
Murphy Loves Potatoes
Experiences from a Pilot Sensor Network Deployment in Precision Agriculture

Koen Langendoen Aline Baggio Otto Visser

Delft University of Technology, The Netherlands

Faculty of Electrical Engineering, Mathematics, and Computer Science

{K.G.Langendoen,A.Baggio,O.W.Visser}@tudelft.nl

Abstract

We report on preliminary experiences with deploying
a large-scale sensor network (about 100 nodes) for a
pilot in precision agriculture. The pilot did not answer
the initial research questions, but instead revealed many
engineering problems typically overlooked by (com-
puter) scientists evaluating their work by means of
simulation. The deployment prompted us to rethink our
development process and includes important lessons for
the WSN research community as a whole.

1. Introduction

According to Murphy’s law, anything that can go
wrong will go wrong. And so it did. In 2004, re-
searchers from Wageningen University, Delft University
of Technology, Vertis, and Opticrop teamed up in an
ambitious project to use 150 wireless sensor nodes in a
three-month pilot deployment on precision agriculture.
Because of lack of experience with running a sensor
network application on such a scale, unattended for
such a long time, and in harsh outdoor conditions, we
were anticipating a considerable number of problems
to emerge throughout the duration of the project
(Q3’2004 - Q3’2005). We expected that most problems
could be handled through simple software updates1,
that some would require labor-intensive hardware mod-
ifications, and that only a few would be impossible to
resolve. Therefore, we were confident that the pilot
would bring us lots of interesting data, both from the
agricultural perspective, i.e. “what do microclimate
measurements reveal?”, and from the computer-science
perspective, i.e. “how do network protocols perform
in an outdoor environment?” How wrong we were!

1If need be, even during deployment through wireless repro-
gramming.

The endless stream of hardware malfunctions, pro-
gramming bugs, software incompatibilities, and plain
misunderstandings, combined with the time pressure
of Mother Nature, has left us one year later with
a meager harvest of quantitative results. One could
declare the project a failure, but on the other hand, we
have learned a lot – the hard way – and we would like
to share our experiences with the research community
to avoid a repetition of mistakes that can easily been
avoided if only one is aware of their existence. Note
that although experiences about previous pilots have
been reported [5, 8, 10, 13], these publications in
general stress technical issues like low-level network
performance instead of the (basic) software-engineering
problems that made running our project so difficult. In
addition we identify a number of issues with the current
generation of MAC and routing protocols for wireless
sensor networks that need to be addressed before
large-scale, long-running unattended deployments can
become a reality.

2. LOFAR-agro

The LOFAR-agro project2 is the first large-scale
experiment in precision agriculture in The Netherlands.
This pilot project concerns the protection of a potato
crop against phytophthora, a fungal disease that can
spread easily amongst plants and destroy a complete
harvest within a large region. The development and
associated attack of the crop depends strongly on
the climatological conditions within the field. In
particular, humidity and temperature within the crop
canopy are important factors in the development of
the disease. To monitor these critical factors, we
instrumented a potato field with wireless sensors. A
close monitoring of the microclimate can reveal when
the crop is at risk of developing phytophthora and

2http://www.lofar.org/p/Agriculture.htm

1-4244-0054-6/06/$20.00 ©2006 IEEE

allows the farmer to treat the field, or parts of it, with
fungicide only when absolutely needed. This precise
treatment saves time, reduces costs, and limits the
use of environment-unfriendly substances as opposed to
traditional treatment based information from a remote
weather station. The objectives of the LOFAR-agro
pilot are threefold:

• to obtain experience with deploying large-scale
(100+ nodes) wireless sensor networks for precision
agriculture;

• to gain insight into the variations of the micro-
climate within a field that can be measured with
commodity sensors (i.e. to determine the optimal
spatial resolution for future deployments);

• to assess the feasibility of precision agriculture for
future crop production in The Netherlands (i.e.
cost-vs.-benefits analysis).

