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Abstract

Background
Critical illness leads to muscle wasting which may be attenuated with augmented calorie delivery. The
Augmented versus Routine approach to Giving Energy Trial (TARGET) randomized 4000 patients to
receive energy-dense (1.5kcal/ml) or standard (1.0kcal/ml) enteral nutrition. The aim of this sub-study
was to evaluate whether augmented calorie delivery attenuates muscle loss and maintains strength and
physical function when compared to routine care.

Methods
TARGET participants from a single participating ICU were eligible for enrolment in this sub-study if
consent could be obtained. Ultrasound-derived muscle layer thickness (MLT) at three landmarks
(quadriceps, forearm and mid-upper arm) and handgrip strength were measured at baseline and every 7
days until hospital discharge and at 3- and 6-months following randomization. Physical function was
also assessed at 3- and 6-months using the ‘get up and go’ and 6-minute walk tests. Data are presented
as mean ± standard deviation.

Results
Eighty patients (1.5kcal: n = 38, 58 ± 14 years, 60% male, APACHE II 20 ± 7 vs. 1.0kcal: n = 42, 54 ± 18
years, 66% male, APACHE II 22 ± 10) were recruited. Although patients in the 1.5kcal group received more
calories (2075 ± 344 vs 1325 ± 313 kcal/day; P < 0.001), there was no significant difference in quadriceps
MLT at any timepoint, including ICU discharge (primary outcome) (1.5kcal: 2.90 ± 1.27 vs 1.0kcal: 2.39 ± 
1.06 cm; P = 0.141), hospital discharge (2.47 ± 1.03 vs 2.10 ± 1.08 cm; P = 0.227) or at 3- and 6-months.
Similar relationships were seen for forearm and mid-upper arm MLT and handgrip strength at all
timepoints. Patients in the 1.5 kcal group took less time to complete the ‘get up and go’ test (6.66 ± 1.33
vs. 9.11 ± 2.94 secs; mean group difference (95% CI) -2.45 (-4.35, -0.55); P = 0.014), but there was no
difference between groups at the 6-month follow-up. There were no differences in the distances walked in
the 6-minute walk test at either 3- or 6-month timepoints.

Conclusion
Augmented calorie delivery compared to routine care did not attenuate loss of muscle size or strength
during hospital admission or at 3- and 6-months following randomization. Patients receiving more
calories had better physical function at 3- but not at 6-months when assessed using the get up and go
test, but not the 6-minute walk test.
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Introduction
Critical illness leads to acute and rapid muscle wasting (1) in up to 80% of patients who receive
mechanical ventilation for more than seven days (2). This muscle loss is significant, with studies using
ultrasound-derived (US) rectus femoris cross-sectional area reporting skeletal muscle atrophy of almost
18% in the first 10 days of ICU admission (3). Structural measurements of muscle mass in ICU are
strongly associated with function after ICU (4) and muscle atrophy is thought to contribute to ‘ICU-
acquired weakness’ that is associated with significant morbidity, slower weaning from mechanical
ventilation, longer time to discharge, and substantially higher in-hospital costs (5). Patients experiencing
ICU-acquired weakness have higher mortality rates one year after hospital discharge (5) and report
persistent functional impairments and decreased quality of life (6, 7). Therefore, strategies aimed at
attenuating muscle loss and improving functional recovery in these patients are critical.

It had been hypothesized that optimizing nutrition therapy to critically ill patients may help attenuate the
observed muscle loss (8). A retrospective observational study in 33 critically ill patients with respiratory
failure reported that change in skeletal muscle mass, determined by sequential lumbar CT scans was
influenced by calorie delivery (9). Additionally, meeting calorie prescriptions early in ICU is associated with
improved self-reported functional status three months post-injury (10). However, current standard practice
provides the majority of critically ill patients with approximately 60% of their prescribed caloric needs (11,
12) and there is an absence of data addressing the relationship between caloric delivery and muscle size,
strength, or function.

Our group conducted The Augmented versus Routine Approach to Giving Energy Trial (TARGET) (13)
which randomized almost 4,000 critically ill adults to receive energy-dense or routine enteral nutrition (EN)
resulting in delivery of approximately 100% and 70% of recommended calorie targets, respectively (13).
The intervention was not associated with improvements in 90-day mortality nor improved functional
outcomes at 6-months quantified as capacity to return to work, disability, or societal participation (14).
However, the functional outcomes included were self-reported and were measured at an extended
duration following cessation of the trial intervention (at, or prior to, ICU discharge). Therefore, we aimed to
determine whether the intervention attenuated acute skeletal muscle loss and maintained strength and
function when measured objectively across the course of recovery when compared to routine care.

