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Summary

• There are two optima for maximizing hydraulic conductance per vasculature volume
in plants. Murray’s law (ML) predicts the optimal conduit taper for a fixed change in
conduit number across branch ranks. The opposite, the Yarrum optimum (YO),
predicts the optimal change in conduit number for a fixed taper.
• We derived the solution for YO and then evaluated compliance with both optima
within the xylem of compound leaves, where conduits should have a minimal
mechanical role. We sampled leaves from temperate ferns, and tropical and temperate
angiosperms.
• Leaf vasculature exhibited greater agreement with ML than YO. Of the 14
comparisons in 13 species, 12 conformed to ML. The clear tendency towards ML
indicates that taper is optimized for a constrained conduit number. Conduit number
may be constrained by leaflet number, safety requirements, and the fact that the
number of conduits is established before their diameter during development.
• Within a leaf, ML compliance requires leaf-specific conductivity to decrease from
petiole to petiolule with the decrease in leaf area supplied. A similar scaling applied
across species, indicating lower leaf-specific petiole conductivity in smaller leaves.
Small leaf size should offset lower conductivity, and petiole conductance (conductivity/
length) may be independent of leaf size.
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Introduction

Interest in the link between carbon uptake and water loss has
yielded numerous efforts to quantify the efficiency of the water
transport network of plants (Banavar et al., 1999; McCulloh
et al., 2003, 2004; McCulloh & Sperry, 2005a,b; Anfodillo
et al., 2006; Weitz et al., 2006; Atala & Lusk, 2008). Much of
this work has focused on the xylem tissue of woody stems,
where the xylem conduits (vessels or tracheids) may be providing
structural support to the plant in addition to transporting
water. The additional support task compromises the potential
hydraulic efficiency of water transport (McCulloh et al., 2004).
Within leaves, though, substantial structural support is provided
by hydrostatic pressure and specialized nonvascular tissues
such as collenchyma and sclerenchyma. To the extent that this
nonxylary structural support holds up the leaf, this would
theoretically leave the xylem conduits free to achieve their
maximum transport efficiency. Assessing transport efficiency
within the lamina is complicated by the typically reticulate

networks that are losing water to transpiration (Canny, 1993;
McCulloh & Sperry, 2005b). By contrast, it is relatively easy
to quantify network efficiency in compound leaves because
the vascular tissue can be compared at discrete branching
levels, the petiole and petiolule. Using these distinct levels in
13 species, we compared compliance with two theoretical
optima that maximize the hydraulic conductance of this
simple two-ranked vascular network.

The first optimum, Murray’s law (ML), predicts how the
conduit diameters should change across branching points of
a vascular network so as to minimize the power (work/time)
driving a given flow rate through a network of fixed total volume
(Murray, 1926). As Sherman (1981) demonstrated, a Murray
law network also maximizes the hydraulic conductance (volume
flow rate per pressure drop). Maximizing conductance (rather
than minimizing power at one flow rate) is undoubtedly the
real adaptive significance of Murray’s law, because a maximum-
conductance network is optimal at all flow rates (Sherman,
1981). Murray’s law was derived for the specific case of the
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cardiovascular system which delivers blood through a single
branching tube. The law states that conductance is maximized
when the sum of the conduit radii cubed (Σr3) is conserved at
all points along the flow path from aorta to the beginning of
the capillaries. Conservation of Σr3 requires an increase in the
cross-sectional area (Σr2) from aorta to capillaries.

Unlike the cardiovascular system for which it was developed,
Murray’s law does not define the sole hydraulic optimum for the
plant vascular system. In the cardiovascular system the branching
of the vascular network equals the branching of a single tube.
The ratio of the number of daughter-to-mother tubes (NR) cannot
be varied independently of the network branching structure.
Murray’s law gives the ‘best’ daughter-to-mother tube taper
ratio (DR) for the NR dictated by branching architecture. The
evolution of NR is constrained by the need to deliver fluids
spatially, and Murray’s law DR evolved to maximize the
conductance of this mammalian vascular topography.

Xylem networks are more complex because they are
composed of many conduits in parallel and in series at every
branch level, including the trunk. That means that NR is
potentially independent of the branching network. When two
daughter arteries join at the aorta, NR = 2. When two petiolules
each containing hundreds of conduits join at the petiole, NR
does not have to be 2. NR can be any number greater than zero
or less than the theoretical maximum for a petiole with just
one conduit. Optimization of the network conductance is not
just a matter of DR, because NR can also vary independently
of the network branching topography.

The fact that there are at least two variables that are poten-
tially free to vary across the branch junctions of plants means
that there are at least two theoretical optima for maximizing
conductance. The distinction between the two optima is
shown graphically in Fig. 1. The contour lines on this figure
are hydraulic conductances of a simple network with one petiole
and two petiolules. The tubes within each branch rank are
of constant diameter, and the total number of petiolule tubes
is constant. All other parameters, including the volume of the
network, are constant except for NR and DR.

The contours in Fig. 1 describe a diagonal ridge that ascends
to greater conductance as NR increases and DR decreases. The
ascent of the ridge corresponds to fewer, larger tubes in the petiole.
The ridge cannot be ascended indefinitely because of limits on
permissible values of DR and NR. The NR reaches its maximum
theoretical value when the petiole has just a single tube (NR max
on ‘y’ axis; McCulloh et al., 2003). At NR = NR max, the greatest
conductance is achieved at the horizontal tangent of the con-
ductance contour where DR conforms to Murray’s law (asterisk
on ML diagonal in Fig. 1). This global optimum is represented
by the cardiovascular system which is a single branched tube
that approximates Murray law taper (Sherman, 1981).

