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Abstract

Background: Several neuromuscular disorders present muscle fatigue as a typical symptom. Therefore, a reliable
method of fatigue assessment may be crucial for understanding how specific disease features evolve over time and
for developing effective rehabilitation strategies. Unfortunately, despite its importance, a standardized, reliable and
objective method for fatigue measurement is lacking in clinical practice and this work investigates a practical solution.

Methods: 40 healthy young adults performed a haptic reaching task, while holding a robotic manipulandum.
Subjects were required to perform wrist flexion and extension movements in a resistive visco-elastic force field, as
many times as possible, until the measured muscles (mainly flexor and extensor carpi radialis) exhibited signs of fatigue.
In order to analyze the behavior and the characteristics of the two muscles, subjects were divided into two groups: in
the first group, the resistive force was applied by the robot only during flexion movements, whereas, in the second
group, the force was applied only during extension movements. Surface electromyographic signals (sEMG) of both
flexor and extensor carpi radialis were acquired. A novel indicator to define the Onset of Fatigue (OF) was proposed and
evaluated from theMean Frequency of the sEMG signal. Furthermore, as measure of the subjects’ effort throughout
the task, the energy consumption was estimated.

Results: From the beginning to the end of the task, as expected, all the subjects showed a decrement inMean

Frequency of the muscle involved in movements resisting the force. For the OF indicator, subjects were consistent in
terms of timing of fatigue; moreover, extensor and flexor muscles presented similar OF times. The metabolic analysis
showed a very low level of energy consumption and, from the behavioral point of view, the test was well tolerated by
the subjects.

Conclusion: The robot-aided assessment test proposed in this study, proved to be an easy to administer, fast and
reliable method for objectively measuring muscular fatigue in a healthy population. This work developed a framework
for an evaluation that can be deployed in a clinical practice with patients presenting neuromuscular disorders.
Considering the low metabolic demand, the requested effort would likely be well tolerated by clinical populations.
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Background

Muscle fatigue has been defined as “the failure to

maintain a required or expected force” [1] and it

is a complex phenomenon experienced in everyday

life that has reached great interest in the areas of

sports, medicine and ergonomics [2]. Muscle fatigue can
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affect task performance, posture-movement coordina-

tion [3], position sense [4] and it can be a highly

debilitating symptom in several pathologies [5]. For

many patients with neuromuscular impairments, tak-

ing into account muscle fatigue is of crucial impor-

tance in the design of correct rehabilitation protocols

[6] and fatigue assessment can provide crucial infor-

mation about skeletal muscle function. Specifically, sev-

eral neuromuscular diseases (e.g. Duchenne, Becker

Muscular Dystrophies, and spinal muscular atrophy)

present muscle fatigue as a typical symptom [7], and

fatigue itself accounts for a significant portion of the
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disease burden. A systematic approach to assess muscle

fatigue might provide important cues on the disability

itself, on its progression and on the efficacy of adopted

therapies. In particular, therapeutic strategies are now

under deep investigation and a lot of effort has been

devoted to accelerate the development of drugs targeting

these disorders [8]. Therefore, the need for an objective

tool to measure muscle fatigue is impelling and of great

relevance.

Currently, in clinical practice muscle fatigue is evaluated

by means of qualitative rating scales like the 6-min walk

test (6MWT) [9] or through subjective questionnaires

administered to the patient (e.g. the Multidimensional

Fatigue Inventory (MFI), the Fatigue Severity Scale (FSS),

and the Visual Analog Scale (VAS)) [10]. During the

6MWT patients have to walk, as fast as possible, along

a 25 meters linear course and repeat it as often as they

can for 6 min: ‘fatigue’ is then defined as the difference

between the distance covered in the sixth minute com-

pared to the first. Obviously, such a measure is only

applicable to ambulant patients and this is a strong lim-

itation to clinical investigation because a patient may lose

ambulatory ability during a clinical trial, resulting in lost

ability to perform the primary clinical endpoint [11]. It

should also be considered that neuromuscular patients,

e.g. subjects with Duchenne Muscular Dystrophy,

generally lose ambulation before 15 years of age [12],

excluding a large part of the population from themeasure-

ment of fatigue through the 6MWT. Since neuromuscular

patients often experience a progressive weakness

also in the upper limb, reporting of muscle fatigue in

this region is common. A fatigue assessment for upper

limb muscles could be used to monitor patients across

different stages of the disease. As for the questionnaires,

the MFI is a 20 items scale designed to evaluate five

dimensions of fatigue (general fatigue, physical fatigue,

reduced motivation, reduced activity, and mental fatigue)

[13]. Similarly, the FSS questionnaire contains nine

statements that rate the severity of fatigue symptoms

and the patient has to agree or disagree with them

[14]. The VAS is even more general: the patient has to

indicate on a 10 cm line ranging from “no fatigue” to

“severe fatigue” the point that best describes his/her

level of fatigue [15]. Despite the ease to administer, such

subjective assessments of fatigue may not correlate with

the actual severity or characteristics of fatigue, and may

provide just qualitative information with low resolution,

reliability and objectivity. Considering various levels of

efficacy among the methods currently used in clinical

practice, research should focus on the development of

an assessment tool for muscle fatigue, that is easy and

fast to administer, even to patients with a high level of

impairment. Such a tool, should provide clear results,

be easy to read and understand by a clinician, be reliable

and objectively correlated with the physiology of the

phenomenon.

In general, muscle fatigue can manifest from either

central and/or peripheral mechanisms. Under controlled

conditions, surface electromyography (sEMG) is a non-

invasive and widely used technique to evaluate muscle

fatigue [16]. Certain characteristics of the sEMG signal

can be indicators of muscle fatigue. For example dur-

ing sub-maximal tasks, muscle fatigue will present with

decreases in muscle fiber conduction velocity and fre-

quency and increases in amplitude of the sEMG sig-

nal [16]. The trend and rate of change will depend on

the intensity of the task: generally, sEMG amplitude has

been observed to increase during sub-maximal efforts

and decrease during maximal efforts; further it has been

reported that there is a significantly greater decline in the

frequency content of the signal during maximal efforts

compared to sub-maximal [17]. Accordingly, spectral (i.e.