Methods
TARGET was a 4000-patient randomized, double-blind, pragmatic clinical trial conducted in 46 ICUs in
Australia and New Zealand between June 21, 2016 and November 14, 2017. Detailed methods of the
TARGET study have been previously published (13, 15). In short, mechanically ventilated critically ill
patients were randomized to energy-dense EN (1.5 kcal per milliliter) or routine EN (1.0 kcal per milliliter)
at a dose of 1 ml per kilogram of ideal body weight per hour, continuing for up to 28 days while the
patient was in the ICU. TARGET was prospectively registered at ClinicalTrials.gov number, NCT02306746.
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This is an exploratory single-center sub-study to TARGET that was conducted at the Royal Adelaide
Hospital (RAH), South Australia. It was approved by the Central Adelaide Local Health Network Human
Research Ethics Committee.

Patient recruitment:
All patients enrolled into TARGET at the RAH were eligible for enrolment into this sub-study following an
additional written informed consent obtained from the patient or their next of kin. Patients were eligible to
be enrolled in TARGET and the sub-study if they were: 18 years of age or older; receiving invasive
mechanical ventilation; about to commence EN or EN had commenced within the previous 12 hours; and
were expected receive EN in the ICU beyond the calendar day after randomization. Patients were excluded
from the sub-study if informed consent was unable to be obtained and the first ultrasound measure was
unable to be conducted within 48 hours of randomization.

Data collection:
Data extracted from TARGET included: patient demographics (age, sex, admission diagnosis, Acute
Physiology and Chronic Health Evaluation II (APACHE II) score); and nutrition data (baseline weight and
body mass index (BMI), dietitian energy and protein prescription, daily energy and protein delivered during
study period, duration of intervention received).

Sub-study measurements:
Ultrasound-derived muscle layer thickness (MLT) and handgrip strength were taken at baseline (within 48
hours of TARGET randomization) and conducted every 7 days (± 72 hours) until hospital discharge,
censored at 60 days. At 3- and 6-months (± 30 days) after TARGET randomization, participants were
invited to attend an in-hospital follow-up appointment at which the following measurements were
conducted: ultrasound-derived MLT, handgrip strength, 24-hr dietary recall, ‘get up and go’ test, and six-
minute walk test as detailed below. Patients who were unable to be contacted or could not physically
attend the follow-up visit were classified as “lost to follow-up”.

Muscle layer thickness (MLT) measures using ultrasound
(US):
Ultrasound is established as a reliable method to quantify muscle thickness in critically ill patients (3, 16)
and allows for repeated measures of muscle thickness in muscle groups such as the quadriceps, biceps
and forearm that is representative of global muscle mass (17). A bedside ultrasound was performed by
two trained operators (LC or LW) to determine the combined muscle thickness of two quadriceps muscles;
the M. vastus intermedius and M. rectus femoris muscle as outlined previously (16, 18, 19). In brief, two
measurements of quadriceps MLT were taken: i) at the border between the lower third and upper two-
thirds between the Anterior Superior Iliac Spine (ASIS) and the upper pole of the patella, and ii) at the
midpoint between the ASIS and the upper pole of the patella. The average of these two measurements
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were reported. MLT was also determined at the mid-arm (bicep brachii) between the humerus lateral
epicondyle and superior lateral acromion border and at the anterior forearm at the mid-point between the
tip of the olecranon and ulna styloid process. Landmarks were marked to ensure accuracy for follow-up
measures, with all measures carried out on the right side unless unable due to injury or clinical
intervention, to which the left side was used; the side measured was kept constant for each patient.

Ultrasound measures were conducted using a portable B-mode ultrasound (Sonosite X-Porte) using a 5–
13 mHz transducer by a trained operator blinded to the treatment allocation. All settings such as gain,
focus and contrast were kept constant. Depth was set to 6 cm for quadriceps and mid-arm measures and
4.2 cm for forearm measures. The patient was positioned supine with legs relaxed lying flat in extension
with toes facing the roof (where able). Liberal amounts of water-soluble transducer gel were used to
minimize distortion, and the transducer held perpendicular to the skin surface to capture a transverse
(cross-sectional) image. A still image was taken and saved with minimal transducer pressure, with the
MLT calculated with onscreen calipers by the ultrasound operator. Two repeat measures were taken at
each site, and a third taken if there was more than a 10% discrepancy between the first two.