Plants are never plumbed with a single branched tube and
so are never at their NR max. Negative sap pressures make a
single-tube network vulnerable to complete failure in the
event of a single air leak or cavitation event (Ewers et al., 2007).

Greater NR also results in a greater departure of the xylem
network from area preservation (Fig. 1; AP diagonal) towards
area-increasing branching at Murray’s law. Extreme increases
in the cross-sectional area of conduits would result in top-heavy
networks that could be mechanically unstable. Hydraulic and
mechanical safety considerations combine to keep the NR of
plant xylem well below its theoretical maximum and potentially
free to vary independently of the plant’s branching system.

The alternative scenario to Murray’s law for plant xylem is
that DR is more constrained than NR for developmental or
functional reasons. Such a constraint could result from a
developmental link between vessel diameter and branch rank,
or a limit to maximum vessel diameter. In this case, the ‘best’
network would have the minimum permissible DR, and the
greatest conductance would be achieved at the vertical tangent
of the conductance contour where NR conforms to the ‘YO’
diagonal. Because this optimum is the opposite of Murray’s
law, we call it the ‘Yarrum’ optimum (YO; Sperry et al., 2008).

Here, we derive both Murray’s law and the Yarrum optimum
for a simple network composed of the conduits within a
petiolule and two daughter petiolules of equal length. The
derivations make explicit the distinction between the two
optima. Following Sherman’s example (1981), the optima are
derived from a maximum conductance criterion because this
is more biologically relevant than the equivalent minimum

Fig. 1 ‘Contour map’ showing how the conductance of a branch 
network with fixed vascular volume is influenced by the daughter-to-
mother ratio of tube diameters (DR) and numbers (NR; log–log plot). 
Conductance contours (upper x-axis, arbitrary units) were calculated 
for a network with one mother-daughter furcation using the 
reciprocal of Eqn 1. Volume (Eqn 2), lengths (l0 and l1), and number 
of daughter conduits (n1) were held constant. Murray’s law (solid ML 
diagonal) gives the DR that maximizes network conductance when 
NR = constant. The Yarrum optimum (solid YO diagonal) gives the 
NR that maximizes conductance for DR = constant. The very best 
conductance is given by the Murray law DR for the theoretical 
maximum NR, which corresponds to a single tube in the mother axis 
(asterisk on ML line at NR max). Conduit area preservation (dashed 
AP diagonal) gives the DR that results in constant conduit 
cross-sectional area across ranks.
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power derivation. The series conductance of the network is
represented as the reciprocal resistances (R), because they are
additive in series. The Hagen–Poiseuille equation predicts: 

Eqn 1

where l is the axis length, n is the number of conduits in parallel,
and r is the conduit radius, which is assumed constant within
a rank. The subscript ‘0’ denotes petiole values, and subscript
‘1’ denotes the totals for the daughter petiolules. The DR is
r1/r0. The mean radiuses of petiole or petiolule vessels are
assumed to substitute for r0 or r1, and mean petiolule vessel
diameters are not expected to differ within a compound leaf
when leaflets are of approximately similar size. Constant η is
the fluid viscosity and k is the factor by which the resistivity
exceeds the Hagen–Poiseuille prediction because of end-walls
and other obstructions (k ≥ 1). The volume, V, of this network is

Eqn 2

Network volume is proportional to the conduit wall volume
if wall thickness is proportional to conduit diameter (McCulloh
& Sperry, 2006); the latter is approximately true for xylem of
a given cavitation resistance (Hacke et al., 2001). In both
derivations, we hold the vascular investment, V, constant and
solve for the minimum R under either Murray’s law or Yarrum
conditions. To derive Murray’s law, we hold the numbers of
conduits constant (n0 and n1) and vary the conduit taper (DR)
to find the value that minimizes R. Because volume (V ) is
constant, we must also allow r0 to vary with DR. We use the
Lagrange multiplier method to find where R (DR, r0) (Eqn 1)
is minimized subject to the constraint that V(DR, r0) = 0,
where we have subtracted a constant from Eqn 2 to set V = 0.
At the minimum R, the Lagrange multiplier, λ, defines the
two equalities (Edwards & Penney, 1998, p. 864): 

Eqn 3a

Eqn 3b

From Eqns 1 and 2 the partial derivatives in Eqn 3 are:

Eqn 4a

Eqn 4b

Eqn 4c

Eqn 4d

Substituting 4a and 4b into 3a yields

Eqn 5

Substituting λ, 4c and 4d into 3b, and simplifying, yields

DR = (n0/n1)
1/3

or

DR = NR
−1/3 Eqn 6

for NR = n1/n0. Equation 6 is Murray’s law for the special case
where tubes within a rank are of equal diameter. However, we
have previously shown that conservation of Σr3 across branch
points is within 3% whether computed from actual vessel
distributions or their mean values (McCulloh & Sperry, 2006).
Note that the lengths cancel out, indicating that the optimal
taper is independent of branch lengths.

