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REVIEW Open Access

Muscle injuries and strategies for improving
their repair
Thomas Laumonier* and Jacques Menetrey

Abstract

Satellite cells are tissue resident muscle stem cells required for postnatal skeletal muscle growth and repair through

replacement of damaged myofibers. Muscle regeneration is coordinated through different mechanisms, which

imply cell-cell and cell-matrix interactions as well as extracellular secreted factors. Cellular dynamics during muscle

regeneration are highly complex. Immune, fibrotic, vascular and myogenic cells appear with distinct temporal and

spatial kinetics after muscle injury. Three main phases have been identified in the process of muscle regeneration; a

destruction phase with the initial inflammatory response, a regeneration phase with activation and proliferation of

satellite cells and a remodeling phase with maturation of the regenerated myofibers. Whereas relatively minor

muscle injuries, such as strains, heal spontaneously, severe muscle injuries form fibrotic tissue that impairs muscle

function and lead to muscle contracture and chronic pain. Current therapeutic approaches have limited

effectiveness and optimal strategies for such lesions are not known yet. Various strategies, including growth factors

injections, transplantation of muscle stem cells in combination or not with biological scaffolds, anti-fibrotic

therapies and mechanical stimulation, may become therapeutic alternatives to improve functional muscle recovery.
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Introduction

Human skeletal muscle is about 40 % of the body mass

and is formed by bundle of contractile multinucleated

muscle fibers, resulting from the fusion of myoblasts.

Satellite cells (SC) are skeletal muscle stem cell located

between the plasma membrane of myofibers and the

basal lamina. Their regenerative capabilities are essential

to repair skeletal muscle after injury (Hurme and Kalimo

1992; Lipton and Schultz 1979) (Sambasivan et al. 2011;

Dumont et al. 2015a). In adult muscles, SC are found in

a quiescent state and represent, depending on species,

age, muscle location, and muscle type, around 5 to 10 %

of skeletal muscle cells (Rocheteau et al. 2015). After in-

jury, SC become activated, proliferate and give rise to

myogenic precursor cells, known as myoblasts. After en-

tering the differentiation process, myoblasts form new

myotubes or fuse with damaged myofibers, ultimately

mature in functional myofibers.

Skeletal muscle injuries can stem from a variety of

events, including direct trauma such as muscle lacerations

and contusions, indirect insults such as strains and also

from degenerative diseases such as muscular dystrophies

(Huard et al. 2002; Kasemkijwattana et al. 2000; Kasemkij-

wattana et al. 1998; Menetrey et al. 2000; Menetrey et al.

1999; Crisco et al. 1994; Garrett et al. 1984; Lehto and Jar-

vinen 1991; Jarvinen et al. 2005; Cossu and Sampaolesi

2007). Skeletal muscle can regenerate completely and

spontaneously in response to minor injuries, such as

strain. In contrast, after severe injuries, muscle healing is

incomplete, often resulting in the formation of fibrotic tis-

sue that impairs muscle function. Although researchers

have extensively investigated various approaches to im-

prove muscle healing, there is still no gold standard

treatment.

This concise review provides a sight about the various

phases of muscle repair and regeneration, namely degen-

eration, inflammation, regeneration, remodeling and

maturation. We also give an overview of research efforts

that have focused on the use of stem cell therapy,

growth factors and/or biological scaffolds to improve

muscle regeneration and repair. We also address the

therapeutic potential of mechanical stimulation and of* Correspondence: thomas.laumonier@unige.ch
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anti-fibrotic therapy to enhance muscle regeneration and

repair.

Review

Muscle healing process

Skeletal muscle has a robust innate capability for repair after

injury through the presence of adult muscle stem cells

known as satellite cells (SC). The disruption of muscle tissue

homeostasis, caused by injury, generates sequential involve-

ment of various players around three main phases (Fig. 1).

– (1, 2) Degeneration/inflammation phase:

characterized by rupture and necrosis of the

myofibers, formation of a hematoma and an

important inflammatory reaction.

– (3) Regeneration phase: phagocytosis of damaged

tissue, followed by myofibers regeneration, leading

to satellite cell activation.

– (4, 5) Remodeling phase: maturation of regenerated

myofibers with recovery of muscle functional capacity

(4) and also fibrosis and scar tissue formation (5).