mean frequency) and amplitude parameters (i.e. Root

Mean Square (RMS)) of the signals, can be used to mea-

sure muscle fatigue as extensively discussed in many

widely acknowledged studies [16, 18, 19], however, con-

text of contraction type and intensity must be specified

for proper interpretation. A significant problem with the

majority of existing protocols is that they rely on quanti-

fying maximal voluntary force loss, maximum voluntary

muscle contraction (MVC) [18, 20, 21] or high fatiguing

dynamic tasks [19, 22] that cannot be reliably performed

in clinical practice, especially in the case of pediatric

subjects. Actually, previous works pointed out that not

only the capacity to maintain MVC can be limited by a

lack of cooperation [23, 24], but also, that sustaining a

maximal force in isometric conditions longer than 30 s

reduces subject’s motivation leading to unreliable results

[25]. Besides, neuromuscular patients might have a high

level of impairment and low residual muscular function

thus making even more difficult, as well as dangerous for

their muscles, sustaining high levels of effort or the exe-

cution of a true MVC. In order to overcome this issue,

maximal muscle contractions can be elicited by magnetic

[10] or electrical stimulation [26]. Although such proce-

dures allow to bypass the problemmentioned above, these

involve involuntary muscle activation and not physiolog-

ical recruitment of motor units [24]; moreover, they can

be uncomfortable for patients and can require advanced

training, which makes them difficult to be included in

clinical fatigue assessment protocols. As for the above

mentioned problem with children motivation, work by

Naughton et al. [27] showed that the test-retest coefficient

of variation of fatigue index during a Wing-Gate test, sig-

nificantly decreased when using a computerized feedback

game linked to pedal cadence, suggesting that game-based

proceduresmay ensuremore consistent results in children

assessment.
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In recent years, the assessment of sensorimotor func-

tion has been deepened thanks to the introduction

of innovative protocols administered through robotic

devices [28–31]. These methods have the ambition to

add meaningful information to the existing clinical scales

and can be exploited as a basis for the implementa-

tion of a muscle fatigue assessment protocol. In order

to fill the gap between the need of a quantitative clini-

cal measurement protocol of muscle fatigue and the lack

of an objective method which does not demand a high

level of muscle activity, we propose a new method based

on a robotic test, which is fast and easy to administer.

Further, we decided to address the analysis of muscle

fatigue on the upper limb as to provide a test suitable

to assess patients from the beginning to the late stages

of the disease, regardless of walking ability. Moreover, we

focused on an isolated wrist flexion/extension tasks to

assess wrist muscle fatigue. This ensured repeatability of

the tests and prevented the adoption of compensatory

movements or poor postures that may occur in multi-

segmental tasks, involving the shoulder-elbow complex.

In the present work, we tested the method on healthy

subjects with the specific goal to evaluate when dur-

ing the test the first meaningful symptoms of fatigue

appaered and not how much subjects are fatigued at

the end of the test. The most relevant and novel fea-

tures of the proposed test include the ability to per-

form the test regardless of the subjects’ capability and

strength, the objectivity and repeatability of the data it

provides, and the simplicity and minimal time required to

administer.

Methods

Partecipants

Forty healthy subjects with no history of motor disor-

ders were enrolled in the study. All participants were

right-handed according to the Edinburgh Handedness

Inventory [32]. The study was approved by the Ethics

Committee of the regional health authority, Azienda

Sanitaria Locale Genovese (ASL) N.3 (Protocol num-

ber 311REG2014 approved on 09/12/2015), and

all participants signed a written informed consent.

Experiments were carried out at the Motor Learning,

Assistive and Rehabilitation Robotics Lab of the Istituto

Italiano di Tecnologia (Genoa, Italy). Participants

were randomly divided into two equal groups: Flexion

Group (FG) (5 male and 15 females, mean age 31.4 ±

6.3 years); and Extension Group (EG) (8 male and 12

females, mean age 25.5 ± 3.9 years). Moreover, the

maximum grip force of each subject was evaluated

using a hand held hydraulic dynamometer (Baseline�

7-Piece Hand Evaluation Kit, Fabrication Enter-

prises Inc). Subject demographics are summarized in

Table 1.

Table 1 Subject details for the Flexion Group (FG) and the
Extension Group (EG): Sex, Age and hand grip force

FG EG

Sex Age Force [Kg] Sex Age Force [Kg]

S1 F 26 21 F 21 32

S2 F 22 24 M 30 38

S3 F 26 26 M 25 40

S4 F 34 30 M 23 40

S5 F 22 25 F 33 22

S6 F 26 32 M 22 40

S7 M 35 38 F 31 36

S8 F 27 31 F 25 40

S9 M 35 40 F 26 20

S10 F 40 24 F 30 35

S11 F 37 15 F 25 35

S12 M 40 39 F 24 36

S13 F 34 25 F 30 26

S14 F 30 35 M 19 36

S15 M 43 42 M 19 34

S16 F 33 34 M 22 43

S17 F 24 36 F 26 34

S18 M 32 39 M 28 43

S19 F 37 22 F 26 27

S20 F 25 35 F 26 30

Task and procedure

The experimental design involved a motor task where

subjects were seated in front of a three degrees of free-

dom wrist robotic manipulandum, called WRISTBOT

and developed at Istituto Italiano di Tecnologia [33, 34],

holding the handle with their rigth hand (Fig. 1). Sub-

jects’ forearm was strapped to the robot support in order

Fig. 1 Experimental setup. Participant sitting on a chair with the
forearm secured to the WRISTBOT while performing the wrist rotation
reaching task. The visual targets of the reaching task are shown on a
dedicated screen
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to avoid forearm movements and to have a correct align-

ment between the axes of the mechanical structure and

wrist. The device is a fully back-drivable manipulandum

that has been specifically designed for human motor con-

trol studies and for sensorimotor rehabilitation. The robot

allows movements along the three wrist articulations with

a range of motion (RoM) similar to a typical human sub-

ject: ±62◦ flexion/extension (FE), 45◦/-40◦ radial/ulnar

deviation (RUD), and ±60◦ pronation/supination (PS). It

is powered by four brushless motors chosen in such a way

to provide an accurate haptic rendering and compensate

for the weight and inertia of the device. These motors

can provide a maximum torque of 1.57 Nm on FE, 3.81

Nm on RUD, and 2.87 Nm on PS. Angular rotations on

the three axes were acquired by means of high-resolution

incremental encoders with a maximum error of ±0.17◦.

A visual virtual reality environment was integrated in

the system in order to provide visual feedback to the

users while they complete the tasks. The experimental

setup was complemented by a 6-axis force/torque sensor

(Optoforce HEX-58-RE-400N) mounted on the handle in

order to evaluate the efficiency of the robot in terms of

provided torque. The task consisted of a series of con-

tinuous target reaching movements interacting with a

visco-elastic force generated by the WRISTBOT (Fig. 2).

Grasping the handle of the robot, subjects were requested

to perform flexion and extension movements with their

wrist in order to reach Flexion/Extension targets, pre-

sented alternately at an angular distance of θe = 48◦ or

θf = −48◦ with respect to the neutral wrist position. The

visco-elastic force experienced by FG subjects opposed

flexion movements and facilitated extension movements

and it was implemented as a virtual spring whose equilib-

rium angle was θ = θe = 48◦. In the case of the EG sub-

jects the visco-elastic force opposed extensionmovements

and facilitated flexion movements, by means of a virtual

spring whose equilibrium angle was θ = θf = −48◦.