The participation of Delft University of Technology in
the LOFAR-agro project focused on the deployment
aspects. The pilot gave us a unique opportunity
to experience the engineering aspects associated with
deploying a real system, and to study how protocols
developed by means of simulation perform in practice.
In particular, our research objectives were:

• to study the influence of the environment (e.g.,
humidity and foliage) on radio communication
(e.g., effective range and link quality) during the
three-month growing season;

• to determine the accuracy of existing localization
techniques in a real-world setting (through off-line
simulations using traces of observed RSSI measure-
ments);

• to evaluate the performance and robustness of our
in-house developed T-MAC protocol [1], which
employs an adaptive duty-cycling mechanism on
the radio to conserve energy.

In practice, Delft University of Technology was respon-
sible for transporting sensor data from the individual
nodes, through a gateway server at the edge of the field,
to the various partners.

3. Deployment setup

Figure 1 shows the overall organization of the
LOFAR-agro deployment. The sensor nodes in the
field measure relative humidity (RH) and temperature
(T) once per minute. Ten samples are encoded in
a single packet, which is send – directly, or through
multiple hops – to a gateway at the edge of the
field. The gateway uses standard Wi-Fi to forward
the sensor data over the LOFAR backbone network
to the Agro server, which logs the data, filters out

Lofar
gateway

Switch

Lofar server/router

Lofar
gateway

Phytophtora
DSS & server

Agro server Diagnoses Observers

Internet

Lofar

Field

wired
network

Field
gateway

Lofar

station

Field

Lofar
radio
network

Sensors

Motes
(Tnodes)

Figure 1. The LOFAR-agro setup.

erroneous readings, and hands the accumulated data
to the Phytophthora decision support system (DSS)
server. This decision support system combines the field
data with a detailed weather forecast to determine the
treatment policy, which is then provided to the farmer
(one of the observers in the system).

The normal farming routine requires that a treat-
ment advice is available every morning when the
activities for the day are planned. This imposes a soft
real-time constraint on the complete system. Sensor
data need not be made available immediately, but can
be buffered for up to one day. Due to timing and
manpower constraints we have decided not to explore
the loose timing requirements, but to use “standard”
sensor network protocols that forward data packets
when they become available. Details are presented
below where we discuss the hardware and software
configuration that was used within the LOFAR-agro
deployment.

3.1. Hardware

At the start of the project (Q3’2004), there were
no readily available sensor nodes that could be used
outdoors (weatherproof casing) and could measure the
microclimate (T/RH). Therefore, we had to assemble
the nodes by hand out of individual components.
Figure 2 shows one of the 109 nodes used in the
LOFAR-agro pilot.

The sensor node is based on the TNOde platform3,
which is quite similar to the popular Mica2 platform,
but with the Mica2Dot form factor. A TNOde together
with a battery is packed into a waterproof PVC-based
casing. The 7 cm (λ/4) antenna is placed on top

3Developed by TNO (the Dutch Organization for Applied
Scientific Research).

CPU ATmega128L (8-bit, 8MHz)
128KB Flash memory
4KB DRAM memory

Storage 4Mbit EEPROM memory

Radio Chipcon CC1000
868 MHz, FSK 76.8 kbps,
output power -20 to 5 dBm

I/O RS232, 3 LEDs
5 general purpose I/O pins

Sensor Sensirion SHT75
T±0.3 ◦C, RH±1.8%

Battery Sonnenschein SL-770/T
C-cell, 3.6V, 7.2Ah

Figure 2. A LOFAR-agro node (image and specs).

and the microclimate sensor is connected by a cable
(I2C) at the bottom. Experience has shown that the
radio range is dramatically reduced when the potato
crop is flowering and leaves cover the (ground-based)
antennas [11]. Therefore the nodes are installed on
poles at a height of 75 cm. The potato plants grow
to about 100 cm, however, we had to include a safety
margin to ensure that the nodes could not be hit by
farming equipment attached to a tractor. The cost of
a node is about e250.

