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Abstract
The main objective of this work is to establish a framework for processing and evaluating the lower limb electromyography
(EMG) signals ready to be fed to a rehabilitation robot. We design and build a knee rehabilitation robot that works with
surface EMG (sEMG) signals. In our device, the muscle forces are estimated from sEMG signals using several machine
learning techniques, i.e. support vector machine (SVM), support vector regression (SVR) and random forest (RF). In order
to improve the estimation accuracy, we devise genetic algorithm (GA) for parameter optimisation and feature extraction
within the proposed methods. At the same time, a load cell and a wearable inertial measurement unit (IMU) are mounted on
the robot to measure the muscle force and knee joint angle, respectively. Various performance measures have been employed
to assess the performance of the proposed system. Our extensive experiments and comparison with related works revealed
a high estimation accuracy of 98.67% for lower limb muscles. The main advantage of the proposed techniques is high
estimation accuracy leading to improved performance of the therapy while muscle models become especially sensitive to
the tendon stiffness and the slack length.

Keywords Rehabilitation robotics · Electromyography · Support vector machine · Support vector regression ·
Genetic algorithm · Random forest

1 Introduction

Rehabilitation is one of the most important types of cares
that offers improvement or recovery of daily life abilities
to patients [1, 2]. In particular, the use of robots in medical
applications and rehabilitation in recent years has drastically
increased. Vast amount of research is being conducted in
this field for several purposes such as in upper [3] and
lower [4] limbs of human body. Studies show that robots
can significantly help physiotherapists in this area [5].
Physiotherapy is the physical or physiological treatment of
the body that aims to improve the muscle function and
stimuli. In physiotherapy, a therapist tries to restore the
ability of the injured limb to perform normal movements by
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stimulating the neuromuscular and muscular stimuli. One of
the disadvantages of this method is the difficulty imposed
to physicians to carry out a repetitive errorless action
without boredom and degradation in quality of service to the
patient [6, 7]. Rehabilitation knowledge provides a useful
framework for enabling the restoration of the motor abilities
of patients with muscular weakness.

An accurate evaluation and successful treatment requires
trained specialists as well as full rehabilitation facilities and
equipment [8]. These activities then continue with assistive
exercises where the patient and robot share the muscular
force needed to move, and consequently, muscle strength
increases.

Electromyography is the technique of obtaining electrical
signals produced during muscle contractions. In fact, each
of the muscles in the body is made up of a number of
stimulating units that are responsible for contracting the
muscles and producing strength in the muscles. Muscle
contraction can be detected during neural activity by
recording and analysing EMG signals [9]. Surface EMG
reflects the amount of musculoskeletal electrical activity
in a noninvasive manner. This signal is highly correlated
with muscle strength under certain circumstances and
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motor tasks. Therefore, it could be used as a means of
measuring bioelectrical events associated with muscle fibre
contraction. For example, in prosthetic control, a more
accurate imitation of the natural command is expected to be
provided between the central nervous system and the motor
system [10]. Assistive robotic devices use these signals as
control inputs [11].

Estimation of muscular force is one of the ongoing
research topics in the field of biomechanics with the aim
of enhancing clinical decision making [4, 12, 13]. In force-
based physiotherapy, feedback should always be taken from
the muscular force to have a system with minimum possible
error [14]. The integration of various sensors’ data and the
evaluation of the patient’s clinical reactions with the help of
active and passive rehabilitation robots has been studied in
recent years [15]. As a result, these systems must be user-
centered and controlled by taking into account the user’s
dynamic specifications, and EMG signals [16]. In fact,
EMG signals can provide information about the difficulty
of the associated task for the user. Hence, if the muscular
force can be estimated with least possible error, the accuracy
of applying force to the user’s limb via the prosthesis will
be increased. In this regard, Kigochi et al. provided an
EMG-based approach to control the upper limb body robot
in accordance with the user’s intent to move and relocate
[17]. They attempt to take into account both characteristics
of EMG signals and human body in their method. Deep
learning techniques have been also used for this propose
[18, 19]. For instance, a deep neural network is proposed
in [20] to learn mapping from movement space to muscle
space. In [19], an estimation model for upper limb joint
angle based on deep learning is proposed. The authors use
sEMG and studied the touching motion and the compound
task motion of the upper limbs. The main challenge with
deep learning methods is that large amount of training data
is needed which is not always the case.

Surface EMG is affected by physiological factors such as
phase neutralisation and improper placement of electrodes.
These factors subsequently affect the accuracy of force
estimation by the sEMG [21]. External factors such as
motion artifacts, ambient noise, and electrical equipment
noise can also affect the quality of the acquired sEMG
signals [22]. Therefore, it is very important to devise
suitable pre-processing methods to mitigate the defects of
such noises. Various techniques have been proposed for this
purpose. The pre-processing techniques commonly involve
some filtering, full-wave rectification and wave smoothing
[23, 24]. The main task after pre-processing stage is to
model the EMG signal(s) into the desired output. This
can be normally divided in two forms of classification or
estimation. In classification, the input signal is normally
categorised into several classes depending on the tasks
performed by subjects during the signal acquisition. On