To find the Yarrum optimum, we hold the taper constant
(DR) and vary the relative numbers of conduits across ranks
(varying n0 for a constant n1) to find the value that minimizes
R. Because volume (V ) is constant, we must allow r0 to vary
with n0. As before, we use the Lagrange multiplier method to
find where R(n0, r0) (Eqn 1) is minimized subject to the con-
straint that V(n0, r0) = 0. At the minimum R, the Lagrange
multiplier, λ, defines the two equalities: 

Eqn 7a

Eqn 7b

From Eqns 1 and 2 the partial derivatives in 7a are:

Eqn 8a

Eqn 8b

The derivatives for 7b are 4c and 4d. Substituting 8a and 8b
into 7a yields:

Eqn 9

Substituting λ, 4c and 4d into 7b, and simplifying, gives:

Eqn 10a

or

Eqn 10b
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where the branch length ratio LR = l1/l0. Using the quadratic
formula to solve for NR yields the following relevant root (the
other root gives negative NR; signs in the valid root have been
simplified): 

Eqn 11

which is the Yarrum optimum. Note that the branch lengths
do not cancel out, indicating that the optimal NR depends on
the relative lengths of the petiole and petiolule. The shorter
the petiolules relative to the petiole (smaller the LR), the fewer
conduits they need in parallel (relative to the petiole) to
minimize the total resistance (the smaller the optimal NR). As
LR approaches zero, the lowest optimal NR converges on
1.41 . For typical DR < 1, Yarrum’s NR will always exceed
1.4, meaning that petiolule conduits will always be more
numerous than petiole conduits at the Yarrum optimum.

The existence of two hydraulic optima raises the question
of what variable is most constrained during evolution and
development. If the evolution of NR is more constrained (as
in the single-tube mammalian cardiovascular system where
it is at NR max), then the vascular conductance through the
branching system can only be optimized by evolving the value
of DR predicted by Murray law. Alternatively, if the DR and LR
are more constrained, then the vascular conductance through
the branch system would be maximized by evolving the Yarrum
optimum NR. To date, the Yarrum optimum has not been
recognized, or evaluated, in any system. To address the question
of whether leaf vasculature follows Murray’s law, or the Yarrum
optimum, or conduit area preservation, or none of these
patterns, we measured DR, LR, and NR across the petiole vs
petiolule ranks of compound leaves and compared them with
the predictions. Leaves were studied in six tropical and five
temperate angiosperm species, and in two temperate fern
species. In addition to evaluating these two optima, we exam-
ined the evidence for size- and species-independent scaling
patterns in the hydraulic architecture of leaves.

Materials and Methods

Plant material

Compound leaves were collected in the Republic of Panama
in April 2005 and in the USA in September 2006 and July
2007. The six tropical species (Table 1) were collected in two
seasonally dry tropical forest sites (9°N, 79°W). Three species
with leaves exposed in the upper canopy, Schefflera morototoni
(Aubl.) Maguire, Steyerm. & Frodin (Araliaceae), Arrabidaea
candicans Dc. (Bignoniaceae), and Serjania cornigera Turcz.
(Sapindaceae), were accessed using the Smithsonian Tropical
Research Institute (STRI) Canopy Crane in the Parque
Metropolitano, near Panama City. Leaves from three species
growing in the understory, Dalbergia retusa Hemsl. (Fabaceae),
Paullinia pterocarpa Triana & Planch. (Sapindaceae), and

Stizophyllum riparium (H.B. & K.) Sandwith (Bignoniaceae),
were collected in Soberania National Park near Gamboa,
Panama. The temperate angiosperms were Daucus carota L.
(Apiaceae), Rubus discolor Weihe & Nees (Rosaceae), Fragaria
× ananassa Duchesne (Rosaceae), Sambucus caerulea Raf.
(Caprifoliaceae), and Clematis armandii Franch. (Ranun-
culaceae), and the temperate ferns used were Adiantum
pedatum L. (Adiantaceae) and Pteridium aquilinum (L.) Kuhn
(Dennstaedtiaceae). All temperate species were collected in
and around Corvallis, OR, USA (45°N, 123°W; Table 1).
When names were in conflict, International Plant Names Index
conventions were followed (IPNI; http://www.ipni.org/).

Five leaves from one individual were sampled for each
species. For all species, the ranks of petiolule and petiole were
compared, except for A. pedatum, for which a third, more distal
rank was also compared with the petiolule rank. For this species,
only four leaves were measured.

For the tropical species, petioles and petiolules were stored
in vials containing 50% ethanol and shipped to Oregon State
University for sectioning and image analysis. Temperate species
were sectioned in fresh condition. Total leaflet area was measured
for each leaf using either a leaf area meter (Li-Cor 3100C; Li-Cor,
Lincoln, NE, USA), or a flatbed scanner (Hewlett Packard
Scanjet 6200C). Scanned leaf areas were measured using ImageJ
(NIH, USA, http://rsb.info.nih.gov/ij/).

Anatomical measurements

Cross-sections were hand-cut near the midpoints of the
petioles and petiolules using a sharp razor blade and stained
with 0.5% toluidine blue or 0.5% safranin O to clearly
distinguish the xylem vessels from surrounding tissues. Images
of cross-sections were taken with a Photometrics Coolsnap
camera (Tucson, AZ, USA) mounted on a Nikon Eclipse
E400 microscope connected to a PC using metavue software
(Universal Imaging Corp., Downington, PA, USA). For all
species except S. morototoni, all vessels in the petioles and
petiolules from all five leaves were measured. Vessel cross-
sectional area measurements were made on the images using
ImageJ, and from these measurements the radius (r) of each
vessel was calculated as the radius of a circle with the same
area.