The gateway at the edge of the field is based on a
Stargate from Crossbow [9], which is equipped with a
400MHz X-Scale processor, a 256MB CompactFlash
card for backup storage, a PCMCIA Wi-Fi card con-
necting to the LOFAR backbone network, and one
TNOde communicating with the sensor nodes. This
TNOde is connected to a five-meter-high antenna to
ensure that most nodes in the field can be reached
directly. The gateway is powered by a solar panel
in combination with a rechargeable battery to ensure
operation around the clock. The total cost of the
gateway is around e1500.

3.2. Software

All TNOdes run a customized TinyOS version which
handles the minor differences between the Mica2 and
TNOdes hardware layout. The image for the field
sensors includes the following components:

T-MAC For the medium access control layer we
favored the T-MAC protocol [1] over the standard
B-MAC implementation that comes with TinyOS,
because T-MAC was developed in-house and we
had good experiences with it in laboratory condi-

tions. T-MAC is tightly integrated with the power
management component of TinyOS and puts the
radio and CPU to sleep whenever there is no
traffic to send or receive. It uses an adaptive duty
cycle, which was shown to outperform S-MAC,
the third alternative MAC protocol, in previous
simulation studies [1]. We configured T-MAC to
run with a slot time of 610ms, an active period of
65ms, and a period of 6.1 s between sending out
synchronization (SYNC) packets. Once every 300
slots, a node keeps on listening during the whole
slot to scan for any (new) neighbor running on a
different (skewed) sleep/wake-up schedule. This
results in an effective duty cycle of 11%.

MintRoute Even though we used a sensitive, long-
range antenna at the gateway, we included a
multihop routing protocol to overcome possible
obstructions by the growing potato plants and to
ensure that nodes on the far edge of the field could
report their microclimate readings. We selected
MintRoute since it had been successfully used
in previous experiments by researchers from UC
Berkeley [6, 12]. Alternate routing protocols like
(Tiny)AODV seemed too complex and would use
more data memory than desirable, causing the
complete application to exceed the 4KB RAM
limit. MintRoute sets up a spanning tree towards
the sink node – node 0 at the gateway in our
setup – and builds statistics of neighbor’s activity
and packet loss counts. These statistics enable
MintRoute to determine the best parent amongst
a set of neighbors. We configured MintRoute to
operate with our application data rate of 1 packet
per node every 10 minutes.

Deluge Since we were lacking experience with long-
running sensor applications in outdoor conditions,
we decided to enable wireless reprogramming us-
ing the Deluge software [3], anticipating bug fixes
and software upgrades. Deluge uses an epidemic
protocol to disseminate a new code image through
the network. Parts of a new image are stored
in EEPROM and a node is rebooted when the
image is complete. A drawback of Deluge is that it
occupies quite a large fraction (50%) of the EEP-
ROM, and was not designed to coexist with other
application components using the EEPROM4.

LOFAR-agro application The application code
running on top of MintRoute is responsible
for reading the sensor data once every minute,

4EEPROM coexistence of Deluge is provided in the 2.0
version released August 2005.

compressing the data into a 22-byte payload
once every 10 minutes, and sending it out to
the gateway in a standard TinyOS message of
29 bytes including headers. Since MintRoute, in
combination with T-MAC, provides a best-effort
service, the application should also take care of
end-to-end reliability of the data transport. We
envisioned a scheme where an individual sensor
node logs all data into EEPROM using a cyclic
buffer. The gateway informs the nodes once a day
which packets are missing from which nodes with
a network-wide acknowledgment. This unified
acknowledgment scheme imposes little overhead,
provided that the packet error rate is rather small.
Due to timing constraints we never got around to
use it in the real deployment, which resulted in
data not being delivered to the DSS server but
remaining in EEPROM for postmortem analysis.