Handgrip strength:
In patients that were awake and able to follow commands, handgrip strength was measured every seven
days during hospital admission with measurements conducted bilaterally in triplicate using a Jaymar
digital hand dynamometer (20). The test was performed with the patient in upright position, shoulder in
neutral rotation by the side of body and elbow flexed at 90 degrees. The patient was then directed to
squeeze the dynamometer as hard as possible for three seconds. The highest measure for each hand
was reported in kilograms. Cut-off values for diagnosing ICU-acquired weakness have been proposed to
be < 11 kg for males, and < 7 kg for females (20).

24-hour dietary recall:
Oral nutrition intake was determined by a trained dietitian via a 24-hour recall. This data was entered into
dietary analysis software Foodworks 8 (Xyris Pty Ltd., Brisbane, Australia) to quantify energy and
macronutrient intake.

Get up and go test
From a seated position, patients were asked to rise from their chair, walk three meters, turn around and
return to their original seated position with an average time calculated from three attempts (21).

Six-minute walk test
The 6-minute walk test was conducted according to the American Thoracic Society guidelines (22).
Participants walked along a marked, 30 m flat, straight and hard-surfaced track for a period of six
minutes at which time the distance travelled by the participant was recorded. The test was carried out
unassisted with the participants’ usual walking aids if required, with the test performed twice separated
by a rest period, and the average of the two measures reported.



Page 6/23

Statistics
This was an exploratory study on the capacity for a randomized augmented calorie intervention to
influence muscle size, and strength, and function. The primary analysis was the difference in the change
in ultrasound-derived quadriceps MLT from baseline to ICU discharge between treatment groups. This
was tested via analysis of covariance (ANCOVA) with treatment group and baseline MLT included as
fixed effects. The first ultrasound measure available for each participant served as their baseline
measure. Change in the repeated ultrasound measurements was performed using a mixed effects model
with fixed effects for time, treatment group and the time by treatment group interaction, and a subject
random effect to account for multiple measurements per participant. Differences between treatment
groups on demographic and clinical characteristics were tested with independent samples t-tests and
Mann-Whitney rank sum tests for continuous variables, and chi-square tests for categorical variables. At
the time of protocol development there were insufficient data to determine a plausible and clinically
significant difference in quadriceps MLT between groups; it was anticipated that a sample size of 100
patients (approximately 50 per group) would be eligible to participate over the expected 12-month
recruitment period.

Reported measures used for analysis were categorized as baseline, day 7, ICU discharge and hospital
discharge, censored at 60 days. ICU discharge and hospital discharge measurements included the closest
available measurement to these timepoints. If ICU discharge and hospital discharge were within 72 hours
of each other the same measurement was used. If ICU discharge or hospital discharge (or both) were
within 72 hours of the day 7 measurement, the same measurement was used. If ICU discharge was within
72 hours of the baseline measure, the baseline measure was also used for ICU discharge. If MLT was > 6
cm, i.e. out of depth field of view, this was coded as 6 cm. Measurements were time-aligned, with time
zero being cessation of TARGET EN. To describe differences in the mean trajectory between the ICU and
post-ICU ward periods, a linear spline was included at time zero. The estimated mean trajectory for each
group and 95% confidence intervals are shown graphically.

Exploratory analyses used multiple regression to examine the effect of baseline quadriceps MLT on
quadriceps MLT at ICU discharge adjusting for baseline covariates of randomized treatment group, age,
APACHE II score at ICU admission, BMI, and sex. A p-value of < 0.05 was considered significant.

Results

Enrolment
Of the 169 patients enrolled into TARGET at the RAH, 80 (47%) patients, or their next of kin, provided
consent and were enrolled in this sub-study; 38 patients were randomized to the 1.5 kcal group and 42
patients were randomized to the 1.0 kcal group (Fig. 1). The primary reasons for exclusion from the sub-
study included being unable to obtain consent or the baseline measurements within 48 hours of
randomization. Patient demographic data and clinical characteristics were well balanced between groups
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and are presented in Table 1. Of note, patients in the 1.5 kcal group received a shorter duration of trial EN
(5.5 (2.0, 7.0) vs 8.0 (4.0, 12.0) days; mean group difference (95% CI) -2.0 (-5.0, 0.0); P = 0.045).
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Table 1
Patient demographics and clinical characteristics