Muscle degeneration and inflammation

Active muscle degeneration and inflammation occur

within the first few days after injury. The initial event is

necrosis of the muscle fibers, which is triggered by dis-

ruption of local homeostasis and particularly by unregu-

lated influx of calcium through sarcolemma lesions

(Tidball 2011). Excess in cytoplasmic calcium causes

proteases and hydrolases activation that contribute to

muscle damage and also causes activation of enzymes

that drive the production of mitogenic substances for

muscle and immune cells (Tidball 2005). After muscle

degeneration, neutrophils are the first inflammatory cells

infiltrating the lesion. A large number of pro-

inflammatory molecules such as cytokines (TNF-α, IL-

6), chemokine (CCL17, CCL2) and growth factors (FGF,

HGF, IGF-I, VEGF; TGF-β1) are secreted by neutrophils

in order to create a chemoattractive microenvironment

for other inflammatory cells such as monocytes and

macrophages (Tidball 1995; Toumi and Best 2003). Two

types of macrophages are identified during muscle re-

generation (McLennan 1996), which appear sequentially

Fig. 1 Sequential cycle of muscle healing phases after laceration. Histological images adapted from Menetrey et al, Am J Sports Med 1999. (sp:

superficial portion, de: deepest part)
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during muscle repair (Arnold et al. 2007). M1 macro-

phages, defined as pro-inflammatory macrophages, act

during the first few days after injury,. contribute to cell

lysis, removal of cellular debris and stimulate myoblast

proliferation. Conversely, M2 macrophages, defined as

anti-inflammatory macrophages, act 2 to 4 days after in-

jury, attenuate the inflammatory response and favor

muscle repair by promoting myotubes formation (Tidball

and Wehling-Henricks 2007; Chazaud 2014; Chazaud et

al. 2003). Macrophages, infiltrating injured muscle, are key

players of the healing process (Zhao et al. 2016), able to

participate in the muscle regeneration process or to favor

fibrosis (Munoz-Canoves and Serrano 2015; Lemos et al.

2015).

Muscle regeneration, remodeling and maturation

Muscle regeneration usually starts during the first 4–5

days after injury, peaks at 2 weeks, and then gradually

diminishes 3 to 4 weeks after injury. It’s a multiple steps

process including activation/proliferation of SC, repair

and maturation of damaged muscle fibers and connect-

ive tissue formation. A fine balance between these mech-

anisms is essential for a full recovery of the contractile

muscle function.

Muscle fibers are post-mitotic cells, which do not have

the capacity to divide. Following an injury, damaged

muscle fibers can’t be repaired without the presence of

adult muscle stem cells, the satellite cells (SC) (Relaix

and Zammit 2012; Sambasivan et al. 2011). Following

activation, SC proliferate and generate a population of

myoblasts that can either differentiate to repair damaged

fibers or, for a small proportion, self-renew to maintain

the SC pool for possible future demands of muscle re-

generation (Collins 2006; Dhawan and Rando 2005). SC

cycle progression and cell fate determination are control

by complex regulatory mechanisms in which, intrinsic

and extrinsic factors are involved (Dumont et al. 2015a;

Dumont et al. 2015b).

Connective tissue/fibrosis

Connective tissue remodeling is an important step of the

regenerative muscle process. Rapidly after muscle injury,

a gap is formed between damaged muscle fibers and

filled with a hematoma. Muscle injuries can be clinically

classified depending of the nature of the hematoma (size,

location). Late elimination of the hematoma is known to

delay skeletal muscle regeneration, to improve fibrosis

and to reduce biomechanical properties of the healing

muscle (Beiner et al. 1999). In rare complication, major

muscle injuries may lead to the development of myositis

ossificans that will impair muscle regeneration and re-

pair (Beiner and Jokl 2002) (Walczak et al. 2015).

The presence of fibrin and fibronectin at the injury

site, initiate the formation of an extracellular matrix that

is rapidly invaded by fibroblasts (Darby et al. 2016; Des-

mouliere and Gabbiani 1995). Fibrogenic cytokines such

as transforming growth factor β1 (TGF-β1) participate

to excessive fibroblasts/myofibroblasts proliferation and

to an increase in type I/III collagens, laminin and fibro-

nectin production (Lehto et al. 1985). In its initial phase,

the fibrotic response is beneficial, stabilizing the tissue

and acting as a scaffold for myofibers regeneration.

Nevertheless, an excessive collagen synthesis post injury,

often result in an increase of scar tissue size over time

that can prevent normal muscle function (Mann et al.