Note that the code image does not include any com-
ponent for localizing the sensor nodes. We decided
to manually determine the positions of the individual
nodes when placing them in the potato field (accuracy
of a few centimeters). We did, however, include some
code to collect statistics about the RSSI values of
messages received from a maximum of 10 neighbors.
These statistics (min, avg, max) were sent to the
gateway four times a day, and would be used in an
offline trace-based simulation of various localization
algorithms. We planned to also instrument MintRoute
and T-MAC to collect and send statistics such as rout-
ing table entries and number of (lost) messages, but we
never managed to get this “luxury” implemented due
to lots of unforeseen factors. Nevertheless, afterwards
we were able to reconstruct the routing tree to a large
extend out of information on the first-hop neighbor
piggybacked with data messages. Figure 3 shows a
snapshot of such a reconstructed spanning tree.

4. Project history

Rome was not built in one day, and neither was
the LOFAR-agro setup. Worse, we never finished it
completely due to hard limitations on time and money,
on the one side, and a long list of unfortunate events on
the other. To put things into perspective, this section
provides a short history of important events, as they
took place during the LOFAR-agro project. Table 1
provides a concise overview.

July 2004 – project launch: From the first contacts
between the LOFAR-agro partners in January 2003, it
took more than a year to obtain funding for running

Date Event
July 2004 Project launch
December 2004 TNOdes 1st revision
January 21st, 2005 Indoor trials commence
March 8th, 2005 TNOdes 2nd revision
March 16th, 2005 Field trial
May 4th, 2005 Field trial 2
May 16th, 2005 Potatoes planted
June 1st, 2005 Deployment start
June 5th, 2005 Batteries run out
June 22nd, 2005 Deployment restart
July 1st, 2005 Backbone connection outage
July 14th, 2005 Network dies out
August 16th, 2005 Potatoes harvested

Table 1. Major events during the LOFAR-agro project.

a small pilot in precision agriculture with a budget of
just Ke300. In July 2004 we started planning for the
LOFAR-agro deployment during the growing season of
2005. Around October it was decided to go with the
TNOdes/TinyOS combination as outlined in Section 3.
Deployment was planned to start early April 2005.

December 2004 – TNOdes 1st revision: Early
December the first 10 TNOdes were delivered for test-
ing to the LOFAR-agro partners. Since the TNOdes
design is largely compatible with the Mica2 nodes from
Crossbow, we only observed minor difficulties with the
1st revision hardware. For example, a capacitor needed
to be replaced to allow for smooth operation of the
radio in the 868 MHz band.

January 21st, 2005 – gateway operational: In
Delft we managed to create a local loop from the
gateway (inserting fake T/RH data), through an IP
tunnel, to a server machine logging and converting data
to XML format for processing by the Decision Support
System. Uploading and getting software to work on
the gateway (Stargate board) proved to be rather easy.

March 8th, 2005 – TNOdes 2nd revision: Only
three weeks before deployment should commence (ac-
cording to the original planning), the 150 TNOdes
modules (rev. 2) were supplied. The late delivery was
caused by a number of problems at the assembly fac-
tory (e.g., unavailable components and “lost” parcels).
Fortunately, Mother Nature was on our side bringing
snow to the Netherlands, which delayed the start of the
growing season.

March 16th, 2005 – field trial: Even though we
had only one week time to test out the new hardware, it

June 25, 2005

Figure 3. Reconstructed spanning tree; it is incomplete due to missing packets containing first-hop data.

was decided to go to the deployment site (a three-hour
car drive from Delft) to see if we could put together
a working system consisting of 5 sensor nodes and a
gateway. We could not, for a number of reasons. First,
the casing of the gateway was made by the partners
from Wageningen, and we soon discovered that they
used a different WaveLAN card for connecting to the
backbone network. Our card, capable of connecting
to an external directional antenna, was slightly larger
than theirs and would not fit into the casing without
relocating the mounting brackets of the main Stargate
board. Note that we did communicate the dimensions
of the WaveLAN card, but forgot to include room for
the connector of the external antenna. The second
problem that surfaced had to do with the sensor nodes.
Four out of five nodes could not read the T/RH
values. This turned out to be caused by a difference
in the wiring of the cable connecting the microclimate
sensor and the TNOdes board; the specification of the
connector on the PCB was mirrored, so only the cable
supplied by TNO was working. Finally, we discovered
that the antennas were quite fragile and would come
loose easily when inserting them into the plastic casing.
In short, time ran out on this day and we never got a
TNOde to report any data back to Delft, but we did
manage to get the IP connection over Wi-Fi to work.