The large number of vessels in the petioles and petiolules of
S. morototoni leaves made it necessary to determine the aver-
age conduit number and diameter per vascular bundle area on
a subsample and scale up to the whole cross-section from its
total bundle area. Every fifth bundle around the circumfer-
ence of the cross-section was measured to obtain the average
number and diameter of conduits per vascular bundle area.

Length ratio measurements

The ratio of petiolule:petiole lengths (LR) was determined in order
to estimate the Yarrum optimum NR (Eqn 11). Species-specific
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Table 1 Abbreviations used in figures and characteristics of the species examined (tropical angiosperms, temperate angiosperms and temperate ferns are grouped separately)

Species Abbr.
Habit and 
habitatb

Petiole vessel D 
(µm) (± SD)c

Petiolule vessel 
D (µm) (± SD) LR (± SD)d NR (± SD)e YO predicted DR (± SD) ML predicted MLh 

Leaf 
typei

Arrabidaea candicans AC L, Tr 18.2 (1.7) 14.6 (0.9) 0.47 (0.07) 2.9 (0.3) 4.5 0.83 (0.05) 0.70 P = 0.70 Palm
Dalbergia retusa DR T, Tr 21.0 (1.2) 10.5 (0.8) 0.13 (0.03) 3.7 (0.1) 35.9 0.50 (0.01) 0.65 P < 0.001* Pinn
Paullinia pterocarpa PP L, Tr 17.4 (1.6) 14.5 (1.1) 0.12 (0.01) 1.8 (0.2) 12.6 0.83 (0.04) 0.83 P = 0.13 Pinn
Schefflera morototoni SM T, Tr 53.9 (2.3) 33.8 (1.7) 0.09 (0.01) 6.0 (0.3) 28.4 0.63 (0.01) 0.55 P < 0.01* Palm
Serjania cornigera SC L, Tr 22.4 (2.5) 16.8 (1.0) 0.15 (0.01) 2.4 (0.1) 13.1 0.74 (0.02) 0.74 P = 0.18 Palm
Stizophyllum riparium SR L, Tr 21.7 (1.2) 15.2 (1.2) 0.70 (0.03) 2.8 (0.2) 5.5 0.72 (0.02) 0.71 P = 0.10 Palm
Clematis armandii CA L, Te 17.2 (1.4) 12.8 (1.1) 0.36 (0.08) 1.8 (0.2) 7.2 0.73 (0.04) 0.83 P = 0.34 Palm
Daucus carota DC H, Te 15.1 (0.4) 12.3 (1.7) 0.13 (0.04) 1.3 (0.1) 11.4 0.86 (0.02) 0.91 P = 0.41 Palm
Fragaria × ananassa FA H, Te 7.7 (0.9) 6.1 (0.5) 0.03 (0.01) 2.3 (0.3) 46.9 0.79 (0.04) 0.76 P = 0.08 Palm
Rubus discolor RD S, Te 18.8 (1.0) 11.6 (0.5) 0.18 (0.04) 3.2 (0.6) 15.9 0.63 (0.03) 0.68 P = 0.17 Pinn
Sambucus caerulea SaC T, Te 21.9 (4.0) 13.1 (2.0) 0.13 (0.02) 3.3 (0.4) 24.3 0.59 (0.02) 0.67 P = 0.49 Pinn
Adiantum pedatum AP F, Te 22.4 (1.4) 16.7 (1.8) 0.06 (0.02) 1.5 (0.3) 26.3 0.79 (0.06) 0.87 P = 0.14 Palm
Adiantum pedatum*a AP*a F, Te 16.7 (1.8) 15.4 (1.5) 0.70 (0.12) 1.3 (0.1) 2.9 0.92 (0.01) 0.92 P = 0.46 Palm
Pteridium aquilinum PA F, Te 31.2 (5.3) 25.1 (2.3) 0.09 (0.06) 1.7 (0.1) 18.0 0.80 (0.07) 0.84 P = 0.84 Pinn

aThe asterisk here indicates that, for Adiantum pedatum, one rank distal to the petiolule rank was measured in addition to the petiole and petiolule ranks. For this comparison, the petiolule 
value for vessel diameter is listed under ‘petiole,’ because it is more basal than the third rank, which is treated as the ‘petiolule’.
bAbbreviations for the habit and habitat: L, liana; T, tree; S, shrub; H, herbaceous plant; F, fern; Tr, tropical; Te, temperate.
cPetiole and petiolule vessel diameters (D) are the grand mean of the average diameters of the n = 5 (n = 4 for A. pedatum) leaves from each species.
dLR is the median ratio for each species of the length of the petiole:petiolule shoots.
eNR, the ratio of the number of conduits in the petiolule: petiole, and DR, the ratio of the mean conduit diameter in the petiolule: petiole, are the median of the ratios from n = 5 (n = 4 for 
A. pedatum) leaves.
fThe optimal NR predicted by the Yarrum optimum (YO) based on the observed DR.
gThe optimal DR predicted by Murray’s law (ML) based on the observed NR.
hCompliance with ML is based on whether the sum of the conduit radii cubed in petiolules was different from that in petioles as indicated by P-values from paired t-tests greater than 0.05. 
Asterisks indicate the two species that deviated from the ML optimum.
iThe compound leaves were separated into pinnate (Pinn), which have a rachis, and palmate (Palm), which do not.

NR
f DR

g
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length ratios were estimated from measurements on live
material, herbarium sheets of pressed plants, or both. The
lengths of petioles and petiolules from four to eight leaves
were measured for each species.