2011). Many growth factors are involved in the develop-

ment of fibrosis, such as Connective Tissue Growth Fac-

tor (CTGF), Platelet-Derived Growth Factor (PDGF) or

myostatin. TGF-β1, by stimulating fibroblasts/myofibro-

blasts to produce extracellular proteins such as fibronec-

tin and type I/III collagen, has been identified as the key

element in this process (Mann et al. 2011),. Although fi-

broblasts are the major collagen-producing cells in skel-

etal muscle, TGF-β1 have also an effect directly on

myoblasts causing their conversion to myofibroblasts.

Thus myoblasts initially acting to repair damaged myofi-

bers, will produce significant level of collagen and will

contribute to muscle fibrosis (Li and Huard 2002).

Revascularization

The restoration of the blood supply in the injured skeletal

muscle is one of the first signs of muscle regeneration and

is essential to its success. Without revascularization,

muscle regeneration is incomplete and a significant fibro-

sis occurs (Best et al. 2012; Ota et al. 2011). After muscle

trauma, blood vessels rupture induces tissue hypoxia at

the injury site (Jarvinen et al. 2005). New capillaries for-

mation quickly after injury is therefore necessary (Scholz

et al. 2003) for a functional muscle recovery. Secretion of

angiogenic factors such as vascular endothelial growth fac-

tor (VEGF) at the lesion site is important and several stud-

ies have shown that VEGF, by favoring angiogenesis,

improve skeletal muscle repair (Deasy et al. 2009; Frey et

al. 2012).

Innervation

Muscle repair is complete when injured myofibers are

fully regenerated and become innervated. The synaptic

contact between a motor neuron and its target muscle

fiber, often take place at a specific site in the central re-

gion of myofibers, the neuromuscular junction (NMJ)

(Wu et al. 2010). NMJ are essential for maturation and

functional activity of regenerating muscles. Within 2–3

weeks after muscle damage, the presence of newly

formed NMJ is observed in regenerative muscle (Rantanen

et al. 1995; Vaittinen et al. 2001).

Laumonier and Menetrey Journal of Experimental Orthopaedics  (2016) 3:15 Page 3 of 9



Strategies to improve muscle regeneration and repair

Growth factors

Growth factors play a variety of roles in the different

stages of muscle regeneration (Grounds 1999; Menetrey

et al. 2000). These biologically active molecules, synthe-

tized by the injured tissue or by other cell types present

at the inflammatory site, are release in the extracellular

space and modulate the regenerative response (Table 1).

Although hepatocyte growth factor (HGF), fibroblast

growth factor (FGF) and platelet-derived growth factor

(PDGF) are of interest because of their capacity to

stimulate satellite cells (Sheehan et al. 2000; Allen and

Boxhorn 1989; Yablonka-Reuveni et al. 1990), insulin

like growth factor-1 (IGF-I) appears to be of particular

importance for the muscle regeneration process. IGF-I

stimulates myoblasts proliferation and differentiation

(Engert et al. 1996) and is implicated in the regulation of

muscle growth (Schiaffino and Mammucari 2011). In a

mouse model, direct injections of human recombinant

IGF-I at two, five, and seven days after injury enhanced

muscle healing in lacerated, contused, and strain-injured

muscles (Menetrey et al. 2000; Kasemkijwattana et al.

2000). However, the efficacy of direct injection of recom-

binant proteins is limited by the high concentration of

Table 1 The role of growth factors in skeletal muscle regeneration

Growth
factors

Physiological effects, potential benefits Shortcomings Commentary

IGF-1 - Essential for muscle growth during
development and regeneration.

- Promote myoblast proliferation and
differentiation in vitro (Huard et al. 2002)

- Hypertrophic effect of IGF-1 (Barton-Davis
et al. 1999)

- Serial injections of IGF-1 improve muscle
healing in vivo (Menetrey et al. 2000).

- Existence of a muscle specific isoform of
IGF-1 (mIGF-1) (Musaro et al. 1999; Musaro
et al. 2004)

- Chemotactic for fibroblasts, increase
collagen production, enhance fibrosis
development

- IGF-1 play a central role in the
enhancement of muscle regeneration-

- Anti-inflammatory actions of IGF-1
(Mourkioti and Rosenthal 2005; Tidball
and Welc 2015)

HGF - Promote myoblast proliferation and inhibit
myoblast differentiation (Anderson 2016;
Yin et al. 2013)

- Important role for satellite cell activation.
Balance between the activation of satellite
cells and their return to quiescence.
(Chazaud 2010)

- Recently, it was shown that a second set of
HGF production is crucial for inflammation
resolution after injury (Proto et al. 2015)

- Injection of HGF into injured muscle
increased myoblast numbers but blocked
the regeneration process (Miller et al. 2000)

- HGF is important during the early phase
of muscle regeneration, activate
satellite cells

VEGF - Important signaling protein that favor
angiogenesis.