May 4th, 2005 – field trial 2: Since we encountered
so many problems we decided to do much better testing
at home, before going out to the field again. This
was a wise decision since we encountered numerous
problems with the T-MAC protocol when operating it
continuously for more than a day (which is much longer
than the typical one-hour demonstration). Apart

from your regular set of bugs (e.g., storing a negative
clockdrift in an unsigned variable), we discovered that
putting a node’s CPU really into sleep is far from
trivial. For example, you have to make sure that all
critical timing code is associated with the low reso-
lution timer that remains functional during processor
sleep. This is not the case in the standard TinyOS
setup, and finding all exceptions requires a more than
thorough understanding of the TinyOS structure and
its components. By the end of April we had to decide
to revert back to a version of T-MAC without power
management, so we could have another field trial before
the potatoes were planted.

The second field trial took place on May 4th. This
was two months behind schedule, but still before the
potatoes were planted (May 16th). Although we
brought working hardware to the field, we again did
not succeed in getting any sensor data back to Delft.
This time we were hit by a lack of proper software man-
agement. The student working on T-MAC (desperately
trying to get power management to work) committed a
partial update into the shared CVS repository the night
before deployment, which we then flashed into the
sensor nodes on the next morning. It took a long time
to figure out what went wrong because we set all our
software to production mode, so no LEDs were blinking
(to save power) and data rates were set to 1 packet
every 10 minutes. Without decent debugging tools like
a packet sniffer, it proved very hard to diagnose the
cause of the lack of incoming data at the gateway; trial
and error with opening/closing waterproof casings is
not to be recommended, but wireless reprogramming
(Deluge) is impossible with a malfunctioning MAC
protocol.

June 1st, 2005 – deployment start: Following the
planting of the potatoes on May 16th, and some sub-
sequent farming activity, the LOFAR-agro deployment
was officially started on June 1st. The placement of
the sensor nodes was witnessed by the press, including
four camera crews giving regional, national and even
international coverage to the pilot study. Given that
the software was far from stable, we were happy to see
that slowly, one by one, the sensors were reporting data
to the gateway. Further analysis, however, identified
a number of problems that needed urgent attention.
First, the network suffered from major packet loss.
This was in part caused by Deluge flooding the net-
work with a superfluous code update5, which caused
unwanted contention with ordinary data messages
(T-MAC is designed for low data rate applications
and collapses when load increases, see [4]). Second,
MintRoute was ill-behaving and introduced (very) long
paths for nodes that were in direct contact (i.e. one
hop away) from the gateway. Before we could analyze
what was going on exactly, the field turned silent on the
evening of June 5th when heavy thunderstorms crossed
the Netherlands. To our relief a site visit a few days
later revealed that the nodes had simply ran out of
batteries on that evening. Due to delivery problems of
the high-capacity batteries, we had to resort to small
batteries holding only 2200mAh. The lifetime of only
four days matches with nodes running without any
duty cycling of the radio and processor. Apparently,
the Deluge updates kept everybody awake all the time,
and MintRoute forcing multiple hops in a single cell
did not help either.