Data analysis and statistics

To test whether plants more closely complied with the
Murray’s law or the Yarrum optimum, the mean predicted
error was calculated for each relationship. The mean predicted
error from the YO optimum was calculated from the absolute
value of the difference: (measured NR/optimal NR) – 1 summed
across all species. The optimal NR was calculated from the
median DR and LR for each species from Eqn 11. The median
ratios were used rather than the mean to avoid bias created by
the averaging of ratios (Lawren Sack, pers. comm.; Packard &
Boardman, 1988; Jasienski & Bazzaz, 1999). The analogous
mean square error was calculated for the ML optimum from
the difference: (measured DR/optimal DR) – 1. The optimal
DR was calculated from the median NR for each species from
Eqn 6. A mean predicted error was also calculated for the
deviation of median DR from the value required for area-
preserving branching (‘AP’, conserved conduit lumen area). In
this case the difference was the following: (measured DR/DR_AP)
– 1, where DR_AP is the diameter ratio that conserves lumen
area for a particular .

Species-specific compliance with the Murray’s law optimum
was also evaluated by testing the extent of Σr3 conservation
(r = conduit radius) between the ranks of the petiole and the
petiolule (McCulloh et al., 2003, 2004). For each leaf and
rank, the Σr3/distal leaf area was multiplied by the total leaf
area of all five leaves for that species. This provided five
estimates of the combined Σr3 for each rank in each species.
Cubing the vessel radii strongly skewed the data, so the Σr3

values were log transformed for statistical analyses. The simi-
larity between the total rank Σr3 values was assessed using a
paired t-test. If the P-value was > 0.05, Murray’s law could not
be rejected for that species. The equivalent test for compliance
with YO was not possible because of the complexity of the YO
optimum (Eqn 11).

Reduced major axis (RMA) regressions were used to compare
leaf traits. The slopes were calculated from ordinary least squares
(OLS) regression slopes as: RMA slope = OLS slope/R, where
R is the correlation coefficient. RMA intercepts were calculated
as Y – RMA slope X, where Y is the mean log y-axis value and
X is the mean log x-axis value (Quinn & Keough, 2002).
Slope values and y-intercepts from intraspecific comparisons
were determined to be different from the pooled, interspecific
comparisons when the 95% confidence intervals did not overlap.

Results

On the landscape of possible DR vs NR combinations, the
species clustered more closely around the ML (Murray’s law;

Fig. 2a) optimum than the YO one (Yarrum optimum;
Fig. 2b). The RMA regression of the observed DR vs the
Murray predicted DR was not significantly different from the
1 : 1 line (slope = 1.08). The corresponding regression for
observed NR vs the Yarrum predicted NR was significantly
different from the 1 : 1 line (slope = 0.12), with measured NR
falling far short of the YO optimum. Greater agreement with
ML was also supported by the much smaller mean predicted
error for the ML optimum than the YO alternative (1.1 vs
10.9, respectively). For the individual species, Murray’s law
could not be rejected for 11 of the 13 species measured
(Table 1). The comparison of the petiolule versus the third
rank in A. pedatum also was consistent with ML. The two
species that deviated from ML were tropical tree species
(S. morototoni and D. retusa). The former had less conduit
taper than predicted by ML, and the latter exhibited more taper
than the optimum and was quite close to the area-preserving
line (Fig. 2c).

Consistent with the tendency towards Murray’s law, the
data generally fell above the area-preserving line (Fig. 2c).
Although the slope of the RMA regression in Fig. 2(c) was not
significantly different from the area-preserving slope of 1, the
y-intercept was marginally greater than zero, which indicated
that the lumen cross-sectional area summed across the petiolule
rank was greater than in the petiole for most species. The
mean predicted deviation from the AP line was also greater than
for the ML optimum (2.0 vs 1.0, respectively). This increase
in area occurred despite the decline in vessel diameters from
the petiole to petiolule ranks, because the number of vessels
increased (Table 1). Area-increasing conduit branching is
predicted for Murray’s law when NR > 1.

Of most consequence to the plant is how much a given
deviation from ML or YO anatomy costs in terms of lost
conductivity per investment. Again, ML appears to define the
more relevant optimum. Species averaged 97 ± 5% of the
peak conductivity at ML (Fig. 3) vs 47 ± 26% of the YO value
(not shown). Of the two species that deviated statistically
from ML anatomy (S. morototoni and D. retusa), in only one
of them did this result in a sizable deviation from ML con-
ductance (Fig. 3; 82% of optimum). Interestingly, this species
(D. retusa) fell close to the area-preserving condition (Fig. 2c).
Excluding D. retusa, species averaged 98 ± 2% of their ML
conductivity.

The general agreement with ML suggests that, within a
species, DR adjusts to a ‘preset’ value of NR rather than vice
versa as would be the case for the Yarrum optimum. In all spe-
cies, NR exceeded the often assumed value of 1 (West et al.,
1997), ranging from 1.3 in the more distal comparison of
A. pedatum to ∼6 in S. morototoni, and with a median of
2.4 ± 0.4 (Figs 2b, 4). An advantage of NR > 1 is that, for a
given leaf structure and vascular volume, the larger the NR
the greater the conducting efficiency at Murray’s law
(Fig. 1; McCulloh et al., 2003). Variation in NR between spe-
cies was at least in part related to differences in leaf structure:

N D NR R Ri e. ., /=( )−1 2
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species with more leaflets per leaf tended to have greater
NR (Fig. 4).