In both cases, a small viscous force was added, in order

to provide a minimal degree of damping of the inertia of

the hand:

{

FFG = −k(θ − θe) − bθ̇

FEG = +k(θ − θf ) + bθ̇
(1)

where k is the stiffness coefficient of the force-field and

b the corresponding viscous coefficient. The stiffness

parameter k was set, prior to the experiment, taking

into account the significant grip force difference between

male and female subjects (see Table 1). Mean female grip

force was 30% less than that of males, which is in agree-

ment with what is reported in the literature [35, 36].

More specifically, the following values of the visco-elastic

parameters were chosen: k = 22.2 N/rad for female sub-

jects, k = 27.7 N/rad for males, and b = 1.77 Ns/rad for all

subjects. In order to avoid rest or recovery between each

movements and to limit the variability between move-

ment duration, targets had to be reached within a fixed

time. In particular, visual and auditory feedback was pro-

vided: the target color changed and a sound was produced

if the subject did not reach the target within a duration

of 1.5 s. Besides, the minimum time was not imposed, we

allowed subjects to modulate their pace as to investigate if

any change in kinematic parameters occurred with mus-

cle fatigue. Subjects were instructed to perform the target

reaching task until they could no longer do the task. At

this time, we considered the level of fatigue experienced by

the subject to be maximal (at least by our definition) and

this corresponds to the maximum score on the VAS scale

[15]. During the execution of the task, the experimenter

encouraged participants to perform as many repetitions

as possible to assure the maximum level of acceptable

fatigue had been reached. Therefore, for each subject the

Fig. 2 Fatigue test. Scheme of the task for the flexion group (FG) during a flexion movement (Panel a) and the extension group (EG) during an
extension movement (Panel b). The blue circle represents the end-effector of the subject, the yellow circle is the target to reach
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number of repeated ‘task-movements’ N could be dif-

ferent and the sequence duration for each subject was

normalized, 0–100% (rather than 1-N movements) to

compare subjects. During task execution, the RUD and

PS degrees of freedom were haptically blocked in order

to constrain movements only to the flexion/extension.

Throughout the task, we recorded electromyographic sig-

nals from extensor carpi radialis and flexor carpi radialis

muscles of the right arm, using a multichannel surface

electromyography system (OTBiolab EMG-USB2+). For

each muscle, two Ag/AgCl electrodes with an interelec-

trode distance of 26 mm were placed in parallel with the

muscle fibers on the belly of the muscle. In an attempt

to reduce crosstalk, standard electrode palcements were

followed, as recommended [37]. The sampling frequency

was 2048 Hz, with a gain of 1000, and an internal band

pass filter with cut-off frequencies of [10–900] Hz. sEMG

signals and kinematic data were synchronized through a

trigger signal sent from the robot to the sEMG base unit

to assure association between each muscle activation and

the corresponding movement. The preparation for the

test (namely, electrodes placement, grip force recording,

adjustment of WRISTBOT height and oral instructions)

required about 180 s; the duration of the test itself varied

among subjects, mainly as a function of the total num-

ber of movements performed, with an average value of

80s (maximum duration in the overall population of sub-

jects was 180 s). Globally, the assessment protocol could

be performed with an average duration of 260 s and never

exceeded 360 s.

Data analysis

Wrist joint rotations, recorded from the robot encoders

(data collection frequency set at 100 Hz), were converted

to angular displacements and used to compute angu-

lar velocities. All kinematic data were processed with

a sixth-order Savitzky-Golay low-pass filter (10 Hz cut-

off frequency) and re-sampled at the sEMG sample rate

(2048 Hz) by linear interpolation while sEMG data were

band-pass filtered (5–350 Hz). sEMG and kinematic data

were segmented to focus the analysis on the concentric

phase for each group. The analysis of the trajectory data

recorded by the robot allows for the extraction of each

single flexion or extension movement as shown in Fig. 3

(Panel a and b). Accordingly, we analyzed the sEMG sig-

nal of flexor carpi radialis during flexion movements and

the signal of the extensor carpi radialis during extension.

Next, we computed a single value of the Mean Frequency

for each of the obtained intervals of the sEMG signal.

Therefore, N values of Mean Frequency (FMean(k), k =

1...N) were obtained for each subject with N being the

total number of movements performed by the subject. In

particular the Mean Frequency (FMean) of a sEMG signal

was calculated as follows:

FMean =

∫

fs
2
0 fP(f ) df

∫

fs
2
0 P(f ) df

(2)

where fs is the sampling frequency, and P(f ) is the power

spectral density (PSD) of the signal. In order to trans-

form the sEMG signal from the time-domain to the

frequency-domain, a Fourier transform of the autocorre-

lation function of the signal was employed and the PSD

computed using the periodogram. The obtained N values

ofMean Frequency of each subject, were fitted with a third

order polynomial function based on mean least square

approximations in order to calculate the Onset of Fatigue

(OF). This indicator was defined as follows: OF is the

k-movement at which the initial FMean value of the

sequence decreases by a given percentage (P%) (i.e.

FMean(k=1)). More precisely we used the following

equation:

OFP%=k:FMean(k)≤FMean(1)−P%·(FMean(1)−min(FMean))

(3)

In order to choose the most appropriate value of P%, the

acquired data were analyzed with three reference values,

namely 25%, 50% and 75%, thus yieldingOF25%,OF50% and

OF75% respectively. Please note also that the decrement

(P%), in Eq. 3, is calculated with respect to the minimum

value in the FMean sequence which may not correspond, as

will become evident in the “Results” section, with the final

element of the sequence (min(FMean) �= FMean(k = N)).

To ascertain that muscular behavior was not due or

related to changes inmotor strategy we calculated for each

movement two additional indicators based on movement

kinematics: the Time to velocity peak ratio (TPR) and the

Mean speed (m/s). TheTPR is defined as the ratio between

the time to velocity peak TP, i.e. the time from the begin-

ning of the movement and the main peak of the speed

profile, and the total duration of the main movement (T):

TPR =
TP

T
(4)

Correlation analysis was performed to investigate the

relationship between Mean Frequency and Mean Speed

by evaluating the correlation coefficient (CI) between the

two metrics. To constantly monitor the required effort

throughout the task we evaluated the mechanical energy

consumption in Joules for each subject for each move-

ment, consisting of N samples, from the torque exerted

(τk) and the angular position (θk) recorded by the robot,

according to the following equation:

E =

N
∑

k=1

τk · (θk+1 − θk) (5)

Such energy expenditure was converted into calories as

to compare it with the basal metabolic rate. A statistical
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Fig. 3 Example of data segmentation. a. Red lines represent an example of the end-effector trajectory in the flexion-extension plane to reach the
target at ±48◦ (blue lines). b Example of sEMG signal of the extensor carpi radialis during the task. The signal was segmented according to the
trajectory shown in Panel a

analysis was performed to investigate the possible signifi-

cance of differences on theOF.OF data for the 40 subjects

were z-transformed before the analysis. A post-hoc two-

way ANOVA was chosen to investigate any difference in

the OF between the three percentage levels in the two

groups. The group factor (FG/EG) was set as “between”

while, the OF percentage level (25/50/75) as “within”. Sig-

nificant main and interaction effects were evaluated using

a two tailed t-test with Bonferroni correction for multiple

comparisons. Significance was set at p <0.05.