We did not rush out immediately to replace the
batteries, but instead tried to determine what caused
the poor behavior of our sensor network. Simulations
with TOSSIM confirmed MintRoute’s ill behavior,
and allowed us to pinpoint an underlying problem.
MintRoute maintains a fixed-sized list of neighbors,
of which it selects the “best” to become its parent in
the spanning tree to the route. On the field about
70 nodes form a single cell around the gateway, which
forces MintRoute to make a selection since it has
room for only 16 nodes in its neighbor list. When
adding neighbors, the replacement policy is as follows:
MintRoute picks the neighbor with the lowest statistics
value and evicts it from the table. As a consequence,
the gateway is not part of the neighbor list for the
majority of nodes. A related problem is that T-MAC
was maintaining a separate neighbor list with only
20 neighbors and no replacement policy (first come,
first serve). Whenever MintRoute directs a packet

5We conjecture that we failed to erase some nodes’ EEPROM
image holding a previous version of the LOFAR-agro software.

to a neighbor unknown to T-MAC, that packet is
dropped. This problem was aggravated by transporting
the nodes together to the potato field, causing a node
to pick up an arbitrary set of neighbors, some of which
were not even in-reach after final placement on the
field. The need for maintaining a consistent neighbor-
hood across modules has been recognized by others [7].

June 22nd, 2005 – deployment restart: It took
another two weeks to fully analyze and remedy the
neighbor problems of T-MAC and MintRoute. In
the case of T-MAC we removed the legacy neighbor
lists (inherited from the S-MAC implementation on
TinyOS) since the protocol only needs to listen to
schedules of neighboring cells and can simply transmit
on the schedule of its own cell [1]. In the case
of MintRoute we overrode the parent selection when
overhearing a (broadcast) message from the gateway.

On June 22nd it took six people a complete day
to replace all the batteries and code images of the 110
sensors on the field. From sequence numbers rewinding
to 0 we inferred that the deployment was hampered
by a large number of node resets. The software was
configured to use a watchdog timer to guard against
software problems, but for – yet unknown – reasons
perfectly fine running nodes would spontaneously reset
at an alarming rate once every 2–6 hours. This proved
catastrophic for two reasons: 1) we rarely received
any daily statistics, and 2) MintRoute was quick to
delete a node from its neighbor list when observing
a sequence number rollback, but very reluctant in
accepting new nodes because of the activity condition
effectively locking out reseted nodes (without a route
you can not increase your activity!).

Another problem that surfaced after the deployment
restart affected the gateway. When selecting the solar
panel and rechargeable battery, the partners from
Wageningen estimated the power consumption based
on the assumption that the Wi-Fi card would only
operate once every ten minutes. The people from
Delft implementing the software on the Stargate were
not aware of this and assumed that there would be a
permanent wireless connection. Since the rechargeable
battery had a large capacity, it took a long time before
it was fully drained, but then the Stargate would lose
power somewhere after midnight and wake up again
a few hours after sunrise. This is unfortunate since
dawn is the most critical period from the agricultural
perspective as humidity is then at its peak.

July 14th, 2005 – network dies out: Around
three weeks into the (restarted) deployment most
sensor nodes ran out of batteries. Back-of-the-envelope

calculations reveal that either T-MAC’s duty cycling
has proved completely ineffective, or another effect is
causing nodes to consume more energy than antici-
pated. We observed that remote nodes lasted about
one week longer (four weeks in total). We conjecture
that the difference is caused by overhearing less traffic
(5 neighbors vs. 70 neighbors), but then the small
(33%) difference in lifetime indicates that there must be
another factor contributing significantly to the nodes’
power consumption. The last message received by the
gateway is dated August 8th.

August 16th, 2005 – potatoes harvested: The
day before the potatoes were harvested, all sensor
nodes were removed from the field. At that moment
we were still hopeful that we could recover a lot of
agricultural data from the logs stored in the EEPROM.
Now we know that a silly programming bug caused all
EEPROM writes to fail silently, even though the unit
test for logging to EEPROM worked fine. Thus we are
left with the limited amount of data that was streamed
out of the network during the deployment. Out of 97
nodes running for three weeks generating 1 message
per 10 minutes, we received only 5874 messages, which
amounts to 2%. It remains to be seen if this data is
rich enough to answer the agricultural concerns put
forward in Section 2. Regarding the networking side of
the deployment we retrieved enough RSSI data to run
some localization experiments, and we got a (negative)
answer as far as robustness of software is concerned.