Conduit number also scaled significantly with leaf and leaf-
let area within most species, and also across species (Fig. 5a).
In order for NR to be > 1 across petiole to petiolule ranks, the

Fig. 3 The fraction of the maximum possible network conductivity 
for Murray’s law (ML) vs the ratio of the measured DR, which is the 
ratio of the mean vessel diameter in the petiolule: petiole, to the ML 
predicted optimum DR. The solid curve shows the shape of the 
optimum, calculated for the two-rank network depicted in Fig. 1 for 
NR = constant. NR is the ratio of the number of conduits in petiolules: 
petiole. The curve is essentially independent of the particular NR 
value. Species conductivities for the same two-rank (petiole–
petiolule) network were calculated using their measured NR value, 
and comparing conductivity for the observed vs the Murray law 
DR. Species abbreviations are defined in Table 1.

Fig. 4 The median ratio of the number of vessels in petiolules: petiole 
for each species (NR) versus the average number of leaflets. The 
dashed line shows the 1 : 1 relationship and the solid line shows the 
regression of the data. Regression analysis showed that the slope was 
different from 0 (slope = 0.23; P-value < 0.001; R2 = 0.51). Symbol 
markings are defined in Fig. 2 for each species, and symbol shapes 
are: circles, tropical species; squares, temperate angiosperm species; 
and triangles, temperate fern species. Error bars are not shown for 
simplicity, but standard deviations in the number ratio are the same 
as in Fig. 2 and deviation in the average leaflet number ranged from 
0 to 9%.

Fig. 2 (a) The median measured DR, which is the ratio of the mean 
vessel diameter in petiolules: petiole, versus the DR predicted by 
Murray’s law (ML). The solid line indicates pooled reduced major axis 
(RMA) regression (slope = 1.08, R2 = 0.62) with dash-dotted 95% 
confidence intervals. The gray dashed line is the 1 : 1 ML optimum. 
The asterisks designate the two species that deviated significantly 
from ML (Table 1). (b) The median measured NR, which is the ratio 
of the number of vessels in petiolules: petiole, vs the optimum NR 
predicted by the Yarrum optimum (YO). The solid line indicates the 
pooled RMA regression (slope = 0.12, R2 = 0.52) with dash-dotted 
95% confidence intervals, and the dashed line is the 1 : 1 YO 
optimum. (c) The median measured DR vs the DR that would result in 
conduit area preservation between the petiolule and petiole. The solid 
line shows the pooled RMA regression (slope = 0.83, R2 = 0.64) with 
dash-dotted 95% confidence intervals. The dashed gray line is for 
area-preserved branching of the vascular network. Error bars on 
symbols represent standard deviations from the medians among 
n = 5 leaves (or n = 4 for Adiantum pedatum). Species abbreviations 
are defined in Table 1.
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number of conduits must decrease less than the drop in leaf
area moving from whole leaf to leaflet. Hence, the species-
specific regressions of conduit number vs leaf and leaflet area
supplied followed power functions with an exponent of < 1
(Fig. 5a; species log–log regressions, all slopes < 1), which is
the value required for NR = 1 (Appendix, Eqn A2). Exponents
varied from −0.7 to 0.8 (Table 2), with the variation in part
reflecting the different numbers of leaflets in the different species
(Fig. 4). The negative exponents, for example, corresponded

to the species with the fewest leaflets per leaf (A. candicans and
S. riparium). There was also significant variation between
species in the number of conduits for a given leaf area, as indi-
cated by significant differences in the intercepts of the log–log
relationships (Table 2). Pooling across all species indicated a
significant increase in conduit number with area supplied
with an exponent of 0.53. The low R2 of this pooled regression
(0.35) reflects the variation in slopes and intercepts between
species: four of the 13 species had slopes significantly different
from the pooled regression, and nine species had different
intercepts (Table 2).

Average vessel diameter also scaled significantly with leaf area
supplied both within and between species (Fig. 5b). Species-
specific scaling exponents ranged from 0.1 to 0.4, which cor-
responds well with the 0.1 to 0.6 range predicted for Murray’s
law from the NR scaling in Fig. 5(a) (Appendix, Eqn A7). The
pooled data exhibited an exponent of 0.31 for diameter vs leaf
area scaling, deviating slightly from the 0.16 value for perfect
ML compliance across species (Fig. 5b, dotted ML line;
Appendix, Eqn A7). The R2 of 0.71 for the pooled regression
suggests greater convergence of intra- and interspecific scaling
for conduit diameters than for conduit numbers (Fig. 5a).
Only three of the 13 species had slopes different from the
pooled value, and three species had different intercepts (Table 2).

The greatest convergence between intra- and interspecific
scaling was in the calculated conductivity vs leaf area (Fig. 5c).
Petiole or petiolule theoretical conductivity scaled with leaf
area supplied to the 1.50 power across species (Fig. 5c; Table 2).
The relatively high R2 of 0.82 for the pooled regression
reflected the fact that only one of 13 species deviated from the
pooled regression for slope and one for intercept. The pooled
slope of 1.50 is greater than the exponent of 1 for conductivity
increasing in direct proportion to leaf area (Fig. 5c; dotted
‘KL’ line for constant leaf-specific conductivity). An increase
in leaf-specific conductivity with leaf area was consistent with
the general compliance with ML, which predicts a conductivity
vs leaf area exponent of 1.16 (Fig. 5c, ML line; Appendix Eqn
A10). Computing conductivities on the basis of the actual
conduit distributions rather than the average conduit diameter
did not change the indication that conductivity increases dispro-
portionately with leaf area (R2 = 0.83, slope = 1.23; not shown).

