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The experimental findings herein reported are aimed at gaining

a perspective on the complex neural events that follow lesions of

the motor cortical areas. Cortical damage, whether by trauma or

stroke, interferes with the flow of descending signals to the mod-

ular interneuronal structures of the spinal cord. These spinal mod-

ules subserve normal motor behaviors by activating groups of

muscles as individual units (muscle synergies). Damage to the mo-

tor cortical areas disrupts the orchestration of the modules, result-

ing in abnormal movements. To gain insights into this complex

process, we recorded myoelectric signals from multiple upper-limb

muscles in subjects with cortical lesions. We used a factorization

algorithm to identify the muscle synergies. Our factorization anal-

ysis revealed, in a quantitative way, three distinct patterns of

muscle coordination—including preservation, merging, and frac-

tionation of muscle synergies—that reflect the multiple neural

responses that occur after cortical damage. These patterns varied

as a function of both the severity of functional impairment and the

temporal distance from stroke onset. We think these muscle-syn-

ergy patterns can be used as physiological markers of the status of

any patient with stroke or trauma, thereby guiding the develop-

ment of different rehabilitation approaches, as well as future

physiological experiments for a further understanding of postin-

jury mechanisms of motor control and recovery.

motor primitive | electromyography | neurorehabilitation | nonnegative

matrix factorization | Virtual Reality Rehabilitation System

There has been considerable experimental evidence suggesting
that diverse motor behaviors of vertebrates are constructed

by a combination of rudimentary building blocks (motor mod-
ules) residing in the spinal cord (1–3). The precise mechanism by
which the motor cortical areas preside over the orchestration of
these modules for movement generation remains largely un-
known. To gain some insight into this question, we studied the
muscle activation patterns of stroke survivors with cortical lesions
of differing severity. Our goal was to gather data not only for
unraveling the complexities emerging after cortical outflow is
disrupted, but also for providing a perspective upon which prin-
cipled rehabilitation strategies could be built.
The utilization of factorization algorithms for analyzing mus-

cle activity recorded during motor behaviors has made it possible
to decompose myoelectric activation patterns into their building
blocks, thereby revealing the modular architecture of the motor
system. In the last few years, we and others (2, 3) have pursued
this approach to shed light on old questions such as how the
motor system circumvents the need to control its large number of
degrees of freedom (4) through a flexible combination of motor
modules in both animals and humans. Other investigators have
used factorization analysis to gain a new understanding of spinal
cord functions (5–8), of postural control (9, 10), and of motor
development (11, 12).
The factorization analysis that we and others have used

models motor modules as groups of muscles activated together
(muscle synergies). Each muscle synergy represents a time-

invariant profile of activation across muscles, activated by a time-
varying coefficient. When individual synergies, scaled by their
coefficients, are summed together, the muscle activation pat-
terns, recorded during movements as electromyographic signals
(EMGs), are faithfully reconstructed (Fig. 1).
In this report, we focus on upper-limb muscle synergies of

a group of patients with stroke (n = 31) with a wide range of
unilateral motor impairment (Table S1). To identify muscle
synergies, we recorded EMG patterns from both arms during
a variety of tasks and reaching movements. We used the non-
negative matrix factorization (NMF) algorithm (13) to extract
from the EMGs the number of muscle synergies necessary for an
80% R

2 EMG reconstruction and then compared the synergies
of the two arms. Our analysis revealed three distinct patterns of
muscle synergies, reflecting preservation, merging, and frac-
tionation of the unaffected-arm muscle synergies in the stroke-
affected arm, respectively. These patterns manifested themselves
to varying degrees in different patient groups, suggesting that
they may be used as markers of the physiological status of
stroke survivors.