the other hand, estimation techniques seek for ways to
predict the muscle force, exerted by the associated limb,
from the EMG signals. Different modeling techniques have
been used to accurately estimate muscle strength using
EMG signals. The existing models can be categorised in
different ways. For example, there are some input-output
models (black box models), including artificial neural
network (ANN) and support vector machine [25–27]. One
of the effective factors in creating muscle strength in
various functions is the speed of muscle contraction. The
relationship between isotonic power and the rate of muscle
contraction has been introduced by Fan and March through
an exponential model [28]. Another class of models is
called physic-based model such as Hill-type model, which
has been proposed to predict the force created in muscle
fibres at different speeds [29]. In this model, the assumption
is that the estimated muscle force is proportional to the
muscle activation, therefore, the transformation from EMG
to muscle activation is modeled. There are also some
studies on the longitudinal effect of muscle fibres on muscle
strength. Among these studies, the works conducted by
Edman et al. [30] and Deleuze [31] can be mentioned.
Expansion of these studies has led to the presentation of
various mathematical models for predicting muscle strength
such as multi-component relationships [32, 33]. Hashemi
et al. used the parallel cascade detection (PCI) modeling
method to estimate the muscular force induced in the wrist
based on the EMG signals of the arm muscles [34]. Shabani
and Mahjoub were able to improve the capabilities of the
designed robot by using the EMG signals obtained from the
knee [35].

In recent experimental studies, the researchers use knee
rehabilitation devices to further exploiting the patient’s
neuromuscular abilities and predict muscle strength and
active torque of the knee joint [35]. In addition, quadriceps
femoris strength issues are common in individuals with knee
joint impairments after injury or surgery [36]. Therefore,
estimating the torque of the knee joint muscles by the
neural network and various methods is one of the most
important steps to improve the control function of human
interaction in the knee rehabilitation robot [37]. Using
ANN, Khanjani et al. were able to estimate lower limb
forces using EMG signal [38]. In another study, the authors
were able to calculate the amount of knee torque by a
support vector regression based on electromagnetic signals
[39]. Wang et al. were able to calculate the parameters of
the backup vector regression method using particle density
(PSO) optimisation method [40]. Meng et al. also used
the SVR model to predict the lower limb force by EMG
to control the rehabilitation assistant robot [41]. The main
issue in using existing SVR-based techniques is appropriate
selection of model parameters which is normally performed
manually.
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In this paper, the aim is to estimate the exerted
force by knee muscles from acquired sEMG signals. We
address both classification and estimation problems by
applying appropriate machine learning techniques to the
data obtained from our designed rehabilitation device.
For classification task we apply techniques based on
support vector machine. For estimation, we propose using
support vector regression and random forest. Moreover,
we propose using genetic algorithm for improving the
features extraction and parameter optimisation in the
aforementioned methods. The contributions of this work are
listed below:

– Designing and implementing an experimental set up to
simultaneously record sEMG and force signal of knee
movement at any arbitrary angle.

– Data recording of several subjects with the designed
protocol.

– Classification of EMG signals and estimation of muscle
force signal from sEMG signals.

– Utilising three main machine learning techniques,
namely, SVM, SVR and RF.

– Using Genetic Algorithm to obtain suitable features
from the input signals to improve the classification
accuracy.

– Using Genetic Algorithm to optimise and tune the
parameters of both classification and prediction models.

The rest of the paper is organised as follows. Section 2
represents the system design and implementation details,
including the rehabilitation device specifications and data
acquisition process. In Section 3, the proposed machine
learning techniques used in this research will be described.
In Section 4, our proposed approach for optimising the
model parameters using genetic algorithm will be discussed.
Section 5 is devoted to the experimental results for both
classification and prediction. Finally, a conclusion is drawn
in Section 6.

2 System design and implementation

2.1 Knee rehabilitation device

Single-joint training is chosen when improvement of
functional ability of a specific joint is required. The knee
rehabilitation device is a robot of one degree of freedom that
is designed and implemented to rehabilitate the knee joint
and leg muscles (Fig. 1). The robot consists of mechanical,
electrical, control, and medical equipment. The mechanical
part includes an adjustable seat, belt, force measurement
mechanism and calibrated arc with angles of 30, 60, and
90◦. Single-joint training is usually selected for range
of motion exercise. These angles were calculated by the
designed inertial measurement unit (IMU) located on the

Fig. 1 The architecture of knee rehabilitation device with annotated details
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user’s knee as an electrogoniometer. The control section
also includes the electric motor, the driver and the interface
board. Medical equipment includes EMG recording devices,
surface electrodes, conductive gels, and so on. A computer
connected to an EMG device and an Arduino board were
used to receive force data from a load cell (shear beam
model-SEWHA-SB210) followed by an A/D converter
(HX711). In order to perform physiotherapy exercises and
knee rehabilitation, the patient sits on a chair and place
their foot on the load cell fixed by the brace. The patient-
centered orientation of the patient with the rotational axis
of the robot is very important in the correct measurement
of the patient’s knee angle. During training, sEMG signals
and the corresponding force signals are simultaneously
recorded.

Isokinetic dynamometer as a testing method that requires
extensive training is reliable in assessing muscle strength
and the estimated joint torque is calculated from the
sum of the partial torque contributions provided by
the muscles. In comparison, this relatively inexpensive
measurement system is used in clinical practice through
hand held dynamometers for the examination of muscle
testing. It has been established as a reliable and cost-
effective measurement technique in experienced hands
under controlled conditions. Moreover, it shows more
effective result rather torque calculation for muscle force
estimation and provides a means of adjustability and
sensor portability for clinicians. To appropriately measure
muscle strength, the sensor type, shape and sensitivity are
determined depending on the type and shape of the target
limb and the direction of its movement and the amount
of force applied by the limb. The location of the sensor
also plays an important role in accurately measuring muscle
strength [42].