Discussion

Compound leaves from a wide range of species complied
more closely with Murray’s law (ML) than with the Yarrum
optimum (YO; Fig. 2a vs 2b). Only two species deviated
statistically from ML (Table 1), but even the greatest deviant
(D. retusa) was within 18% of the broad optimal ML
conductivity (Fig. 3; Sherman et al., 1989). These results
suggest that vessel diameter ratio (DR) ‘tunes’ to a constrained
number ratio (NR) and not vice versa. This sequence makes
sense for several reasons. First, the number of conduits (hence
NR) is determined much earlier in development than conduit

Fig. 5 Intra- and interspecific log–log scaling of petiole and petiolule 
vasculature with the area of the leaf or leaflet (A) supplied. 
(a) Number of vessels, (b) the mean diameter of vessels, and (c) the 
theoretical hydraulic conductivity of petioles and petiolules. Petiolule 
and leaflet data are averages per leaf. Conductivity was calculated 
from mean vessel diameter and number using the Hagen Poiseuille 
equation. Solid black lines show intraspecific regressions across 
petiole (open symbols) and petiolule (closed symbols) ranks. Statistics 
of these intraspecific regressions are shown in Table 2. Solid gray lines 
show pooled regressions with 95% confidence intervals (dashed 
lines). In (b) and (c), the dotted lines show the scaling required for 
Murray’s law (‘ML’; see Appendix). In (c), the scaling is also shown for 
invariant leaf-specific conductivity across leaf size (‘KL’).
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diameter (hence DR). Yarrum’s NR also depends on the ratio
of petiolule-to-petiole length (LR), which like DR is determined
fairly late in development. Secondly, although plants cannot
achieve the theoretical NR max of a maximally efficient single-
tubed vascular network, they may have evolved to achieve the
‘next best’ NR within species-specific constraints of leaflet
number (Fig. 4) and considerations of transport safety and
redundancy. Finally, achieving the Yarrum optimum requires
an even more extreme area-increasing branching of conduits
than Murray’s law (Fig. 1), which may not be possible within
the confines of petiole/petiolule architecture. Although it is
known that vessel diameters increase basipetally as the vascular
auxin concentration declines (Aloni & Zimmermann, 1983),
how the plant develops the particular ML diameter ratio is
unknown.

Conduits within woody stems tend to be closer to area
preserving than the ML optimum, suggesting that the need to
avoid top-heavy networks constrains the hydraulic efficiency
of trees (McCulloh et al., 2004; Atala & Lusk, 2008). It is
worth noting that this area preservation is not da Vinci’s rule,
which refers to preservation of the total cross-sectional area of
branches, not their internal conducting tubes (Horn, 2000).
Interestingly, the compound leaf that deviated most signifi-
cantly from Murray’s law (leaves of D. retusa; Fig. 2a) was fairly
close to the area-preserving line (Fig. 2c). This species had
12–14 leaflets arranged pinnately on a long, rigid axis and
perhaps relied more than other species on its xylem conduits
for mechanical support. This reliance may have prevented
area-increasing branching of vessels which otherwise would
have been more hydraulically efficient.

Givnish (1978) suggested that a benefit of compound leaves
was as ‘throw-away branches’ that could achieve the same area

as simple leaves for a smaller investment in woody biomass.
Here, we propose that, by following Murray’s law more closely
than stems, compound leaves are also more hydraulically
efficient than the equivalent stem structure. The efficiency is
achieved by a greater uncoupling of mechanical support from
hydraulic supply, which allows the conduit network to be
area-increasing as required for the most efficient Murray law
networks.

Intraspecific scaling of the petiole–petiolule network with
leaf area did not carry over precisely to a single universal inter-
specific scaling (Fig. 5). The most variation between species
was in how the number of conduits scaled with leaf area
(Fig. 5a). However, consistent with NR being > 1, all intraspe-
cific exponents were < 1; as was the pooled exponent (Table 2).
Diameter scaled more consistently across species with leaf
area, but still with significant interspecific variation (Fig. 5b).
This result is consistent with the strong degree of scaling
between the hydraulically weighted vessel diameter and leaf
area observed by Coomes et al. (2008) across multiple vein
orders in leaves of various oak species. The variation in diameter
scaling observed in our data partially compensated for
variation in conduit number, because theoretical conductivity
(calculated from diameter and number) exhibited a fairly
strong interspecific relationship with leaf area (Fig. 5c). Actual
conductivity tends to be proportional to the theoretical value
(Sperry et al., 2006; Choat et al., 2008). These data imply that
leaf-specific conductivity of petioles increases with leaf area, a
trend consistent with following Murray’s law. Experimental
data on hydraulic conductivities measured in petioles of simple
leaves are consistent with this trend (Sack et al., 2003).