  1.0 kcal

(n = 42)

1.5 kcal

(n = 38)

Group differences
(95% CI)

Age on ICU adm (years) 58.2 ± 
14.2

53.5 ± 
17.6

-4.8 (-11.8, 2.3)

Sex (male), n (%) 25 (60%) 25 (66%)  

APACHE II score on ICU adm 19.8 ± 6.9 21.6 ± 9.5 1.8 (-1.9, 5.5)

ICU admission diagnosis, n (%)

Cardiovascular

Respiratory

Gastrointestinal

Neurological

Sepsis

Trauma

Other

6 (14%)

5 (12%)

0 (0%)

15 (36%)

3 (7%)

9 (21%)

4 (10%)

6 (16%)

7 (18%)

0 (0%)

9 (24%)

3 (8%)

11 (29%)

2 (5%)

 

Ideal body weight from height (kg) 65.5 ± 
10.2

66.6 ± 9.6 1.1 (-3.3, 5.5)

Actual body weight (kg) 81.1 ± 
16.8

84.7 ± 
16.3

3.6 (-3.8, 11.0)

Body Mass Index (kg/m2) 27.5 ± 4.7 28.7 ± 6.4 -0.005 (-0.4, 0.4)

Time from randomisation to commencing trial
nutrition (hours), median [IQR]

0.7 (0.47,
2.18)

0.9 (0.48,
1.70)

-0.017 (-0.4, 0.3)

Duration of trial nutrition received (days), median
[IQR]

8.0 (4.0,
12.0)

5.5 (2.0,
7.0)

-2.0 (-5.0, 0.0)

Prescription as per treating clinician:

kcal/d

kcal/kg/d

g protein/d

g protein/kg/d

1968 ± 
368

30.3 ± 5

91 ± 16

1.4 ± 0.2

2018 ± 
344

30.7 ± 5

95 ± 17

1.4 ± 0.2

 

Data are mean ± SD unless otherwise stated
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  1.0 kcal

(n = 42)

1.5 kcal

(n = 38)

Group differences
(95% CI)

Total calories received:

From trial nutrition in ICU:

kcal/d

kcal/kg IBW/d

From all sources:

kcal/d

kcal/kg IBW/d

1325 ± 
313

20 ± 4

1445 ± 
328

22 ± 4

2075 ± 
380

31 ± 4

2115 ± 
458

32 ± 7

 

Total protein received, mean (SD):

From trial nutrition in ICU:

g/d

g/kg IBW/d

From all sources:

g/d

g/kg IBW/d

73 ± 17

1.12 ± 
0.21

73 ± 17

1.12 ± 
0.21

77 ± 14

1.17 ± 
0.16

75 ± 17

1.14 ± 
0.23

 

Percent TARGET EN goal rate delivered 85 ± 16 87 ± 12  

Data are mean ± SD unless otherwise stated

In-hospital measurements:

Ultrasound MLT measurements
At all timepoints (baseline, day 7, ICU discharge, and hospital discharge) there were no significant
differences in measurements of quadriceps, forearm or mid-upper arm MLT between patients in the 1.5
kcal and 1.0 kcal groups (Table 2). A regression model accounting for baseline quadriceps MLT, illness
severity (APACHE II), age, BMI, or sex showed no effect of treatment on quadriceps MLT at ICU discharge
(Table 3). In addition, there was no relationship observed between calorie intake from trial EN and change
in quadriceps MLT from baseline to ICU discharge (Fig. 2).
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Table 2
In-hospital measures of muscle size and strength

  1.0 kcal

(n = 42)

Mean ± 
SD

1.5 kcal

(n = 38)

Mean ± 
SD

Unadjusted
group difference
(95% CI)

P-
value

Baseline
adjusted group
difference (95%
CI)

P-value

Quadriceps
muscle layer
thickness; cm

At baseline

Day 7

ICU discharge

Hospital
discharge

2.86 ± 
1.30, n 
= 40

2.38 ± 
1.08, n 
= 30

2.39 ± 
1.06, n 
= 29

2.10 ± 
1.08, n 
= 34

3.07 ± 
1.17, n 
= 36

2.68 ± 
0.72, n 
= 19

2.90 ± 
1.27, n 
= 19

2.47 ± 
1.03, n 
= 20

0.21 (-0.36,
0.78)