2.2 Data recording

Five healthy individuals with no history of illness, diet, or
medication were invited to take part in the experiments.
The age and height characteristics of the individuals were
measured, and their mean and standard deviation were
23.5 ± 4.5 years, and 174.10 ± 4.3cm, respectively. In
this experiment, 60◦ isocentric knee exercise performed
on 5 healthy people. All volunteers were subjected to
sEMG analysis and examined in universities’ corrective
exercise and rehabilitation laboratory (CRL) according
to the approved protocol. The testers were also directly
supervised by a clinical faculty mentor. The subjects where
asked to first wax their right leg and then sit on a designed
knee rehabilitation device and place their right foot on the
force sensor. The leg is fully fixed by the brace. During the
exercise, the person was asked to apply force to the load cell

Fig. 2 Electrode locations and detail: (1) rectus femoris; (2) vastus
medialis; (3) vastus lateralis; (4) zero reference electrode

for 5 s to relax and open the knee and rest for 5 s. These
steps were performed 3 times in a row (without fatigue) and
sEMG signals of the quadriceps femoris muscle contraction
and its corresponding force were recorded.

To record the sEMG signals, an 8-channel EMG signal
recording device is used. Ag-AgCl surface electrodes
were also used. sEMG signals, according to the SENIAM
standard,1 are recorded from three quadriceps muscles:
vastus medialis (VM), vastus lateralis (VL) and rectus
femuris (RF) with the sampling frequency of 1 kHz (Fig. 2).
The lower-limb muscles of invited subjects involved in
the knee exercise are checked and the exact locations of
the electrodes are identified. Due to the wide frequency
range of the EMG signal variations, skin cleansing is
essential to reduce sensing impedance. For this purpose,
the skin surface must be cleaned of dead cells with a soft
sandpaper before installing the cast leads. The skin was then
thoroughly cleansed by alcohol. Calibration of the load cell
was performed using a pressure device where a continuous
force in the range 1-to-300 N is exerted to the load cell
over time. At the same time, the load cell output was being
collected at every second. This gives proportion of the
exerted force against the movement at a constant velocity
which is considered as a baseline. Then, the force exerted
by the subjects in the real experiments and the movement of
the knee are recorded and compared with the baseline.

It is desirable that the recorded EMG data and the
measured force by the load cell be used respectively as input
and output of the proposed models. The aim of this setting
is to compare the measured source with the proposed sEMG
and analyse the performance and accuracy of the system.

1http://www.seniam.org
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3Materials andmethods

In this study, we propose SVM, RF and their variants
as classifiers for finding the correct data class, i.e. active
and rest. Further, SVR and optimised SVR using genetic
algorithm are proposed for estimation of the force signal
from the recorded sEMGs. In this section, we first give
details of the pre-processing steps applied to both EMG and
force signals. Then, three different supervised classification
techniques, i.e. support vector machine, support vector
regression, and random forest, will be explained.

3.1 Pre-processingmodule

We follow common state-of-the-art pre-processing tech-
niques in order to remove unwanted noise and artifacts
from both EMG and force signals [43, 44]. Typically, low
frequencies 1-20Hz which do not involve important infor-
mation and are corrupted by movement artifacts should be
rejected. Radiation from power sources, which is also called
Power-Line Interference, is an ambient noise arising at 50 or
60 Hz. The impact of this noise can be mitigated by apply-
ing a narrow-band notch filter. Overall, these steps which
help to eliminate noise and prepare the EMG signal for force
estimation are applied in our study:

1. Removing the DC component of the signals.
2. Band-pass butterworth filtering with cut off frequency

of 20 and 500 Hz.
3. Passing the narrowband notch filter.
4. Half-wave rectification of the filtered signal.

5. Signal softening.
6. Signal normalisation.

The pre-processing steps for the force signal are as
follows:

1. Passing notch filter.
2. Removing the signal bias.
3. Softening with a two-level low-pass butterworth filter

with cut off frequency of 15 Hz.

In order to clearly observe the effects of each pre-
processing step, Figs. 3 and 4 are given as samples of sEMG
and force signals, respectively. As seen from Fig. 3(a),
the raw sEMG signals are noisy but when filtered through
a two-stage process, the extreme frequency contents are
removed. The rectification and smoothing stages make the
signal ready for feature extraction Fig. 3(f). The same
sequence of pre-processing steps are applied to force
signals (Fig. 4). This figure shows that raw signal include
some noise and fluctuations but the pre-processed signal is
smooth and ready for further processing (Fig. 4(f)). In both
figures, the pre-processed signal (i.e. Figs. 3 and 4 (f)) are
used as inputs of our machine learning models which will
be described next.

3.2 Classificationmodule

In the following subsections, we explain the working
mechanisms of the classifications techniques we applied
to the pre-processed sEMG data. First, support vector

05101520253035

Time (s)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

A
m

pl
itu

de
 (

V
)

Rectus Femoris

EMG (DC removed)
Raw EMG

05101520253035
Time (s)

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

A
m

pl
itu

de
 (

V
)

Low-pass filtering result

Low-pass Filtered EMG using Butterworth
EMG with DC removed

05101520253035

Time (s)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

A
m

pl
itu

de
 (

V
)

Notch Filtering results

Unfiltered
Notch filtered

05101520253035

Time (s)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

A
m

pl
itu

de
 (

V
)

Rectified

05101520253035

Time (s)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

A
m

pl
itu

de
 (

V
)

Smoothing results

Original filtered EMG
Smoothed Using 'loess'

05101520253035

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 A
m

pl
iu

tu
de

Processed EMG

Fig. 3 EMG pre-processing example for subject 1 (S1) and rectus femoris: (a) DC removal, (b) butterworth filtering, (c) notch filtering, (d)
rectification, (e) smoothing, (f) normalisation
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Fig. 4 Force signal pre-processing: (a) raw signal, (b) butterworth filtering, (c) notch filtering, (d) rectification, (e) smoothing, (f) normalisation

machine will be briefly described followed by random forest
technique.