Results

As expected, the Mean Frequency of both the Flexion

Group (FG) and the Extension Group (EG) decreased dur-

ing the first half of the task execution, and eventually

reached a plateau (Fig. 4, Panel a and Panel b respectively),

although in a few cases the decrease was not monotonic:

consider, in particular, subjects S2-S4-S5-S6-S13 of the FG

and subjects S13-S18-S19 of the EG. The fitting analysis

indicated that the third-order polynomial model is a good

predictor of the Mean Frequency trend, especially for the

Extension Group. Indeed, 12 subjects out of 20 from the

EG presented a goodness of fit higher than 0.6; such a

goodness of fit was reached for 9 out of 20 from the FG

(See Table 2).

Additionally, comparing the two groups, we found that

the reduction inMean Frequencywas greater for the flexor

carpi radialis, fatigued in the FG, than for the extensor

carpi radialis, fatigued in the EG. Specifically, Fig. 5 rep-

resents the evolution of the averaged Mean Frequency

across FG and EG subjects (panel a and b respectively),

normalized with respect to the initial value. From such

a curve, it is possible to evaluate the percentual decrease

of the averaged Mean Frequency of the fatigued muscles,

with respect to the beginning of the task execution: 31%

for the flexor and 24% for the extensor.

The next step of the analysis was to compare the three

criteria for the identification of the Onset of Fatigue

(namely,OF25%,OF50% andOF75%) in order to identify the

most reliable approach, in view of application in daily clin-

ical practice. The experimental results indicate thatOF25%
occurred almost at the same time in both groups, suggest-

ing higher consistency of this parameter, among subjects,

than OF50% and OF75%. OF25% occurred within the first

25 movements (see Fig. 6 Panels a, b, c) independently

of the number of movements performed by each subject

(see Table 3); OF50% occurred around movement number

30 and OF75% around movement number 50. The main

difference among the three OFs was evident in reliabil-

ity: Figure 6 Panel c displays the Gaussian approximation

of the probability density functions of the three OF indi-

cators for the FG population and EG population, respec-

tively: OF25% provides a more reliable estimate of onset of

fatigue because it is characterized by a much smaller vari-

ance than the other two, withOF75% being the least robust

and most variable. It is worth mentioning that, despite a

higher variance than OF25%, OF50% presented the highest

consistency between the two groups, as indicated by the

two orange Gaussian functions (Fig. 6 Panel c) that are

almost identical. These results are confirmed by the statis-

tical analysis which revealed significant differences among

the three OFs (F(2, 114)=35.485, p<0.001) independently
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Fig. 4Mean Frequency results. Normalized FMean (Hz), of the FG (Panel a) and EG (Panel b), fitted with a third order polynomial function. Each line
and color indicates a different subject

from the group. There was no interaction between OF

and the group (F(2, 114)=0.34286, p=0.71046). There were

no significant differences between the two groups for the

number of movements to OF (shown in Fig. 6 Panel d)

(F(1, 114)=0.02614, p=0.87183). However, post-hoc anal-

ysis demonstrated a significant difference between

Table 2 Goodness of fit (R2) and RMSE ofMean Frequency curves
for each subject

FG EG

R2 RMSE R2 RMSE

S1 0.89 3.7 0.33 5.37

S2 0.75 5.39 0.66 5.75

S3 0.74 3.94 0.20 8.06

S4 0.34 8.16 0.53 6.65

S5 0.21 8.41 0.76 4.94

S6 0.86 3.25 0.89 3.62

S7 0.73 11 0.66 3.57

S8 0.41 3.97 0.65 4.44

S9 0.91 4.53 0.83 3.32

S10 0.45 11.87 0.49 7.33

S11 0.71 9.78 0.58 5.04

S12 0.84 4.89 0.14 9.44

S13 0.49 8.40 0.79 3.73

S14 0.71 5.63 0.78 5.67

S15 0.37 7.36 0.23 9.78

S16 0.42 9.62 0.50 4.17

S17 0.35 3.94 0.61 8

S18 0.42 8.86 0.82 6.20

S19 0.47 3.94 0.67 5.08

S20 0.22 7.24 0.67 2.56

Goodness higher than 0.6 is underlined

OF25% and OF50% (p=0.001), between OF25% and OF75%
(p<0.001), and between OF50% and OF75% (p <0.001).

The kinematic analysis of the performed experiments

should demonstrate any potential relationship between a

subject’s motor strategy and patterns of muscle activity.

In particular, we evaluated the correlation coefficient

between the Mean speed and the Mean Frequency (CI),

and this is reported in Table 4 and Fig. 7 (absolute values).

Overall, the correlation is negative, namely higher Mean

speed implies lower Mean Frequency, but, in general, it

was a weak relationship: on average, the absolute correla-

tion value was 0.42 for the FG population and 0.27 for the

EG population, and it never exceeded 0.8.

In spite of the low correlation between speed and fre-

quency, the kinematic analysis was valuable for demon-

strating the consistency of the designed protocol. This is

shown in Fig. 8 which plots the evolution during task exe-

cution of the normalizedMean speed (panels a and c) and

the Time to velocity peak ratio (panels b and d). TheMean

speed graph is characterized, for both groups of subjects,

by a steady increase in the first 20% of the task execu-

tion (blue portion of the curve) followed by a plateau in

the remaining 80% of the task. The graph of the Time

to velocity peak ratio (TPR) is characterized by a simi-

lar trend, with an initial transient related to the first 20%

of the task execution, followed by a plateau for the rest

of the task. This suggests that there were no changes in

wrist kinematic strategies. It is worth noting, there was

a difference between the two groups. The FG subjects

exhibited a speed profile with higher symmetry as indi-

cated by the fact that TPR is closer to 50% than for the EG

subjects.