0.29 (-0.27,
0.86)

0.51 (-0.17,
1.19)

0.37 (-0.23,
0.97)

0.470

0.302

0.141

0.227

-

0.23 (-0.14, 0.59)

0.42 (-0.02, 0.87)

0.31 (-0.12, 0.74)

-

0.213

0.064

0.155

Forearm muscle
layer thickness;
cm

At baseline

Day 7

ICU discharge

Hospital
discharge

1.45 ± 
0.56, n 
= 36

1.32 ± 
0.59, n 
= 22

1.22 ± 
0.43, n 
= 23

1.26 ± 
0.44, n 
= 29

1.40 ± 
0.58, n 
= 33

1.39 ± 
0.71, n 
= 17

1.45 ± 
0.60, n 
= 16

1.32 ± 
0.45, n 
= 20

-0.05 (-0.32,
0.22)

0.07 (-0.35,
0.49)

0.23 (-0.10,
0.56)

0.06 (-0.20,
0.32)

0.731

0.729

0.172

0.665

-

0.18 (-0.18, 0.55)

0.26 (0.00, 0.51)

0.06 (-0.18, 0.31)

-

0.319

0.047

0.598

Mid upper arm
muscle layer
thickness; cm

At baseline

Day 7

ICU discharge

Hospital
discharge

2.29 ± 
0.98, n 
= 39

1.81 ± 
0.67, n 
= 26

1.68 ± 
0.60, n 
= 27

1.62 ± 
0.77, n 
= 32

2.00 ± 
0.61, n 
= 34

1.80 ± 
0.61, n 
= 17

1.92 ± 
0.56, n 
= 16

1.88 ± 
0.61, n 
= 20

-0.30 (-0.69,
0.09)

-0.01 (-0.42,
0.39)

0.24 (-0.14,
0.61)

0.26 (-0.14,
0.67)

0.133

0.954

0.208

0.199

-

0.11 (-0.25, 0.47)

0.36 (0.06, 0.66)

0.39 (-0.01, 0.78)

-

0.542

0.020

0.055

ICU: Intensive Care Unit, SD: Standard deviation
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  1.0 kcal

(n = 42)

Mean ± 
SD

1.5 kcal

(n = 38)

Mean ± 
SD

Unadjusted
group difference
(95% CI)

P-
value

Baseline
adjusted group
difference (95%
CI)

P-value

Handgrip
strength; kg

Left hand

Day 7

ICU discharge

Hospital
discharge

Right hand

Day 7

ICU discharge

Hospital
discharge

22.64 ± 
9.85, n 
= 5

21.10 ± 
24.04, n 
= 2

17.82 ± 
10.31, n 
= 14

21.84 ± 
7.12, n 
= 5

22.05 ± 
21.43, n 
= 2

17.91 ± 
9.95, n 
= 14

25.70 ± 
14.17,
n = 5

20.00 ± 
19.23,
n = 2

23.07 ± 
11.28,
n = 9

23.98 ± 
15.19,
n = 5

20.30 ± 
15.56,
n = 2

22.94 ± 
11.41,
n = 9

3.06 (-14.73,
20.85)

-1.10 (-94.77,
92.57)

5.25 (-4.26,
14.75)

2.14 (-15.16,
19.44)

-1.75 (-82.31,
78.81)

5.03 (-4.33,
14.39)

0.702

0.964

0.264

0.783

0.934

0.276

   

ICU: Intensive Care Unit, SD: Standard deviation

Table 3
Regression coefficients from model for quadriceps muscle layer thickness (cm) at intensive care unit

discharge
Variables Effect estimate adjusted for all covariates

Effect Standard error 95% Confidence Interval P-value

Constant -0.14 0.78 (-1.72, 1.44) 0.859

Baseline quadriceps MLT, cm 0.65 0.12 (0.41, 0.89) 0.000

Treatment 0.31 0.24 (-0.17, 0.79) 0.199

APACHE II -0.01 0.02 (-0.05, 0.03) 0.507

Age (per 10 years) -0.04 0.09 (-0.22, 0.15) 0.698

BMI, kg/m2 0.04 0.03 (-0.01, 0.09) 0.146

Sex -0.07 0.25 (-0.57, 0.43) 0.767

APACHE: Acute Physiology and Chronic Health Evaluation, BMI: Body Mass Index, MLT: Muscle layer
thickness
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Handgrip strength
Handgrip strength did not differ between groups at any timepoint in hospital (day 7, ICU discharge, or
hospital discharge). Few patients could provide a measurable handgrip strength within hospital, with only
5% patients (2 per group) being able to complete handgrip strength at ICU discharge, and only 29% of
patients (n = 14 and 9, respectively) being able to complete handgrip strength at hospital discharge.