3.2.1 Support vector machine

Support vector machine is a supervised learning method
used for classification and regression. It was first introduced
in 1992 by Vapnik and his colleagues based on statistical
learning theory [45]. The basis of SVM classification is
linear data separation where samples of the different classes
are separated by a hyper plane. The use of support vector
machine is mainly in cases where the data is not linearly
separable in their current domain. SVM transforms the
input data points to a feature space where can be linearly
separated. In fact, it separates the classes by introducing
support vectors to maximise the distance between the
samples of different classes. Thus, it is also referred to as
large-margin classification. In general, there exist several
hyper-planes that can separate the data samples. What
makes the support vector machine different from other
classifiers is how it selects the hyper-plane. In a support
vector machine, the objective is to find the maximum
margin between the two classes. Therefore, it selects a
hyper-plane in which distance from the nearest data on
both sides of the line separator is maximised. If such
a hyper-plane is identified, it is called maximum-margin
hyper-plane. The decision-making function for separating
data is determined by a subset of closest training data
to the hyper-plane, called support vectors. In fact, the
optimal hyper-plane in a support vector machine is a
separator between support vectors. Due to simplicity and
flexibility of SVM we are interested to apply it for sEMG

classification. However, we propose an intelligent method,
based on genetic algorithm, to automatically select and tune
appropriate features and parameters, respectively.

3.2.2 Random forest

Definition Random forest method is categorised as a
supervised ensemble learning technique [46]. Ensemble
learning refers to the process by which multiple models, .
experts, classifiers, etc., are combined and work together
to solve a particular computational intelligence problem.
Hence, RF produces several different decision trees as basic
classifications and applies the majority vote to combine with
the results of the main trees [46]. Random forest works
based on multiple deep decision trees as classifiers. Each
classifier associated to an input sample is shown by h(x, θk),
where x is an input sample and θk is the training set for
the kth tree. The θ ’s are independent of each other but with
the same probabilistic distribution. For each sample x, the
corresponding tree provides a class prediction, and finally
the class with the highest number of tree votes on input
x is selected as the winning class. The flow chart of RF
algorithm used in this work is shown in Fig. 5. The random
forest algorithm increases the accuracy of the individual
classification tree. In an individual tree, small changes in the
training set generates some instability, which disrupts the
accuracy of the prediction in the experimental sample. But
group of random trees (random forest) adapts to change and
eliminates instability.

Out of bag estimation Out of bag (OOB) estimation is a
method to evaluate the prediction error of random forests.

688 Med Biol Eng Comput (2022) 60:683–699



Fig. 5 Flow chart of random forest algorithm

It utilises bootstrap aggregating to sub-samples of data
that used for training. Suppose each classifier with a new
training set is built using a decision tree method. The
training sub-sets θk are formed according to the main
training set θ using bootstrap technique. Then, the h(x, θk)

tree classifiers are created, and each tree is voted for
predicting the right class. Those training samples which
do not belong to the k-class training set are called the
out-of-bag (OOB) samples. Equation 1 shows the estimate
approach for the OOB samples of the forest. In order to
obtain the sample class, the prediction of the trees whose
training set does not contain the sample must first be
recognised, and then the category with the highest average
vote on the forest tree predictions will be considered as the
corresponding sample class.

y(x) = arg max
c

(
1

k

K∑
k=1

I (hk(x) = c, x ∈ OOBk)

)
(1)

I (hk(x))= c, x ∈OOBk =
{

1, if hk(x) = c, x ∈ OOBk .
0, otherwise.

(2)

where k is the number of trees, c is the class index, hk(x)

is the prediction of the kth tree from the sample x, and

OOBK is the set of OOB for kth tree samples. Equation 2
shows that the value of the index I function will be one if
x is among the samples of the kth tree (i.e. not a member
of the kth tree training set). Also the kth tree classifies the
sample x into class c. Otherwise, the value of the index
function I becomes zero. To estimate the OOB samples on
the forest, we first modify Eq. (2) into Eq. (3), and then use
εk in Eq. (4), which is a classif ication error of the forest on
the OOB samples of the kth tree. N is the total number of
samples of the main training and xi is the ith sample on the
main training set.

I ((yi, xi) ∈ OOBk) =
{

1, if (yi, xi) ∈ OOBk .
0, otherwise.

(3)

εk(OOB) =
∑N

i=1(y(xi) = yi, (yi, xi)OOBk)∑N
i=1 I ((xi, yi) ∈ OOBk

(4)

3.3 Estimationmodule

Although SVM and RF can be used for classification of the
state of the subject, they cannot be used for evaluating the
system performance based on the measured muscle force.
Support vector regression (SVR) can be used in this regard
as it solves predictive and estimation problems [47]. In order
to use the support vector machine in regression problems,
Vapnik used an loss function that ignores errors at a certain
distance from the actual values denoted by ε = y − f (x, α)

[45], where x is the input data and f (x, α) is the response (a
set of indicator functions). This loss function is then defined
as follows:

L(y, f (x, α)) =
{

0, if y = f (x, α).
1, if y �= f (x, α).