Finally, the analysis of the energy consumption revealed

that the average number of calories consumed during the

task was 63.80 ± 4.75 calories (mean and sem). Individual

values are shown in Table 4.
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a b

Fig. 5 AveragedMean Frequency results. Normalized FMean (Hz), of the FG (Panel a) and EG (Panel b), fitted with a third order polynomial function.
Frequency was normalized to the initial frequency of each sequence and averaged across subjects. Shaded area represents standard error

a b

c d

Fig. 6 OF results. Results related to OF indicators (Onset of Fatigue). Panels a and b show, for each FG subject (panel a) and EG subject (panel b), the
values of the three OF indicators: OF25% , OF50% , OF75% , expressed as number of “movements” that satisfy Eq. 3. Grey areas divide the task in three
phases. Panel c shows the Gaussian approximation of the probability density functions of the three OF indicators for the FG population (solid lines)
and EG population (dashed lines). Panel d shows the mean values and standard errors of the three OF indicators for the FG population (solid line)
and the EG population (dashed line)
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Table 3 Mean speed - Mean Frequency correlation coefficients

FG EG

S1 -0.68 -0.23

S2 -0.68 -0.54

S3 -0.37 0.04

S4 -0.39 -0.22

S5 -0.49 -0.61

S6 -0.54 0.01

S7 -0.58 -0.56

S8 -0.51 0.09

S9 -0.58 -0.56

S10 -0.01 -0.02

S11 -0.74 0.24

S12 -0.79 -0.06

S13 -0.06 -0.23

S14 -0.44 -0.22

S15 -0.26 -0.17

S16 -0.46 0.07

S17 -0.19 -0.28

S18 -0.17 -0.37

S19 0.15 -0.61

S20 0.34 -0.42

Discussion

The importance of muscle fatigue assessment in patients

with neuromuscular disorders has long been recognized.

Specifically, a precise measure of muscle fatigability could

provide crucial information in diagnosis, treatment plan-

ning and evaluation of therapy efficacy. Yet, there is a

lack of quantitative standardized and reliable methods for

fatigue assessment used in clinical practice and these may

not be feasible for all pathological populations at vari-

ous stages of a disease. Muscle fatigue assessment using

surface electromyography signals has been widely studied

under isometric conditions [38] and in particular during

maximum voluntary contractions [18, 20, 21]. However,

the capacity to voluntarily generate and maintain a max-

imal force in isometric conditions might be limited by a

lack of motivation and it could represent a highly demand-

ing task for people affected by severe weakness or injury.

When dealing with adolescent populations, it is common

to see a lack of full cooperation, which makes it chal-

lenging to measure (in a reliable manner) maximum con-

traction force and consequently muscle fatigue [25]. Fur-

thermore, it is worth highlighting that subjects with low

residual motor functions are hardly ever able to perform

MVCs. Hence, few tests based on dynamic exercises have

been proposed and validated [39, 40], thus representing

a consistent alternative to isometric contractions. Based

Table 4 Number of movements performed by each subject and
total calorie consumption

FG EG

N° Mov Cal N° Mov Cal

S1 94 70 97 55

S2 145 109 133 113

S3 104 62 66 50

S4 104 81 117 102

S5 146 103 105 64

S6 101 59 110 82

S7 86 73 209 137

S8 44 40 117 80

S9 73 60 66 37

S10 48 51 54 43

S11 61 40 60 22

S12 126 117 34 22

S13 38 18 67 39

S14 89 74 34 28

S15 105 90 49 37

S16 92 70 114 83

S17 150 106 75 51

S18 104 92 56 49

S19 49 31 57 33

S20 78 51 48 28

on these considerations, our approach aimed to evaluate

muscle fatigue, regardless of individual motor capabilities.

In particular, the use of a robotic task allows for the exper-

imenter to tailor the evaluation, in term of range ofmotion

and force required, to an individual subjects capability

and strength, thus allowing for adoption by a large patient

population. Additionally, the adoption of a method relying

on robot mediated movements assures a more controlled

and repeatable execution of the test than currently used

isometric or dynamic exercises. A preliminary, but differ-

ent, version of such a test has already been validated in a

pilot study which revealed its feasibility and repeatability

[31]. As an extension and consolidation of that prelimi-

nary study, in this paper we report the results obtained

with 40 healthy subjects tested with a novel improved ver-

sion of the robot-based assessment protocol. In particular,

we used a visco-elastic force instead of a pure viscous

force field since, with neuromuscular patients, a force that

depends on velocity could reduce the repeatability of the

results. In addition, we reduced the effort required to per-

form the test, with a resistive visco-elastic force in one

direction. This work revealed that the proposed test is

easy and fast to administer, provides an objective and reli-
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a

b

Fig. 7 CI results. Absolute values of theMean speed and theMean Frequency correlation for the FG (Panel a) and the EG (Panel b. Subjects are sorted
by correlation, as indicated in the bottom panel legend

able measure of muscle fatigue and can be used in a clini-

cal setting. It has also to be mentioned that the use of the

robotic device adds the ability to measure subjects’ perfor-

mances in terms of kinematic parameters, thus resulting

in amore detailed assessment of the patient. In the present

study, the kinematic analysis demonstrated the stability

of the OF indicators and it appears robust, given differ-

ent motor control strategies. Regarding the applicability of

the method, the experimental setup is minimal, requiring

sEMG from two target muscles and the correct alignment

between the human wrist and the robotic device. From

a clinical perspective, test duration is also important and

our test never lasted more than 3 min. It is even reason-

able to expect a shorter test time in clinical populations

compared to our healthy participants. We chose to base

our indicator of Onset of Fatigue on the Mean frequency

since its variance is tipically lower than that of Median

frequency [41]. The shift in Mean frequency towards the

lower frequency spectrum was noticeable in both the flex-

ion and extension groups, however the shift was greater

in the former. This may be due to different physiological

properties of the two muscles: I) from a biomechanical

perspective of the human wrist joint, the amplitude of

the range of motion in flexion is higher than that achiev-

able in extension (peak flexion moment is approximately

70% higher than peak extension moment [42]); II) the

percent decrement of Mean Frequency is proportional

to the amount of catabolites produced by muscle fibers

during activity [43]. In particular, the quantity of catabo-

lites depends on the average number of muscle fibers per

square unit of the muscle crossection [43] and conse-

quently the higher the crossection, the higher the amount

of catabolites and the greatest the rate of decrease of

the Mean Frequency ; III) muscle fiber type will influ-

ence sEMG parameters, in particular, a greater percent-

age of type II fibers leads to a greater rate of decrease

of the Mean Frequency [44]. As reported from other

studies, muscles belonging to the extensor group fatigue

more and faster than flexors [45], therefore, EG popu-

lation was expected to exhibit more fatigue. However,

directly comparing the single muscles extensor and

flexor carpi radialis, the physiological cross-sectional area

(PCSA) of flexor carpi radialis is about half the size of the

extensor carpi radialis [46]. Therefore, we can assume that

flexor carpi radialis has a lower force generating capac-

ity. We can speculate that, on a whole, when using the

same force field intensity for both flexion and extension,

the extensor muscles would fatigue more than the flex-

ors. It should be noted that we measured only one wrist

extensor muscle. The most important contribution of this

method is the development of and evaluation of the OF

measure. TheOF in the EG presented less variability com-

pared to the FG, probably because of the different muscle

properties mentioned above. As for the optimal version
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a b