3- and 6-month follow-up
Thirty patients returned for the 3-month and 22 for the 6-month follow-ups. Nineteen patients returned for
both the 3- and 6-month follow-up (Fig. 1).

Ultrasound MLT measurements
There were no significant differences in mean quadriceps, forearm or mid-upper arm MLT between 1.5
kcal and 1.0 kcal groups at either 3- or 6-month follow-up (Table 4).
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Table 4
Muscle size, strength, and functional outcome measures at 3- and 6-months following trial randomization

    1.0 kcal 1.5 kcal Unadjusted Group
difference

Baseline adjusted
group difference

    Mean ± 
SD, n

Mean ± 
SD, n

Mean
(95% CI)

P-
value

Mean (95%
CI)

P-
value

Quadriceps muscle
layer thickness, cm

3
mo

2.70 ± 
1.46, n = 
15

3.26 ± 
0.95, n = 
18

0.57
(-0.29,
1.43)

0.188 0.31 (-0.55,
1.17)

0.468

6
mo

3.64 ± 
1.14, n = 
8

3.37 ± 
1.17, n = 
13

-0.27
(-1.36,
0.82)

0.610 -0.33
(-1.39,0.74)

0.528

Forearm muscle layer
thickness, cm

3
mo

1.30 ± 
0.63, n = 
12

1.66 ± 
0.72, n = 
14

0.36
(-0.20,
0.91)

0.195 0.15 (-0.38,
0.68)

0.557

6
mo

1.73 ± 
0.90, n = 
9

1.40 ± 
0.61, n = 
11

-0.33
(-1.04,
0.38)

0.347 -0.48
(-1.25,
0.28)

0.198

Mid upper arm
muscle layer
thickness, cm

3
mo

2.01 ± 
0.84, n = 
11

2.16 ± 
1.02, n = 
16

0.14
(-0.63,
0.91)

0.705 0.04 (-0.65,
0.73)

0.900

6
mo

2.24 ± 
0.83, n = 
10

2.12 ± 
0.82, n = 
11

-0.12
(-0.88,
0.63)

0.737 0.15 (-0.46,
0.75)

0.619

Handgrip strength,

Left side; kg

3
mo

28.15 ± 
12.70, n 
= 12

25.06 ± 
12.34, n 
= 12

-3.09
(-13.69,
7.51)

0.551    

6
mo

34.23 ± 
13.27, n 
= 9

24.46 ± 
15.55, n 
= 10

-9.77
(-23.85,
4.30)

0.161    

Handgrip strength,
Right side; kg

3
mo

31.96 ± 
12.67, n 
= 12

28.11 ± 
12.94, n 
= 11

-3.85
(-14.96,
7.26)

0.479    

6
mo

36.11 ± 
12.36, n 
= 9

31.27 ± 
15.95, n 
= 9

-4.84
(-19.11,
9.42)

0.482    

Get up and go;
seconds

3
mo

9.11 ± 
2.94, n = 
10

6.66 ± 
1.33, n = 
13

-2.45
(-4.35,
-0.55)

0.014    

6
mo

8.10 ± 
2.00, n = 
9

8.05 ± 
4.08, n = 
8

-0.05
(-3.31,
3.21)

0.974    
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    1.0 kcal 1.5 kcal Unadjusted Group
difference

Baseline adjusted
group difference

Six-minute walk test;
metres

3
mo

432.7 ± 
93.8, n = 
9

486.3 ± 
100.3, n 
= 13

53.6
(-34.8,
142.0)

0.220    

6
mo

530.3 ± 
249.8, n 
= 10

463.9 ± 
118.2, n 
= 8

-66.4
(-270.6,
137.7)

0.500    

Energy intake from
24h recall, kcal

3
mo

2055 ± 
683, n = 
10

2551 ± 
1132, n = 
14

497 (-339,
1333)

0.230    

6
mo

2439 ± 
786, n = 
10

1599 ± 
704, n = 
11

-840
(-1520,
-160)

0.018    

Protein intake from
24h recall, g

3
mo

89.8 ± 
35.8, n = 
10

116.8 ± 
61.1, n = 
14

27.0
(-17.9,
71.8)