(5)

Now, let us consider the approximation problem for the
following set as:

D = {(x1, y1), · · · (xt , yt )}, x ∈ R
n, y ∈ R (6)

The regression function is estimated as follows:

f (x) ∼< w, x > +b (7)

where <> denotes the inner product between two vectors
(w and x are the weight and input space vectors,
respectively). The optimal regression function can be
defined by minimising the following function:

φ(w, α) = 1

2
‖w‖2+C�i(ξ

−
i +ξ+

i ) s.t .

{
yi − (< w, xi > +b) ≤ ε + ξ+

i
ξ+, ξ− ≥ 0

(8)

where C is a predetermined value, and ξ−
i and ξ+

i

are slack variables that determine the upper and lower
constraints of the system output. If the data is represented as
separate outputs, it provides an optimal level that separates
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the data without error and with the maximum distance
between the hyperplane and the nearest training points
(support vectors). If we define the training points as xi and
yi , and the input vector as xi ∈ R

n, where the data is linearly
separable, the equation would be as follows:

y = f (x) = sign(�iαi < w, xi > +b) (9)

where y is the output and yi is the value of the associated
class to training sample xi . The vector x = [xi, x2, · · · xn]
represents an input vector. The values xi; i = 1, 2, · · ·N
are support vectors. If the data is not linearly separable, it
would be possible to transform them to a higher space by
applying some pre-processing. In this case, the equation (9)
is converted to:

y = f (x) = sign(�iαik(x, xi) + b) (10)

The k(xi, x), is a kernel function that generates several
inner products to create machines with different types of
nonlinear surfaces in the data space. Various kernels are
used for the regression model of the support vector machine,
which are: linear, polynomial and radius basis function
(RBF) kernels. Normally, the Gaussian radius basis function
is more appropriate for predicting [45]. The equation for this
kernel is as follows:

k(x, y) = exp
||xi − x||2

2σ 2
(11)

4 Proposedmodel selection and parameter
tuning

In the previous section, the techniques employed in this
study for EMG classification (i.e. SVM and RF) and force
estimation (i.e. SVR) were described. However, there are
two major challenges in maximising the performance of
these methods: (i) selecting the most appropriate features,
and (ii) optimising the tunable parameters. This section is
devoted to provide suitable approaches for model selection
and parameter optimisation. We propose to use genetic
algorithm for two important tasks, i.e. feature extraction
and parameter optimisation. The procedure of the proposed
approach is as follows. The support vector machine model is
formed using the training data and the calculated parameters
(by GA) for desired hyperplanes. Then, in order to calculate
the objective function, the test data is classified by the
trained SVM model and an error matrix is formed. After
evaluating the members in GA, three steps of selection,
integration and mutation are performed on the binary format
of the parameters and a new population is created and these
steps are repeated to establish the condition of stopping.

4.1 Genetic algorithm

Genetic algorithm is a powerful method to solve problems
for search and optimisation. GA attempts to simulate
evolutionary behaviours of nature. This algorithm works
with a population of unique members, which defines a
fitness value for each member. Obviously, members with
higher fitness are more likely to be engaged with others and
generate new members. The created new members inherit
certain characteristics of their parents. Also, the less fitness
of a member of the population is, the less likely it is to be
selected for reproduction. By selecting the best members
from the current population and merging them, a new set
of members is created, which has a relatively higher rate
than the previous population. As this process continues,
after several reproductions and consecutive populations,
the members’ attributes are gradually disseminated in the
populations, and the members are optimally modified. So
far, numerous GAs have been successfully applied to solve
a wide range of problems. Of course, these algorithms do
not guarantee a general optimal solution to all problems, but
they always act as a strong tool to find solutions that are
reasonably acceptable [48]. The basic principles of a genetic
algorithm include:

1. Production of primary population including n chromo-
somes;

2. Investigating the evaluation function f (x) for each
chromosome x in the population;

3. Creating a new population based on the repetition of the
following steps:

– Select two parent chromosomes from a population
based on their suitability.

– Consider a certain amount for the crossover
probability and then perform the recombination on
the parents in order to create children.

– Consider the possibility of mutations and then
change the children in each place.

– Replace new children in the new population.

4. Using a new population for the next runs of the
algorithm;

5. Stopping the execution of the algorithm if the stopping
conditions are met and returning the best solution in the
current population, otherwise going to step 2;

4.2 Feature extraction in SVM/SVR based on GA

Feature selection is one of the most effective steps in
classification based on support vector machine, in which
eliminating irrelevant bands improves class performance
in terms of accuracy and speed. In this section, we apply
feature selection from sEMG signals using the genetic
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algorithm. This is examined in the presence of all input
sEMG signals. Then, the main process of selecting the
optimal features is determined by binary coding of the
parameters. In order to define a criterion for evaluating the
quality of a subset of selected features, two parameters of
classification accuracy and the number of selected features
must be considered. In other words, a desired classification
would include the subset of the most effective attributes
as well as lower number of selected features. Therefore,
we propose an objective function by representing these
two criteria in a closed form which is to be maximised
(Eq. (12)). In fact, in this method, we are going to use the
genetic algorithm to see what features are more important
and significantly improve the classification accuracy.

f = W × Acc + (1 − W) × 1

Nf

(12)

In the above equation, f is the objective function,
W is the weight in the range of [0,1] which controls
the contribution between the number of features and
classification accuracy, and Acc represents the accuracy of
the classification. After evaluating the population, the three
selection, merging, and mutating operators act according
to the quality of each member, and again the population
created by the objective function will be evaluated, and this
process is repeated to establish a stopping condition.

4.3 Parameter tuning using genetic algorithm

Optimal selection of parameters in a SVM/SVR model has
significant impact on the overall performance of the method.
There are two sets of parameters to be identified in our
model: (i) adjustment parameters, that mainly balance the
error and complexity minimisation of the model (. C), and
(ii) kernel parameters, which are unknown and have to
be found (. σ which is the most important parameter in
Gaussian kernel (Eq. (11)).