c d

Fig. 8 Kinematics results. Panel a and c:Mean speed normalized by the mean of each subject and averaged over FG and EG subjects respectively.
Panel b and d: Time to peak ratio averaged over FG and EG subjects respectively. %Task identifies the relative ordinal number of the task-movements
of all the sequence. In all panels shaded areas indicate the standard error, the blue portions refer to the first 20% of the task while the red
corresponds to the remaining 80%

forOnset of Fatigue, the comparison amongOF25%,OF50%
and OF75% revealed that OF25% is the more consistent

and less variable. We can postulate that after an initial

decrease, which is very similar in both groups, the Mean

Frequency curves decreased with different slopes due to

different subject training levels and muscle physiological

properties. Our OF25% is also more inline with previ-

ous studies that have suggested that a mean frequency

decrease of 8% is representative of muscle fatigue onset

[47, 48].Moreover, our subjects’ ability to perform the task

correctly from the very beginning and the consequent sta-

bility of the kinematic parameters, support the adoption of

OF25% as an indicator of fatigue. Mean speed stabilized in

the first 20% of the task, suggesting that Mean Frequency

andOF25% are not related to kinematic changes. It is worth

noting that, in some cases, during the last part of the task,

the trend was inverted. From a physiological perspective,

this may be related to a de-recruitment of fatigued motor

units, in favor of the recruitment of new motor units [24].

This finding is also in line with previous studies show-

ing that, during submaximal contractions, motor units

recruitment can still increase when motor units start to

be fatigued, while during maximal contractions such a

rise is limited [49, 50]. On the other hand, we are aware

that the frequency recovery could be due to the effect

of cross-talk between adjacent muscles. However, since

we collected from the flexor and the extensor carpi radi-

alis, further investigations recording additional muscles

are needed to examine the potential effect of cross-talk

during our task. Additionally, it has been reported that

an increase in muscle temperature leads to an increase

in Mean Frequency [51]. Therefore, future work might

consider measuring surface temperature or muscle tem-

perature to investigate any potential relationship between
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an increase in temperature and the inversion of theMean

Frequency trend observed in our study. Regarding kine-

matic measurements, we found that the Mean Speed

stabilized and remained constant after an initial phase,

corresponding to the first 20% of the task, in which it

increased up to a plateau level. This suggests that Mean

Speed was not affected by muscle fatigue (and vice-versa),

which is in line with previous finding [52–54]. Conversely

from what was expected, we did not find changes in kine-

matic strategies that correlated with increasing fatigue

level. Specifically, the TPR did not show a shift in the peak

of the bell-shaped speed profile [55] from early trials to

the late trials in which fatigue appeared. A final aspect

to consider was task duration. In the proposed proto-

col, the number of repetitions performed, was decided by

the subjects and not superimposed by the experimenter.

Thus, subjects were instructed to stop when they felt

tired, which is crucial in a clinical scenario. The num-

ber of repetitions, therefore, could also be considered

as an additional measure of performance [56], especially

for populations with neuromuscular impairments, where

kinematics and sEMG might have to be cautiously inter-

preted. Our results in healthy participants demonstrate

that OF was independent from the amount of repetitions

of the reachingmovements performed. This may be a con-

sequence of the population studied, who could tolerate a

high level of resistance and may not stop the test when

they feel fatigue. To conclude, the developed algorithm

could be improved in the future by measuring individ-

ual wrist strength and grip force throughout the task [45].

Our approach used two levels of force, according to sex,

but customizing the force and normalizing to individual

maximal force production, could improveOF results. This

aspect is particularly relevant and needs to be considered

in the application of this method to pathological sub-

jects. Lastly, this study suggested that a fatigue assessment

coupling a robotic task and sEMG recordings is highly

feasible and practical. The present study provided a good

starting point for the application of the test in clinical

practice, however pilot experiments with neuromuscular

and age-matched healthy subjects are necessary to con-

firm the results. Finally, wrist robotic device guarantees

the repeatability of the task, providing the same force and

trajectory. Moreover without the addition of further mea-

surement tools we attempted to exploit the torque and

angular position data recorded by the robot as a simple

measure of the mechanical work performed by the sub-

ject during the test. Although such an approach does not

provide specific information about actual internal muscle

work or physiological work, it allowed for an estimate of

the total energy required by the task. Our test has been

demonstrated to require little effort, so the impact on

daily energy expenditure (avg 2500–3000 kcal) would be

minimal [57].

Conclusion

This test will provide clinicians with an objective

and easily readable indicator of muscle fatigue. The

method is simple, easy to administer and suitable for

patients/participants who are not able to generate high

levels of muscle contractions. This overcomes the prob-

lem of administering maximal contraction tests in neuro-

logical or injured populations. If the same robust results

could be obtained from pathological population, then this

method could be used as a standardmuscle test procedure

that is independent of the subjects ability or willingness

to perform voluntary efforts. In this context, the final per-

spective of the use a robotic device is to assess muscle

fatigue in very controlled conditions and with the pos-

sibility to change or adapt the task to the population

needs.
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fatigue evaluation in biomechanics. Clin Biomech. 2009;24(4):327–40.
https://doi.org/10.1016/j.clinbiomech.2009.01.010.

17. Carr JC, Beck TW, Ye X, Wages NP. Intensity-dependent EMG response
for the biceps brachii during sustained maximal and submaximal
isometric contractions. Eur J Appl Physiol. 2016;116(9):1747–55. https://
doi.org/10.1007/s00421-016-3435-6.

18. Kahl L, Hofmann UG. Comparison of algorithms to quantify muscle
fatigue in upper limb muscles based on sEMG signals. Med Eng Phys.
2016;38(11):1260–9. https://doi.org/10.1016/j.medengphy.2016.09.009.

19. González-Izal M, Malanda A, Navarro-Amézqueta I, Gorostiaga EM,
Mallor F, Ibañez J, Izquierdo M. EMG spectral indices and muscle power
fatigue during dynamic contractions. J Electromyogr Kinesiol. 2010;20(2):
233–40. https://doi.org/10.1016/j.jelekin.2009.03.011.

20. Hug F, Nordez A, Guével A. Can the electromyographic fatigue threshold
be determined from superficial elbow flexor muscles during an isometric
single-joint task?. Eur J Appl Physiol. 2009;107(2):193–201. https://doi.org/
10.1007/s00421-009-1114-6.