0.225    

6
mo

113.6 ± 
49.1, n = 
10

68.3 ± 
27.0, n = 
11

-45.3
(-81.0,
-9.6)

0.016    

Fat intake from 24h
recall, g

3
mo

68.0 ± 
28.8, n = 
10

94.5 ± 
54.8, n = 
14

26.5
(-12.9,
66.0)

0.177    

6
mo

101.0 ± 
42.4, n = 
10

62.0 ± 
36.3, n = 
11

-39.0
(-74.9,
-3.1)

0.035    

Carbohydrate intake
from 24h recall, g

3
mo

238.0 ± 
104.3, n 
= 10

284.7 ± 
139.5, n 
= 14

46.7
(-61.8,
155.1)

0.382    

6
mo

247.6 ± 
111.8, n 
= 10

162.3 ± 
83.6, n = 
11

-85.3
(-174.9,
4.3)

0.061    

Handgrip strength
There was no difference between 1.5 kcal and 1.0 kcal groups in handgrip strength taken on either the
right- or left-hand side at 3- or 6-month follow-up (Table 4).

24-hour dietary recall
There was no significant difference in calorie intake, nor any of the macronutrient intakes, at 3-month
follow-up between the groups (Table 4). At 6-month follow-up, patients in the 1.5 kcal group reported
lower calorie intakes compared to the 1.0 kcal group (1599 ± 704 vs 2439 ± 786 kcal; mean group
difference (95% CI) -840 (-1520, -160); P = 0.018) and this was driven by higher protein and fat intakes in
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the 1.0 kcal group; however, participant numbers were small at this timepoint (10 and 11 patients,
respectively).

Get up and go test
Patients in the 1.5 kcal group took less time to complete the get up and go test at 3-months (greater time 
= worse function) (1.5 kcal: n = 10, 6.66 ± 1.33 secs vs 1.0 kcal: n = 13, 9.11 ± 2.94 secs; mean group
difference (95% CI) -2.45 (-4.35, -0.55); P = 0.014), but there was no difference between groups at the 6-
month follow-up (Table 4).

Six-minute walk test
The distance walked in 6-minutes at both 3- and 6-month follow-ups did not differ between groups
(Table 4).

Discussion
This study quantified change in muscle size, strength, and functional recovery in critically ill patients
randomized to augmented calorie delivery compared to routine care. We observed that augmented calorie
delivery had no quantifiable effect on quadriceps, forearm, or mid-upper arm muscle thickness or
handgrip strength during the hospital admission. Furthermore, augmented calorie delivery in ICU did not
influence muscle size or strength at 3- and 6-months after randomization. While patients in the
augmented calorie group had a faster get up and go time at 3-months, this difference did not persist to 6-
months, nor did the distance walked in six minutes differ between groups at either of these timepoints.

The absence of reporting of muscle size, strength or function in ICU nutrition studies has previously been
highlighted by our group in a systematic review; in 73 RCTs of nutrition interventions identified, only two
included a measure of physical function as a primary outcome and 10% as a secondary or tertiary
outcome (23). Of these studies, three compared early supplemental parenteral nutrition (PN) to routine
care, the largest of which reported reduced muscle and fat loss (using Subjective Global Assessment and
mid-arm muscle circumference) with supplemental PN in 1372 patients (24). Two pilot RCTs showed no
difference in physical function using the ICU mobility scale at hospital discharge or handgrip strength at
ICU or hospital discharge, (25) and non-significant improvements in handgrip strength at ICU and hospital
discharge, and 6-minute walk test score and Barthel Index at hospital discharge (26). However, these
studies did not provide augmented calories alone, with the trial interventions also providing augmented
protein, which differs to our study in which protein delivery was similar between groups. In addition, a
retrospective analysis of prospectively collected data including 302 patients alive at follow-up reported
that meeting calorie targets in the first week of ICU was associated with a higher Short Form-36 physical
component score at 3-months, but not 6-months; however, in this analysis protein intake was also not
controlled for (10).
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Our study reports a number of measures of muscle size, strength and function that have previously been
reported outside of a calorie intervention. Quadriceps MLT has been previously assessed in a study in 16
critically ill patients where a mean of 1.68 cm was observed on day 16 of ICU admission (27). This is
substantially lower than the quadriceps MLT measurements observed in our study, even at hospital
discharge, despite both populations being of a similar age and BMI. These differing results may be
explained by differences in ultrasound methodology, with recognition that significant variations in
measurement technique occur (28) which may affect results. In our study, mean handgrip strength was
greater than 20 kg at both ICU discharge and on day 7. This is markedly higher than we have previously
recorded in a cohort of patients with a prolonged ICU stay (≥ 5 days) (12.6 kg) (29). At hospital discharge,
the observed handgrip strength in our study (~ 17–23 kg) is comparable to that reported previously
(mean handgrip strength 23.2 (IQR 13.6–32.3) kg) (30); however, at 3-months our population had a higher
handgrip strength (~ 25–28 kg) than reported in other studies (20.4 (IQR 9.1–30.6) kg) (31). In relation to
function, at 3-month follow-up our cohort walked a mean distance in six minutes of 486 and 432 m in the
1.5 and 1.0 kcal groups, respectively, and 463 and 530 m at 6-month follow-up. In patients with acute
respiratory distress syndrome, shorter median distances of 281 m at 3-months and 422 m at 12-months
have been reported (6). Reasons for differences in muscle size, strength and function observed in our
sub-study when compared to previous literature, particularly at post-hospital follow-up periods, is
potentially related to the differing patient populations.