Results

In mildly impaired patients recorded shortly after stroke, we
observed that the muscle synergies of the stroke-affected arm
were strikingly similar to those of the unaffected arm despite
marked differences in motor performance between the arms.
For example, in one such patient with an upper-arm Fugl–Meyer
(FM) score of 50 (of a maximum score of 66) recorded 2.1 mo
poststroke, each of the seven muscle synergies of the affected
arm (Fig. 2A, red) could be matched to an unaffected-arm
synergy (blue) with a scalar-product similarity of 0.93 ± 0.03
(mean ± SD). This observation is not only consistent with the
conclusion we reached in an earlier study (14), but also com-
patible with the proposal that muscle synergies are structured in
the spinal cord, and after cortical stroke, altered descending
commands from supraspinal areas generate abnormal motor
behaviors through faulty activations of the spinal modules (14,
15) (see Fig. S4).
In contrast, in subjects with severe motor impairment (FM

score ≤30), regardless of when the patients were recorded rela-
tive to stroke onset, there was much less resemblance between
the synergies of the two arms. In the example shown in Fig. 2B,
the four synergies extracted from the affected arm (red) could
reconstruct the EMG patterns recorded during voluntary move-
ment as effectively as the six synergies extracted from the unaf-
fected arm (blue). This difference in data dimensionality suggests
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that the apparent dissimilarity between the synergies of the two
arms may be attributed to a merging of the synergies that were
present before stroke in the impaired limb, a merging that

persisted throughout the movement trials. We thus proceeded to
investigate this merging systematically with a computational pro-
cedure that automatically searched, among the unaffected-arm
synergies, those that could be linearly combined to reconstruct
each affected-arm synergy (SI Materials and Methods). In Fig. 3A,
the four synergies A1–A4 extracted from the affected-arm EMGs
(red) were reconstructed by linearly combining two to three syn-
ergies from the unaffected arm (blue). Synergy A1, for instance,
was explained as a combination of U1 and U5; synergy A2, of U2
and U5; and so on. The scalar-product similarity between the
extracted (red) and reconstructed (pink) synergies for the stroke-
affected arm (0.92 ± 0.03) was indeed much higher than the val-
ues obtained either by directly matching the synergies of the two
arms (P < 0.03; 0.78 ± 0.09) (Fig. 2B) or by performing this
merging analysis with random unaffected-arm synergies (P < 10−4;
0.81 ± 0.02) (Fig. S1).
We applied this merging analysis to the muscle synergies of all

other patients and quantified the degree of synergy merging in
each patient by calculating the mean number of unaffected-arm
synergies found to merge into each affected-arm synergy (thus, in
the above example, this number is the average of 2, 2, 3, and 3,
corresponding to the numbers for synergies A1–A4, respectively,
which equals 2.5; a value of 1 corresponds to an absence of
merging). We found that this index of synergy merging corre-
lated negatively, and significantly, with the patients’ FM scores

Fig. 1. A schematic illustrating how muscle synergies are linearly combined

to generate muscle patterns recorded as electromyographic signals (EMGs).

Each of the two muscle synergies shown (red and green bars) is represented

as an activation balance profile across muscles (muscles 1–5) and activated,

through multiplication, by a time-dependent coefficient. The EMG wave-

forms resulting from the activations of individual synergies are then summed

together to reconstruct the recorded EMGs (black lines). In the schematic,

each color in the EMG reconstruction reflects how the waveforms from the

synergy coded by the same color contribute to the reconstruction.

Fig. 2. Preservation of muscle synergies in a mildly impaired patient with stroke but not in a severely impaired patient. (A) The muscle synergies extracted

from the EMGs of the stroke-affected (red) and unaffected (blue) arms of a mildly impaired patient with stroke with a Fugl–Meyer (FM) score of 50. For both

arms, seven muscle synergies were sufficient for an EMG reconstruction R2 of ∼80%. Each affected-arm synergy was matched to an unaffected-arm synergy

giving the highest scalar-product similarity value, shown in between each synergy pair. All seven pairs had high similarity values (0.89–0.98), suggesting

preservation of the normal muscle synergies in the stroke-affected arm of this patient. (B) The muscle synergies of a severely impaired stroke patient with FM

score of 29. For this subject only four synergies were needed for reconstructing the affected-arm EMGs (synergies A1–A4) whereas six were needed for the

unaffected arm (synergies U1–U6). The similarity values between the synergies of the two arms were lower (0.67–0.85), but the affected-arm synergies tended