21. Oda S, Kida N. Neuromuscular fatigue during maximal concurrent hand
grip and elbow flexion or extension. J Electromyogr Kinesiol. 2001;11(4):
281–9. https://doi.org/doi:10.1016/S1050-6411(01)00004-9.

22. Oliveira ASC, Gonçalves M, Cardozo AC, Barbosa FSS. Electromyographic
fatigue threshold of the biceps brachii muscle during dynamic
contraction. Electromyogr Clin Neurophysiol. 2005;45(3):167–75.

23. Ratel S, Duché P, Williams CA. Muscle Fatigue during High-Intensity
Exercise in Children. Sports Med. 2006;36(12):1031–65. https://doi.org/10.
2165/00007256-200636120-00004.

24. Vøllestad NK. Measurement of human muscle fatigue. J Neurosci
Methods. 1997;74(2):219–27. https://doi.org/doi:10.1016/S0165-
0270(97)02251-6.

25. Halin R, Germain P, Bercier S, Kapitaniak B, Buttelli O. Neuromuscular
response of young boys versus men during sustained maximal
contraction. Med Sci Sports Exerc. 2003;35(6):1042–8. https://doi.org/10.
1249/01.MSS.0000069407.02648.47.

26. Gregory CM, Bickel CS. Recruitment Patterns in Human Skeletal Muscle
During Electrical Stimulation. Phys Ther. 2005;85(4):358–64. https://doi.
org/doi:10.1093/ptj/85.4.358.

27. Naughton G, Carlson J, Fairweather I. Determining the Variability of
Performance on Wingate Anaerobic Tests in Children Aged 6-12 Years. Int
J Sports Med. 1992;13(07):512–7. https://doi.org/10.1055/s-2007-
1021308.

28. Marini F, Squeri V, Morasso P, Konczak J, Masia L. Robot-Aided Mapping
of Wrist Proprioceptive Acuity across a 3D Workspace. PLOS ONE.
2016;11(8):0161155. https://doi.org/10.1371/journal.pone.0161155.

29. Marini F, Squeri V, Morasso P, Campus C, Konczak J, Masia L.
Robot-aided developmental assessment of wrist proprioception in
children. J NeuroEngineering Rehabil. 2017;14(1):3. https://doi.org/10.
1186/s12984-016-0215-9.

30. De Santis D, Zenzeri J, Casadio M, Masia L, Morasso P, Squeri V. A new
method for evaluating kinesthetic acuity during haptic interaction.
Robotica. 2014;32(08):1399–414. https://doi.org/10.1017/
S0263574714002252.

31. Mugnosso M, Marini F, Gillardo M, Morasso P, Zenzeri J. A novel method
for muscle fatigue assessment during robot-based tracking tasks. In: Proc.
IEEE Int. Conf: Rehab. Robot (ICORR); 2017. p. 84–9. https://doi.org/10.
1109/ICORR.2017.8009226.

32. Oldfield RC. The assessment and analysis of handedness: The Edinburgh
inventory. Neuropsychologia. 1971;9(1):97–113. https://doi.org/doi:10.
1016/0028-3932(71)90067-4.

33. Masia L, Casadio M, Giannoni P, Sandini G, Morasso P. No Title. J
NeuroEngineering Rehabil. 2009;6(1):44. https://doi.org/10.1186/1743-
0003-6-44.

34. Marini F, Contu S, Morasso P, Masia L, Zenzeri J. Codification
mechanisms of wrist position sense. In: Proc. IEEE Int. Conf. Rehab. Robot
(ICORR); 2017. p. 44–9. https://doi.org/10.1109/ICORR.2017.8009219.

35. Phillips BA, Lo SK, Mastaglia FL. Muscle force measured using “break”
testing with a hand-held myometer in normal subjects aged 20 to 69
years. Arch Phys Med Rehabil. 2000;81(5):653–61. https://doi.org/doi:10.
1016/S0003-9993(00)90050-9.

36. Bäckman E, Johansson V, Häger B, Sjöblom P, Henriksson KG.
Isometric muscle strength and muscular endurance in normal persons
aged between 17 and 70 years. Scand J Rehabil Med. 1995;27(2):
109–17.

37. Holmes MWR, Tat J, Keir PJ. Neuromechanical control of the forearm
muscles during gripping with sudden flexion and extension wrist
perturbations. Comput Methods Biomech Biomed Eng. 2015;18(16):
1826–34. https://doi.org/10.1080/10255842.2014.976811.

38. O’Malley M, Nolan P, LM. Electromyogram median frequency, spectral
compression and muscle fibre conduction velocity during sustained
sub-maximal contraction of the brachioradialis muscle. J Electromyogr
Kinesiol. 2002;12(2):111–8. https://doi.org/doi:10.1016/S1050-
6411(02)00004-4.

https://doi.org/10.1016/j.ergon.2010.11.005
https://doi.org/10.1016/j.ergon.2010.11.005
https://doi.org/10.1016/j.humov.2015.09.006
https://doi.org/10.1016/j.humov.2015.09.006
https://doi.org/10.1123/mcj.16.2.265
https://doi.org/10.1016/j.clinph.2007.09.126
https://doi.org/10.1016/j.clinph.2007.09.126
http://vuh-la-uhra.herts.ac.uk/handle/2299/18352 http://uhra.herts.ac.uk/handle/2299/18352
http://vuh-la-uhra.herts.ac.uk/handle/2299/18352 http://uhra.herts.ac.uk/handle/2299/18352
http://vuh-la-uhra.herts.ac.uk/handle/2299/18352 http://uhra.herts.ac.uk/handle/2299/18352
https://doi.org/10.1016/j.nmd.2012.10.010
https://doi.org/10.1002/mus.21544
https://doi.org/10.1177/1049909109358420
https://doi.org/10.1111/dmcn.12213
https://doi.org/doi:10.1016/S1474-4422(09)70272-8
https://doi.org/10.1016/j.clinbiomech.2009.01.010
https://doi.org/10.1007/s00421-016-3435-6
https://doi.org/10.1007/s00421-016-3435-6
https://doi.org/10.1016/j.medengphy.2016.09.009
https://doi.org/10.1016/j.jelekin.2009.03.011
https://doi.org/10.1007/s00421-009-1114-6
https://doi.org/10.1007/s00421-009-1114-6
https://doi.org/doi:10.1016/S1050-6411(01)00004-9
https://doi.org/10.2165/00007256-200636120-00004
https://doi.org/10.2165/00007256-200636120-00004
https://doi.org/doi:10.1016/S0165-0270(97)02251-6
https://doi.org/doi:10.1016/S0165-0270(97)02251-6
https://doi.org/10.1249/01.MSS.0000069407.02648.47
https://doi.org/10.1249/01.MSS.0000069407.02648.47
https://doi.org/doi:10.1093/ptj/85.4.358
https://doi.org/doi:10.1093/ptj/85.4.358
https://doi.org/10.1055/s-2007-1021308
https://doi.org/10.1055/s-2007-1021308
https://doi.org/10.1371/journal.pone.0161155
https://doi.org/10.1186/s12984-016-0215-9
https://doi.org/10.1186/s12984-016-0215-9
https://doi.org/10.1017/S0263574714002252
https://doi.org/10.1017/S0263574714002252
https://doi.org/10.1109/ICORR.2017.8009226
https://doi.org/10.1109/ICORR.2017.8009226
https://doi.org/doi:10.1016/0028-3932(71)90067-4
https://doi.org/doi:10.1016/0028-3932(71)90067-4
https://doi.org/10.1186/1743-0003-6-44
https://doi.org/10.1186/1743-0003-6-44
https://doi.org/10.1109/ICORR.2017.8009219
https://doi.org/doi:10.1016/S0003-9993(00)90050-9
https://doi.org/doi:10.1016/S0003-9993(00)90050-9
https://doi.org/10.1080/10255842.2014.976811
https://doi.org/doi:10.1016/S1050-6411(02)00004-4
https://doi.org/doi:10.1016/S1050-6411(02)00004-4