Support vector machines are intrinsically binary clas-
sifiers. From this perspective, the existing algorithms for
determining the parameters of SVM, the so-called model
selection, are also divided into two categories. In the first
category, the same set of parameters is considered for both
classes. While in the second category, different parame-
ters are determined for each binary class. Adding unknown
parameters, in most cases, not only decrease the accuracy
of the classification, but limit the classification performance
due to overfitting the model. In recent years, various meth-
ods have been proposed to determine the optimal parameters
in SVMs. Network search algorithm is a common method
for selecting the optimal model. Due to the continuity of
the values of the desired parameters, a high-density net-
work must be considered to achieve a high accuracy. This
is to examine all these points of the network which greatly

increases the computation time. Due to these limitations,
other tuning algorithms have been generally considered to
solve related problems: collective micro-algorithms, sim-
ulation of gradual refrigeration, and genetic algorithms.
Genetic algorithms are meta-heuristic techniques that have
been used successfully and extensively to select the optimal
model parameters in support vector machines [49].

In this paper, support vector machine and regression as
well as random forest models have been used for classifica-
tion and to force prediction from surface EMG signals. In
such intelligent modeling systems, classification/prediction
accuracy is largely dependent on model learning parame-
ters; therefore, the genetic algorithm has been used to find
the optimal parameters in this model. In order to properly
evaluate the quality of any member in GA, we convert both
parts of the chromosome to a real number. In the next step,
the support vectors for both SVM and SVR will be formed
by using the training data as well as the tuned parameters of
the corresponding hyper-planes. Then, the test data is given
to the obtained model in the training step and an error matrix
is formed. After evaluating the samples, three steps of selec-
tion, integration and mutation are performed on the binary
format of the parameters and a new population is created.
These steps are repeated to establish the stopping condition.
In this way, the parameters C, ε and σ 2 are optimised. Full
details of different steps involved in our proposed SVR-GA
are depicted in Fig. 6.

5 Experimental results

The experiments have been conducted according to the
procedures explained in Section 2. Through all experiments
and the entire processings, we have used 3-channel EMGs
from quadriceps muscles, namely VM, VL and RF, per
each subject. The exemplar graphs and signals illustrated
in this section are associated to RF muscles and we omit
plotting the signals of VM and VL to avoid duplication. In
the sequel, we report the obtained results in two different
classification and estimation modes. The numerical results
within the tables are given for all the subjects. However,
signal illustration of specific subjects and lower-limb
muscles is provided where appropriate.

5.1 Classification performance

In the first experiment, we aim to assess the performance
of SVM and its variants. We empirically select C = 1 and
α = 0.5 with Gaussian kernel for this classifier. Then, the
pre-processed sEMG signals are given to the SVM model.
The accuracy of this two-class classification with data from
all five subjects is given in Table 1. According to this
table, the classification accuracy of the proposed method
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Fig. 6 Diagram of the proposed SVR-GA process; (a) represents the
layout and the high-level steps of this process including EMG sig-
nal acquisition and processing, force feedback and processing, and the

regression model, and (b) depicts the flow-chart of various steps in the
proposed SVR-GA force estimation algorithm

for all subjects are promising and average classification
accuracy of 93.14% has been achieved. In this experiment,
we have used 70% and 30% of force and EMG data for
training and testing phases, respectively. A 10-fold cross
validation procedure has also applied to ensure a reliable
model verification. In Fig. 7(a), the confusion matrix of
the classifier’s output (for subject S1) with respect to the
target class is illustrated. As seen from this figure, the
average classification accuracy is given in the last row and
column. Values in the green boxes show the percentage of
the associated class data with respect to the total data. For
example, it can be seen from Fig. 7(a) that out of 4568
samples in class 0 (equivalent to 43.5% of total data) 91.4%
has predicted correctly. Also, out of 432 samples in the same
class (equivalent to 4.1% of total data), 8.6% has predicted
incorrectly. The same interpretation can be made for the
results of class 1 in Fig. 7(a).

Table 1 Classification results of SVM for all five subjects

Subject S1 S2 S3 S4 S5

Accuracy(%) 94.5 93.1 93.0 92.7 92.4

In the next experiment, we aim to observe the effects
of using optimised SVM parameters by GA instead of
manual parameter selection. Hence, we apply the proposed
SVM-GA algorithm under similar conditions as previous
experiment to the data from the five subjects. In the
proposed genetic algorithm, main population was chosen as
20 and the iteration of the target function was selected as
50. Figure 7(b) shows the confusion matrix associated to
the SVM-GA results with C = 2 and α = 1.5 (obtained
by GA) on S1. It can be seen that the average accuracy is
96.6% which is higher than that obtained in the previous
experiment (Fig. 7 (a)). The classification accuracy of all
subjects in addition to the obtained parameters from GA is
given in Table 2. Comparing the results of Tables 1 and 2
confirms the superiority of the method when the parameters
are obtained using GA.

In this paper, GA was used for both parameter
optimisation and also feature selection in SVM. In order to
explore how GA can affect the classification performance
by appropriate feature selection in SVM another experiment
was conducted. Similar to previous experiment, here we
have used GA with 20 initial population and 50 number
of iterations. Also, we used 70% of samples for training
and 30% for testing phases. The results of two cases are
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Fig. 7 Confusion matrix result for S1 with various classification methods. (a) SVM. (b) SVM-GA. (c) RF

presented in Fig. 8: (i) data samples with all features are
used for classification (SVM), and (ii) selected features via
GA is used for classification (SVM-F). As observed from
Fig. 8, the classification accuracy is increased when features
selected by GA is used for classification using SVM.