Unlike petiole conductivity, petiole conductance (=
conductivity/length) may be relatively invariant with leaf size

Table 2 The slope, R2 values and y-intercepts from the reduced major axis regressions shown in Fig. 5

Species

Vessel number vs leaf area Vessel diameter vs leaf area Theoretical conductivity vs leaf area

Slope (± CI)a R2 y-intercept Slope (± CI) R2 y-intercept Slope (± CI) R2 y-intercept

Arrabidaea candicans −0.68 (0.38)b 0.54 3.63 0.36 (0.13) 0.81 0.53 −0.85 (0.68) 0.82 0.43
Dalbergia retusa 0.53 (0.08) 0.97 1.37 0.26 (0.02) 0.99 0.67 1.57 (0.11) 0.99 −4.13
Paullinia pterocarpa 0.62 (0.12) 0.94 0.87 0.14 (0.06) 0.71 0.90 1.14 (0.21) 0.97 −3.64
Schefflera morototoni 0.28 (0.05) 0.96 2.04 0.19 (0.02) 0.98 1.07 1.09 (0.09) 0.99 −2.05
Serjania cornigera 0.21 (0.09) 0.72 1.90 0.28 (0.05) 0.95 0.76 1.29 (0.18) 0.97 −3.20
Stizophyllum riparium −0.54 (0.42) 0.11 3.38 0.43 (0.17) 0.76 0.48 1.41 (0.42) 0.87 −3.36
Clematis armandii 0.82 (0.48) 0.49 0.68 0.30 (0.11) 0.80 0.63 1.73 (0.47) 0.89 −4.50
Daucus carota 0.62 (0.23) 0.79 1.30 0.22 (0.13) 0.52 0.88 1.42 (0.63) 0.71 −3.28
Fragaria × ananassa 0.39 (0.29) 0.16 2.37 0.24 (0.09) 0.80 0.52 1.08 (0.32) 0.87 −3.40
Rubus discolor 0.32 (0.16) 0.64 2.04 0.29 (0.09) 0.85 0.69 1.35 (0.27) 0.94 −3.22
Sambucus caerulea 0.35 (0.16) 0.70 1.50 0.33 (0.04) 0.98 0.73 1.63 (0.26) 0.96 −3.73
Adiantum pedatum 0.47 (0.24) 0.74 1.26 0.29 (0.23) 0.36 0.55 1.60 (1.07) 0.55 −4.72
Pteridium aquilinum 0.70 (0.13) 0.95 0.84 0.20 (0.13) 0.40 0.88 1.43 (0.58) 0.76 −3.68
Pooled 0.53 (0.08) 0.35 1.38 0.31 (0.03) 0.71 0.62 1.50 (1.12) 0.82 −3.79

aThe 95% confidence intervals (CIs) of the slope are indicated in parentheses.
bBold typeface indicates that the slope or y-intercept deviated from the pooled values.
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because petioles tend to be longer in larger leaves (Niklas,
1994; Sack et al., 2003). A recent survey found that petiole
length scaled with leaf area to approximately the 0.5 power
(Arcand et al., 2008). Combination of this with the 1.5 scaling
of conductivity (Fig. 5c) would predict that petiole conductance
scales isometrically with leaf area as does lamina conductance
(Sack et al., 2003). Variation in conductivity or conductance
by leaf area scaling may be related in part to light environment
and the prevailing evaporative gradient, with sunlit leaves or
leaves in drier air developing greater conductivity for a given
leaf area than shaded leaves or leaves in humid air (Sack et al.,
2003).

The petioles and petiolules of compound leaves are discrete
branching ranks that provide an opportunity to examine com-
pliance with two distinct optima that both maximize hydraulic
conductance per investment in vascular tissue volume. The
Yarrum optimum does not seem to represent an achievable
optimum, suggesting that NR is more constrained than DR in
the evolution and development of the leaf vasculature. Most
species tracked the alternative Murray law optimum. Conver-
gence on a hydraulic optimum suggests the importance of
hydraulic efficiency for maximizing plant fitness. Deviations
from the ML optimum in some leaves and in most stems tend
to approach the alternative area-preserving behavior, a more
adaptive alternative when the xylem conduits are called upon
to supply mechanical support in addition to water.
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Appendix: Relations between scaling exponents 
in Fig. 5

Figure 5(a) shows that the number of conduits (N) is
proportional to leaf or leaflet area (A) to the ‘x’ power:

N α Ax Eqn A1

Accordingly, the number of conduits per petiolule/number of
conduits per petiole ≈ (Ai/AL)x, where Ai is the average leaflet
area and AL is the whole leaf area. The approximation is
because mean leaflet area is used and the proportionality in
Eqn A1 is estimated from a regression. Multiplying (Ai/AL)x

by the number of petiolules (≈ AL/Ai) yields

NR ≈ (Ai/AL)x (AL/Ai) Eqn A2.

Using AR = Ai/AL,

NR ≈ AR
(x–1) Eqn A3.

Because AR < 1, it is clear that for NR > 1 as observed, x must
be < 1.

Fig. 5(b) shows that the average diameter of conduits (D)
is proportional to leaf area to the ‘y’ power:

D α Ay Eqn A4.

This yields

Eqn A5

From Eqn 6,  at Murray’s law. Equating A3 and A5
at Murray’s law gives:

Eqn A6

Thus, at Murray’s law:

y = (1 − x)/3 Eqn A7

For x = 0.53, the pooled regression exponent from Fig. 5(a),
y = 0.16 for Murray’s law (ML line in Fig. 5b).

Figure 5(c) shows that conductivity (K ) scales with A to an
exponent ‘z’:

K α Az Eqn A8

Assuming that K α ND4, then from A1 and A4:

K α A(x+4y) Eqn A9

which means z = x + 4y. Plugging in y from A7 gives z as a
function of x for Murray’s law:

z = 1.33 − 0.33x Eqn A10

For x = 0.53 from Fig. 5(a), z = 1.16 at Murray’s law (ML line
in Fig. 5c).D A A AR i L

y
R
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