- Promote myoblast migration, proliferation
and survival. (Arsic et al. 2004)

- VEGF administration improves muscle
regeneration. (Messina et al. 2007; Deasy
et al. 2009)

- Non regulated VEGF expression promote
aberrant angiogenesis and fibrosis in
skeletal muscle (Karvinen et al. 2011)

- Importance of the proximity between
satellite cells and the microvasculature
during muscle
regeneration, role of VEGF

FGF - Large family of mitogen involved in cell
growth and survival

- FGF-6 has a muscle specific expression,
stimulates satellite cell proliferation and
promotes myogenic terminal differentiation
(Floss et al. 1997)

- FGF-2 promote satellite cell proliferation
and inhibit myogenic differentiation
(Menetrey et al. 2000; Kastner et al. 2000)

- Stimulate fibroblast proliferation, - FGF signaling plays a key role in muscle
repair, blocking FGF signaling delay
muscle regeneration (Saera-Vila et al. 2016).

TGF-β1 - Key regulator of the balance between muscle
fibrosis and muscle regeneration

- Inhibits satellite cell proliferation and
differentiation in vitro

- Excessive TGFβ1-induced deposition of
ECM at the site of injury, fibrosis (Garg
et al. 2015).

- Anti fibrotic therapy by blocking
overexpression of TGF-β1 improve muscle
regeneration. (Burks et al. 2011; Hwang et
al. 2016)

PDGF-
BB

- PDGF isoforms can regulate myoblast
proliferation and differentiation in vitro
(Yablonka-Reuveni et al. 1990)

- PDGF-BB stimulates satellite cell
proliferation and inhibit their differentiation
(Charge and Rudnicki 2004)

- Potent mitogen for fibroblasts - Release from injured vessels and platelets,
PDGF stimulates early skeletal muscle
regeneration
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the factor typically required to elicit a measurable effect.

This is mainly due to the bloodstream’s rapid clearance

of these molecules and their relatively short biological

half-lives. Gene therapy may be an effective method by

which to deliver high, maintainable concentrations of

growth factor to injured muscle (Barton-Davis et al.

1998; Barton et al. 2002; Musaro et al. 2001). Although

IGF-I improved muscle healing, histology of the injected

muscle revealed fibrosis within the lacerated site, despite

high level of IGF-I production (Lee et al. 2000). Another

growth factor, VEGF, by favoring angiogenesis, is known

to enhance skeletal muscle repair (Deasy et al. 2009; Frey

et al. 2012; Messina et al. 2007). By targeting simultan-

eously angiogenesis and myogenesis, it was shown that

combined delivery of VEGF and IGF-I enhance muscle

regenerative process (Borselli et al. 2010). In this direc-

tion, the use of platelet-rich plasma (PRP) is considered

as a possible alternative approach based on the ability of

autologous growth factors to improve skeletal muscle re-

generation (Hamid et al. 2014; Hammond et al. 2009).

Considered as safe products, autologous PRP injections

are increasingly used in patients with sports-related in-

juries (Engebretsen et al. 2010). Nevertheless, a recent

randomized clinical trial show no significant positive ef-

fects of PRP injections, as compared with placebo injec-

tions, in patients with muscle injuries, up to one year

after injections (Reurink et al. 2014; Reurink et al. 2015).

Customization of PRP preparation, as recently demon-

strated by the use of TGF-β1 neutralizing antibodies, is

a promising alternative to promote muscle regeneration

while significantly reducing fibrosis (Li et al. 2016).

Stem cells

Transplantation of satellite cell-derived myoblasts has

long been explored as a promising approach for treat-

ment of skeletal muscle disorders. After an initial dem-

onstration that normal myoblasts can restore dystrophin

expression in mdx mice (Partridge et al. 1989), clinical

trials, in which allogeneic normal human myoblasts were

injected intramuscularly several times in dystrophic

young boys muscles, have not been successful (Law et al.

1990; Mendell et al. 1995). Even recently, despite clear

improvement in methodologies that enhance the success

of myoblast transplantation in Duchenne patients (Skuk

et al. 2007), outcomes of clinical trials are still disap-

pointing. These experiments have raised concerns about

the limited migratory and proliferative capacities of hu-

man myoblasts, as well as their limited life span in vivo.

It led to the investigations of other muscle stem cells

sources that could overcome these limitations and out-

perform the success of muscle cell transplantation.

