltered), “reset ghost” includes the reinitialization of the ghost meta-data
including the MPI_Win_create and MPI_Win_free calls, “sync” contains the synchronizations and reductions on the block statuses
to enforce the adaptation policy, “partition” is the load balancing of the grid and the re-distribution of the blocks, and “ghost”
represents the computation of the ghost points needed for the coarsening/refinement of the blocks and the computation of the
detail coefficients.