In this part of experiments, we evaluate the performance
of random forest (RF) for classification of EMG signals.
The best results were achieved by empirically selecting K =
50 and Depth = 9 in this algorithm. The corresponding
results are presented in Table 3, where as seen, high
accuracy has been achieved. The average accuracy among
all subjects is 95.26%. In order to illustrate the robustness
of RF against different selection of depth parameter, we
demonstrate the classification accuracy for different depth
values in Fig. 9. It can be seen that for Depth > 7 no
significant improvement is achieved. The confusion matrix
for S1 classification in this experiment is shown in Fig. 7(c)
where 97.1% accuracy has obtained. According to Fig. 7,
the proposed RF classification outperforms both SVM and
SVM-GA.

Finally, we provide a table that compares average
performance across all subjects for different techniques we
have applied so far, i.e. SVM with no feature selection
(SVM), SVM with optimised parameters (SVM-GA), SVM
with optimised parameters and selected features (SVM-GA-
F), and random forest (RF). As seen from Table 4, applying
SVM with selected features and optimised parameters using
GA provides the best performance.

Table 2 Classification results of SVM-GA

Subjects S1 S2 S3 S4 S5

Accuracy (%) 96.6 95.0 94.6 93.2 92.9

Optimised C 2.00 1.86 2.21 1.43 1.78

Optimised α 1.51 1.22 2.50 1.00 1.90

5.2 Estimation performance

In this section, we aim at evaluating the estimation
performance of the proposed system.

It is noted that we input the pre-processed sEMG signal
into the proposed estimation model (based on SVR and
SVR-GA), and then the output of this process will be
compared with the corresponding measured force signal
(Fig. 6). The performance measures we have considered to
demonstrate the influence of each step on the final force
estimation process are as follows:

– Mean-Square-Error (MSE):

MSE = 1/n

n∑
i=1

(ŷi − yi)
2 (13)

– Root-Mean-Square-Error (RMSE):

RMSE = √
MSE (14)

– Mean-Absolute-Error (MAE):

MAE = 1/n

n∑
i=1

|ŷi − yi | (15)
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Fig. 8 Comparison of classification accuracy when direct samples
(SVM) and selected features (SVM-F) are used
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Table 3 Classification accuracy using RF method

Subjects S1 S2 S3 S4 S5

Accuracy (%) 97.1 96.4 95.0 94.3 93.5

– Relative-Standard-Error (RSE):

RSE =
√∑n

i=1(ŷi − yi)2∑n
i=1 |ȳ − yi | , ȳ = 1/n

n∑
i=1

yi (16)

– Determination coefficient (R2):

R2 = 1 − RSE (17)

where y is the original signal, ŷ is the estimated signal
and n is the number of samples. R2 value summarises the
explanatory power of the regression model.

In order to estimate the force signals from the measured
sEMGs, we have used support vector regression. For
evaluation of both SVR and SVR-GA, we have taken two
different approaches. In approach A, two trials of data were
collected from each subject where one is used for training
the other used for testing phase. In the second approach
(B), 70% of both trials from each subject were considered
for training and the remaining 30% were included in the
test. We performed 10-fold cross validation to randomly
select these data partitions. It is noteworthy to mention that
due to large number of samples in approach B, and for the
sake of representation a zoomed version of force samples
are given in the resulting graphs. In both experiments, we
selected a Gaussian kernel with ε = 0.3, C = 0.5, and
σ 2 = 3 for the regression model. Figure 10 illustrates
the estimated and measured force signals of S1 in addition
to their corresponding RMSE using approach A in both
SVR and SVR-GA methods. These results show high
accuracy of the estimation process as well as small RMSE.
Notably, significant improvement in reconstruction error
and estimation accuracy can be observed for SVR-GA from
Fig. 10(c) and (d).

Table 4 Comparison of average classification accuracy for different
methods

Method SVM SVM-GA SVM-GA-F RF

Accuracy (%) 93.4 94.4 96.7 95.2

The numerical results of conducting approaches A and
B using SVR are given in Tables 5 and 6, respectively.
Similarly, the associated results for SVR-GA are given in
Tables 7 and 8, respectively. The performance measures
in these tables have been calculated using the series of
Eqs. (13), (14), (15), (16), and (17). We observe consistent
results in both Tables 5 and 6 where most errors are very
small and the accuracy is above 90% for most of the
subjects. In addition, Table 6 shows that better R2 value is
achieved using approach B (Fig. 11).

On the other hand, Tables 7 and 8, which show the
results of SVR-GA with the optimised parameters using
GA, indicate higher performance compared to Tables 5
and 6. This means that automatic selection of parameters
using genetic algorithm has a positive effect on the overall
performance and was successful in optimising the SVR
parameters. To obtain the results of these tables, we use
the genetic algorithm, as explained in previous section,
to optimise the parameters for each subject. Hence, we
ran GA with initial population of 20 and 50 iterations.
According to Tables 7 and 8, all performance measures have
been significantly improved compared to those reported in
Table 5 and 6.