Mugnosso et al. Journal of NeuroEngineering and Rehabilitation          (2018) 15:119 Page 14 of 14

39. Dimitrov G, Arabadzhiev T, Mileva K. Muscle fatigue during dynamic
contractions assessed by new spectral indices. In: Medicine and science;
2006.

40. Potvin JR, Bent LR. A validation of techniques using surface EMG signals
from dynamic contractions to quantify muscle fatigue during repetitive
tasks. J Electromyogr Kinesiol Off J Soc Electrophysiological Kinesiol.
1997;7(2):131–9.

41. Knaflitz M, Merletti R, De Luca CJ. Inference of motor unit recruitment
order in voluntary and electrically elicited contractions,. J Appl Physiol
(Bethesda, Md. : 1985). 1990;68(4):1657–67. https://doi.org/10.1152/jappl.
1990.68.4.1657.

42. Gonzalez R, Buchananf T, Delp S. How muscle architecture and moment
arms affect wrist flexion-extension moment. J Biomech. 1997;30(7):
705–12.

43. Merletti R, Knaflitz M, De Luca CJ. Myoelectric manifestations of fatigue
in voluntary and electrically elicited contractions. J Appl Physiol.
1990;69(5):1810–20.

44. Gerdle B, Henriksson-Larsén K, Lorenzton R, Wretling M-L. Dependence
of the mean power frequency of the electromyogram on muscle force
and fibre type. Acta Physiologica Scandinavica. 1991;142(4):457–65.
https://doi.org/10.1111/j.1748-1716.1991.tb09180.x.

45. Hggg ’ GM, Milerad2 E. Forearm extensor and flexor muscle exertion
during simulated gripping work -an electromyographic study. Clin
Biomech Clin Biomech. 1997;1212(1):39–43.

46. MirakhorloM, Visser JMA, Goislard de Monsabert BAAX, van der Helm FCT,
Maas H, Veeger HEJ. Anatomical parameters for musculoskeletal
modeling of the hand and wrist. Int Biomech. 2016;3(1):40–9. https://doi.
org/10.1080/23335432.2016.1191373.

47. Oberg T, Sandsjo L, Kadefors R, Öberg T, Sandsjö L, Kadefors R.
Electromyogram mean power frequency in non-fatigued trapezius
muscle. Eur J Appl Physiol Occup Physiol. 1990;61(5-6):362–9. https://doi.
org/10.1007/BF00236054.

48. Szucs K, Navalgund A, Borstad JD. Scapular muscle activation and
co-activation following a fatigue task. Med Biol Eng Comput. 2009;47(5):
487–95. https://doi.org/10.1007/s11517-009-0485-5.

49. Croce RV, Miller JP. The effect of movement velocity and movement
pattern on the reciprocal co-activation of the hamstrings. Electromyogr
Clin Neurophysiol. 2003;43(8):451–8.

50. Marbini A, Ferrari A, Cioni G, Bellanova MF, Fusco C, Gemignani F.
Immunohistochemical study of muscle biopsy in children with cerebral
palsy. Brain Dev. 2002;24(2):63–6.

51. Madigan M, science in sports And PP-M. A muscle temperature
compensation technique for EMG fatigue measures. 2002.
undefined.europepmc.org.

52. Gates DH, Dingwell JB. The effects of neuromuscular fatigue on task
performance during repetitive goal-directed movements. Exp Brain Res.
2008;187(4):573–85. https://doi.org/10.1007/s00221-008-1326-8.

53. Lucidi CA, Lehman SL. Adaptation to fatigue of long duration in human
wrist movements. J Appl Physiol (Bethesda, Md. : 1985). 1992;73(6):
2596–603.

54. Selen LPJ, Beek PJ, van Dieën JH. Fatigue-induced changes of
impedance and performance in target tracking. Exp Brain Res.
2007;181(1):99–108. https://doi.org/10.1007/s00221-007-0909-0.

55. Abend W, Bizzi E, Morasso P. Human arm trajectory formation,. Brain.
1982;105(Pt 2):331–48.

56. Octavia JR, Feys P, Coninx K. Development of Activity-Related Muscle
Fatigue during Robot-Mediated Upper Limb Rehabilitation Training in
Persons with Multiple Sclerosis: A Pilot Trial. Mult Scler Int. 2015;2015:
650431. https://doi.org/doi:10.1155/2015/650431.

57. Tooze JA, Schoeller DA, Subar AF, Kipnis V, Schatzkin A, Troiano RP.
Total daily energy expenditure among middle-aged men and women:
the OPEN Study,. Am J Clin Nutr. 2007;86(2):382–7.

https://doi.org/10.1152/jappl.1990.68.4.1657
https://doi.org/10.1152/jappl.1990.68.4.1657
https://doi.org/10.1111/j.1748-1716.1991.tb09180.x
https://doi.org/10.1080/23335432.2016.1191373
https://doi.org/10.1080/23335432.2016.1191373
https://doi.org/10.1007/BF00236054
https://doi.org/10.1007/BF00236054
https://doi.org/10.1007/s11517-009-0485-5
https://doi.org/10.1007/s00221-008-1326-8
https://doi.org/10.1007/s00221-007-0909-0
https://doi.org/doi:10.1155/2015/650431

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Methods
	Partecipants
	Task and procedure
	Data analysis

	Results
	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of Data and Materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