While calorie delivery may have no impact on muscle size, strength or functional recovery, it may also be
that the duration of intervention is important. In this sub-study, patients had a short median duration of
trial EN (5.5-8 days), which may reduce the potential effect of calorie delivery. Studies in non-ICU
populations have shown benefit from nutritional interventions provided over longer durations. For
example, Schuetz et al compared individualized nutrition support to routine care in 2088 non-critically ill
hospitalized patients at nutritional risk, observing that patients receiving the study intervention over their
entire hospital duration had improved calorie and protein adequacy, reduced mortality, improved physical
recovery, and improved quality of life (32). Given poor nutrition intake post-ICU has been reported (33, 34),
the effect of calorie delivery over the entire hospital stay on functional recovery needs to be considered.

In this study, only calorie delivery was significantly different between the study groups, while protein
intake was kept consistent, yet with both groups receiving lower protein amounts (1.12–1.17 g/kg
IBW/day) than recommended in international guidelines (1.2-2.0 g/kg/day) (35, 36). In health, muscle
maintenance is dependent on amino acid availability (37), and hence calorie delivery alone, without
augmented protein doses, may not be sufficient to attenuate muscle loss and improve functional
recovery. It is possible that at a higher protein dose, increased calorie delivery may have had an effect, or
that muscle mass and function respond to increased protein alone. To date, the literature on augmented
protein dose to attenuate muscle loss is conflicting. Two small RCTs report a positive effect of protein
dose on attenuating muscle; in 119 patients, higher intravenous doses of protein showed greater
amelioration of ultrasound-derived muscle loss and a trend towards improved handgrip strength (19), and
in 60 patients an augmented calorie and protein intervention attenuated muscle loss by ICU discharge
(38). Meanwhile, more recent studies have reported no effect on muscle size using an β-Hydroxy β-
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methylbutyric acid (HMB) intervention (39, 40) or continuous vs intermittent EN (41). The role of protein
dose on muscle size in critical illness needs further investigation.

Both the main TARGET study and this sub-study used highly rigorous methodology, with TARGET
randomly assigning patients to EN interventions in a double-blind fashion (13), and the sub-study using
objective measures of muscle size, strength, and function which have been validated in the elderly or
critically ill patients (20–22, 42). Duration of feeding differed between the study groups which may have
influenced outcomes. A number of previous studies have used MLT as opposed to cross-sectional area
(CSA) (28). While CSA has been shown to provide a more reliable indicator of muscle wasting (43), MLT
may have greater translation into the clinical setting due to the ability to obtain results at the bedside
(42), and may be easier to identify than CSA, particularly in the setting of muscle wasting. Further, all
measures were conducted by two investigators only, and while interrater reliability was not assessed,
consistency was ensured through rigorous training.

Conclusion
Delivering greater amounts of calories to critically ill patients whilst in ICU may not influence muscle size
or strength during the hospital admission or at 3- or 6-months. Augmented calorie delivery may hasten
aspects of functional recovery, but this requires confirmation in a larger trial.
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Figure 1

CONSORT diagram
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Figure 2

Changes in quadriceps muscle layer thickness, before and after ceasing study enteral nutrition