5. Lessons learned

Looking back at the pilot deployment, which did not
produce the quantitative data that we were looking
for, we asked the question “why was it so hard to
get the project going?”. After all, we were using
hardware (Mica2 clones) and software (TinyOS) that
is considered standard in the research community, so
we expected it to work “out of the box”. This was not
an unreasonable assumption since other long-running
applications using a (very) similar platform have been
reported about [5, 10]. Our main lesson has been that
gluing (software) components together takes a lot of
effort and requires in-depth knowledge of the individual
components. Of course, our lack of experience with
real-world deployments did not help either, but when
we now factor in our steps on “the learning curve”
we estimate that we would need more resources (time,
money, people) to get a working deployment than we
naively planned for last year. To save others from
making the same mistakes as we did, we list our most
valuable experiences below.

Apply software engineering principles: The fact
that the complexity of software does not scale
linearly with the number of lines of code, hence
the number of people involved, demands a way of
working that is much more restrictive than can
be afforded in a single man’s project. This “rigor
and formality” guideline is the first of Ghezzi’s
software engineering principles [2]. We naively
assumed that we could do without, and paid the
price for it.

APIs are not enough: As always, the devil is in the
details. We discovered, as many have done before,
that code reuse is not as easy as advocated because
of many subtle, semantic issues. Quite often only
the Application Programmer’s Interface (API) of
a module is specified, but not the (un)intended
usage and invariants that need to be obeyed. For
example, MintRoute expects the MAC layer to
operate in promiscuous mode so it can do link
estimation, but T-MAC implements overhearing
avoidance to save energy and shuts down the radio
during traffic between neighbors. This mismatch
was resolved, but at the expense of valuable time
missing at the end of the project. We found that
most TinyOS components include some implicit
expectations and features that do not port easily
to new configurations. This needs to be addressed
to allow for rapid application development.

Design for the worst: When planning the deploy-
ment we made a number of reasonable looking
assumptions about node mobility (none), fail-
ure rates (1 node per week), packet error rates
(below 10%), etc. These assumptions proved
to be incorrect and occasionally caused the sys-
tem to collapse. In hind sight we should have
made much more pessimistic assumptions, se-
lected/coded components to be prepared for the
worst to reduce the risk of failure, and avoid the
costs associated with modifying components at a
late stage of the development cycle.

Test, test, test: The cascading effect of the problems
we encountered, combined with the time pressure
by Mother Nature, forced us to go out with a
system that was barely tested. We managed to
create a test system with around 10 nodes, running
for several days. We even stress tested that
system by increasing the data rate with a factor
of 10 to mimic a 100-node deployment. That test
passed, but when going live we soon discovered
that 10 × 10 �= 100. For example, the issue with
inconsistent neighbor lists did not show-up until

the real deployment. An important lesson for us
is to plan more time for testing, including the
development of a testbed that allows for large-
scale in-house experimentation (lots of nodes, long
running times, etc.).

24/7 monitoring: Debugging wireless embedded
systems is very hard, especially when the network
stack fails to operate correctly. With our
waterproof casings it was impossible to obtain
a core dump of a (stalled) system to find out
what state the software was in. We advocate
the manifold use of statistics. Each software
component should be capable of dumping its
status, and provide statistics about its internal
operation in the recent past. This requires a
major change to the current practice within the
TinyOS community, but we really felt the need for
additional information when trying to diagnose
the behavior of the LOFAR-agro system.

6. Conclusions and future work

The main result from the LOFAR-agro deployment,
which involved 100+ sensor nodes monitoring the
humidity and temperature in a potato field, is the
experience obtained during the one-year pilot. The
large number of unfortunate events, ranging from
silly programming bugs to subtle semantic mismatches
between components, emphasizes the proper use of
software engineering principles, the need for worst-case
design, and the necessity for large-scale testing. We
also recommend the augmentation of existing software
modules with the capabilities to provide a rich set of
statistics, allowing for detailed 24/7 monitoring of the
sensor network.