Among all these non-satellite myogenic stem cells,

human mesoangioblasts, human myogenic-endothelial

cells and human muscle–derived CD133+ have shown

myogenic potentials in vitro and in vivo (Sampaolesi et

al. 2006; Zheng et al. 2007; Meng et al. 2014). The use of

such myogenic progenitors cells for improving muscle

healing may become an interesting therapeutic alterna-

tive (Tedesco and Cossu 2012; Tedesco et al. 2010; Chen

et al. 2012). A first phase I/IIa clinical trial has recently

demonstrated that intra arterial injections of human

mesoangioblasts are safe but display only very limited

clinical efficacy in Duchenne patients (Cossu et al. 2015).

Scaffolds

Myogenic precursor cell survival and migration is greatly

increased by using appropriate scaffold composition and

growth factor delivery (Hill et al. 2006) (Boldrin et al.

2007). Controlling the microenvironment of injected

myogenic cells using biological scaffolds enhance muscle

regeneration (Borselli et al. 2011). Ideally, using an ap-

propriate extracellular matrix (ECM) composition and

stiffness, scaffolds should best replicate the in vivo mi-

lieu and mechanical microenvironment (Gilbert et al.

2010) (Engler et al. 2006). A combination of stem cells,

biomaterial-based scaffolds and growth factors may

provide a therapeutic option to improve regeneration

of injured skeletal muscles (Jeon and Elisseeff 2016).

Anti-fibrotic therapy

TGF-β1 is expressed at high levels and plays an import-

ant role in the fibrotic cascade that occurs after the on-

set of muscle injury (Bernasconi et al. 1995; Li et al.

2004). Therefore, neutralization of TGF-β1 expression in

injured skeletal muscle should inhibit the formation of

scar tissue. Indeed, the use of anti-fibrotic agents (ie dec-

orin, relaxin, antibody against TGF-β1…) that inactivate

TGF-β1 signaling pathways reduces muscle fibrosis and,

consequently, improve muscle healing, leading to a near

complete recovery of lacerated muscle (Fukushima et al.

2001; Li et al. 2007). Losartan, an angiotensin II receptor

antagonist, neutralize the effect of TGF-β1 and reduce

fibrosis, making it the treatment of choice, since it

already has FDA approval to be used clinically (Bedair et

al. 2008; Park et al. 2012; Terada et al. 2013). Suramin,

also approved by the FDA, blocks TGF-β1 pathway and

reduces muscle fibrosis in experimental model (Chan et

al. 2003; Taniguti et al. 2011).

Mechanical stimulation

Mechanical stimulation may offer a simple and effective

approach to enhance skeletal muscle regeneration. Stretch

activation, mechanical conditioning but also massage ther-

apy or physical manipulation of injured skeletal muscles

have shown multiple benefit effects on muscle biology and

function in vitro and in vivo (Tatsumi et al. 2001);(Best et

al. 2012) (Crane et al. 2012; Kumar et al. 2002; Gilbert et

al. 2010; Powell et al. 2002). Recently, Cezar and
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colleagues demonstrates that mechanical forces are as im-

portant biological regulators as chemicals and genes, and

underlines the immense potential of developing mechano-

therapies to treat muscle damage (Cezar et al. 2016). A re-

cent study also demonstrated that a treatment based on

ultrasound-guided intra-tissue percutaneous electrolysis

(EPI technique) enhances the treatment of muscle injuries

(Abat et al. 2015). Altogether, these results suggest that

mechanical stimulation should be considered as a possible

therapy to improve muscle regeneration and repair.

Conclusions

Skeletal muscle injuries are very frequently present in

sports medicine and pose challenging problems in trau-

matology. Despite their clinical importance, the optimal

rehabilitation strategies for treating these injuries are not

well defined. After a trauma, skeletal muscles have the

capacity to regenerate and repair in a complex and well-

coordinated response. This process required the pres-

ence of diverse cell populations, up and down-regulation

of various gene expressions and participation of multi-

ples growth factors. Strategies based on the combination

of stem cells, growth factors and biological scaffolds

have already shown promising results in animal models.

A better understanding of the cellular and molecular

pathways as well as a better definition of the interactions

(cell-cell and cell-matrix) that are essential for effective

muscle regeneration, should contribute to the develop-

ment of new therapies in humans. In this direction, a re-

cent paper from Sadtler et al demonstrated that specific

biological scaffold implanted in injured mice muscles

trigger a pro-regenerative immune response that stimu-

late skeletal muscle repair (Sadtler et al. 2016).
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satellite cells; TGF-β1, transforming growth factor β1; VEGF, vascular endothelial

growth factor
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