Finally, in order to observe and compare the performance
of both proposed SVR and SVR-GA methods with other
relevant techniques, the average R2 value and RMSE for
force estimation was calculated and is given in Table 9. In
this table, the estimation metrics have been averaged over all
five participants. Both methods in [50] and [51] are based on
SVR but without any parameter optimisation. According to
Table 9, the proposed SVR method performs slightly better
than [50], whereas SVR-GA significantly outperforms both
[50] and [51]. This observation supports the significance of

Fig. 9 RF classification
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Fig. 10 Results of applying
SVR (a,b) and SVR-GA (c, d)
using approach A to estimate
force from sEMG signals. Solid-
blue and dashed-red curves show
actual and measured force data,
respectively. The estimation
error distribution shows
out-performance of SVR-GA
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Table 5 SVR: different performance measures of force estimation using approach A with all subjects. The results are depicted for both train and
test phases

Train Test

Subject R2 (%) RMSE MSE MAE RSE R2 (%) RMSE MSE MAE RSE

S1 95.09 0.0806 0.0065 0.0725 0.0491 94.69 0.0838 0.0070 0.0762 0.0531

S2 94.39 0.0861 0.0074 0.0722 0.0561 93.51 0.0926 0.0086 0.0781 0.0649

S3 92.24 0.1013 0.0103 0.0912 0.0776 91.29 0.1073 0.0115 0.0994 0.0871

S4 91.16 0.1081 0.0117 0.1006 0.0884 90.73 0.1107 0.0123 0.1036 0.0927

S5 90.89 0.1089 0.0129 0.1027 0.0911 90.07 0.1147 0.0131 0.1087 0.0993

Table 6 SVR: different performance measures of force estimation using approach B with all subjects. The results are depicted for both train and
test phases

Train Test

Subject R2 (%) RMSE MSE MAE RSE R2 (%) RMSE MSE MAE RSE

S1 96.47 0.0684 0.0047 0.0568 0.0353 96.42 0.0685 0.0047 0.0567 0.0358

S2 95.98 0.0729 0.0053 0.0653 0.0402 95.97 0.0733 0.0054 0.0658 0.0403

S3 95.87 0.0740 0.0055 0.0663 0.0413 95.80 0.0745 0.0055 0.0669 0.0420

S4 94.75 0.0835 0.0070 0.0760 0.0525 94.64 0.0838 0.0070 0.0765 0.0536

S5 93.22 0.0947 0.0090 0.0899 0.0678 93.11 0.0953 0.0091 0.0904 0.0689
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Fig. 11 Results of applying SVR (a) and SVR-GA (b) using approach
B to estimate force from sEMG signals. Solid-blue and dashed-
red curves show actual and measured force data, respectively. The

estimation error distribution shows out-performance of SVR-GA. Bar
diagrams show the distributions of estimation error

Table 7 SVR-GA: different performance measures of force estimation for test data using approach A with all subjects

Subject R2 (%) RMSE MSE MAE RSE Parameters

C ε σ 2

S1 97.77 0.0543 0.003 0.0461 0.0223 0.034 0.013 2.4

S2 96.48 0.0682 0.0047 0.0615 0.0352 0.014 0.001 2.2

S3 96.47 0.0685 0.0047 0.0601 0.0353 0.030 0.011 2.91

S4 96.13 0.0715 0.0051 0.0632 0.0387 0.022 0.071 3.12

S5 96.10 0.0718 0.0051 0.0635 0.039 0.038 0.071 4.11

Table 8 SVR-GA: different performance measures of force estimation form test data using approach B with all subjects

Subject R2 (%) RMSE MSE MAE RSE Parameters

C ε σ 2

S1 98.89 0.0385 0.0015 0.0209 0.0111 0.9 0.01 1.99

S2 98.85 0.0391 0.0015 0.0209 0.0209 0.9 0.1 1.6

S3 98.82 0.0814 0.0066 0.061 0.0118 0.91 0.14 1.32

S4 98.68 0.0418 0.0017 0.0237 0.0133 0.94 0.16 1.1

S5 98.15 0.1018 0.0104 0.0736 0.0185 0.94 0.11 1.86

Table 9 Comparison of
average R2 and RMSE
obtained for the proposed
method and other relevant
techniques under both train and
test conditions

Train Test

R2 RMSE R2 RMSE

Proposed method (SVR) 95.25% 0.0787 95.18% 0.0791

Proposed method (SVR-GA) 98.74% 0.0604 98.67% 0.0605

Method in [50] (Gaussian kernel) 95% 6.28 94% 8.19

Method in [50] (Polynomial kernel) 92% 7.99 91% 9.82

Method in [51] 94% – 89% –
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using genetic algorithm in the proposed method to optimise
the model parameters.

6 Conclusions

In this paper, a knee rehabilitation robot has been designed
based on the force estimation from sEMG signals. This
robot composed of several parts such as electric motors and
a wearable IMU sensor to measure the force proportional
to the quadriceps femoris muscle at a specific knee angle.
The force estimation has been studied and carried out based
on the measured sEMG signals using various models, i.e.
SVM, SVR, and RF. Based on the obtained results, we have
observed that the model based on support vector regression
with optimised parameters using genetic algorithm provide
the best performance. From a physiological point of view,
this non-isometric motion analysis requires describing the
musculotendon length and the moment arms as a function of
the joint angles. The proposed force estimation techniques
increase the accuracy and performance of the therapy while
muscle models become especially sensitive to the tendon
stiffness and the slack length. One limitation of the proposed
study is small number of subjects to collect the data. This
may limit the applicability of some of the learning-based
methods, e.g. deep neural networks, which requires large-
scale datasets. Another limitation of the current system
is off-line EMG data collection. For future work, we
constantly recruit more volunteers to augment our database.
Also, we are planning to optimise the coding to be able to
implement online force estimation and EMG data collection
instead of using prerecorded sEMG signals.
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