In the second year of the LOFAR-agro project we
plan to take our own lessons to practice. For example,
we have started the construction of a 25+ node testbed
in our computer-science lab, and plan to run extensive
robustness tests (with controlled node failures, etc.).
We also plan to engage outdoor tests to ensure that we
are fully prepared. So, Murphy, we will be back!

7. Acknowledgments

We like to thank all members from the LOFAR-agro
team, in particular Bart van Tuijl and Daan Goense
with whom we spent numerous hours watching pota-
toes grow in sun, wind, and rain while desperately
waiting for the network to come to life and start
reporting temperature and humidity data. We thank
Gertjan Halkes and Tom Parker for all their tuning

work on the T-MAC protocol, and Winelis Kavelaars
for his support in getting the TNOdes to work.

References

[1] T. v. Dam and K. Langendoen. An adaptive energy-
efficient MAC protocol for wireless sensor networks.
In 1st ACM Conf. on Embedded Networked Sensor
Systems, pages 171–180, Los Angeles, CA, Nov. 2003.

[2] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamen-
tals of software engineering. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2nd edition, 2003.

[3] J. Hui and D. Culler. The dynamic behavior of a
data dissemination protocol for network programming
at scale. In 2nd ACM Conf. on Embedded Networked
Sensor Systems, pages 81–94, Nov. 2004.

[4] K. Langendoen and G. Halkes. Energy-efficient
medium access control. In R. Zurawski, editor,
Embedded Systems Handbook, pages 34.1 – 34.29. CRC
press, 2005.

[5] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson. Wireless sensor networks for habitat
monitoring. In First ACM Int. Workshop on Wireless
Sensor Networks and Application (WSNA), pages 88–
97, Atlanta, GA, Sept. 2002.

[6] J. Polastre, J. Hill, and D. Culler. Versatile low power
media access for wireless sensor networks. In 2nd ACM
Conf. on Embedded Networked Sensor Systems, pages
95–107, Baltimore, MD, Nov. 2004.

[7] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler,
S. Shenker, and I. Stoica. Unifying link abstraction
for wireless sensor networks. In 3rd ACM Conf. on
Embedded Networked Sensor Systems, San Diego, CA,
Nov. 2005.

[8] T. Schmid, H. Dubois-Ferrire, and M. Vetterli. Sen-
sorScope: Experiences with a wireless building mon-
itoring sensor network. In Workshop on Real-World
Wireless Sensor Networks (REALWSN’05), pages 13–
17, Stockholm, Sweden, June 2005.

[9] Crossbow Stargate. http://www.xbow.com/Products/
productsdetails.aspx?sid=85.

[10] R. Szewczyk, J. Polastre, A. Mainwaring, and
D. Culler. Lessons from a sensor network expedi-
tion. In 1st European Workshop on Sensor Networks
(EWSN), pages 307–322, Berlin, Germany, Jan. 2004.

[11] J. Thelen, D. Goense, and K. Langendoen. Radio
wave propagation in potato fields. In First workshop
on Wireless Network Measurements (co-located with
WiOpt 2005), Riva del Garda, Italy, Apr. 2005.

[12] A. Woo, T. Tong, and D. Culler. Taming the
underlying challenges of reliable multihop routing in
sensor networks. In 1st ACM Conf. on Embedded
Networked Sensor Systems, pages 14–27, Los Angeles,
CA, Nov. 2003.

[13] M. Yarvis, W. Conner, L. Krishnamurthy, J. Chhabra,
B. Elliott, and A. Mainwaring. Real-world experiences
with an interactive ad hoc sensor network. In Int.
Conf. on Parallel Processing Workshops (ICPPW’02),
pages 143–151, Washington, DC, USA, Aug. 2002.