to have activation components in more muscles than the unaffected-arm synergies (e.g., compare A3 with U3 and A4 with U4). This observation suggests that

the apparent dissimilarity between the synergies of the two arms may be due to merging of the unaffected-arm synergies in the stroke-affected arm. Infrasp,

infraspinatus; RhombMaj, rhomboid major; TrapSup, trapezius superior; PectClav, clavicular head of pectoralis major; DeltA, anterior part of deltoid; DeltM,

medial part of deltoid; DeltP, posterior part of deltoid; TrLat, lateral head of triceps brachii; TrMed, medial head of triceps brachii; BicLong, long head of

biceps brachii; Brac, brachialis; BrRad, brachioradialis; Supin, supinator; PronTer, pronator teres.
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(Fig. 3B; r = −0.51, P < 0.01); thus, the more severe the im-
pairment, the more likely it is that an affected-arm synergy
represents a merging of multiple unaffected synergies. Further
statistical tests confirmed that the degree of merging of un-
affected-arm synergies varied with the FM score [three-way
ANOVA, F(1, 30) = 8.0, P < 0.01], but not with poststroke du-
ration (F = 0.01, P > 0.9) or with the side affected by the stroke
(F = 0.90, P > 0.3) (Fig. S2).
Whereas our model of synergy merging has enabled us to re-

construct the affected-arm muscle synergies in most patients with
good fidelity, in some subjects, particularly the chronic survivors,
there was a portion of affected-arm synergies that could not be
well explained by any combination of merging (Fig. 4A and Fig.
S3). For instance, in one chronic stroke survivor (poststroke
duration of 450.7 mo), whereas one of the six synergies extracted
from the affected-arm EMGs could be very well reconstructed
(Fig. 4B, synergy A1; scalar product of 0.91), the rest could be
only moderately well or poorly reconstructed (A2–A6; scalar
product of 0.71–0.81). It occurred to us that the affected-arm
synergies that could not be explained as a merging were in fact
fractionations of unaffected-arm synergies. Using a computa-
tional procedure, we identified affected-arm synergies A2 and A3

as fractionations of one unaffected-arm synergy (Fig. 4C, U1)
and A4, A5, and A6 as fractionations of another (U3).
In 18 of the 31 subjects, our procedure identified two or more

synergies for the impaired arm as fractionations of one or
multiple unaffected-arm synergies. Within this group of subjects,
the percentage of affected-arm synergies found to be fractio-
nations correlated strongly with poststroke duration (Fig. 4D;
r = 0.66, P < 0.004).

Discussion

The muscle synergies extracted by the factorization algorithm
from the EMGs of multiple tasks (Figs. 2–4) have allowed us
to reveal, in a quantitative way, distinct myographic patterns

reflecting the physiological processes that occur following cortical
damage. These patterns vary as a function of both the severity of
motor impairment and the temporal distance from stroke onset.
Whether they also depend on the anatomical location of the lesion
would require further analysis of the magnetic resonance imaging
data of our subjects.
In our analysis, we have compared the muscle synergies of the

stroke-affected arm with those of the unaffected arm of the same
subject. The patterns of muscle synergies we have revealed rely
on the assumption that the unaffected-arm synergies are them-
selves not changed by either the stroke lesions or the elapse of
time after stroke. This assumption is supported by an earlier
observation that the unaffected-arm synergies in patients with
stroke are similar to the ones identified in the arms of healthy
control subjects (14).
Central to the present investigation is the use of a factorization

algorithm (NMF) to extract muscle synergies from the EMGs of
multiple muscles. The factorization procedure essentially per-
forms a dimensionality reduction by grouping the muscles that
tend to covary in the dataset into individual synergies (Fig. 1). The
set of extracted muscle synergies may thus be viewed as a compact
representation of the most salient features embedded within the
variability present in the EMG dataset. The use of an algorithm
provides an objective and efficient means to identify, from large,
high-dimensional EMG data recorded from multiple tasks, basic
muscle groupings that are not necessarily obvious from visual
inspection of the raw data or simple correlation analysis between
the EMGs of muscle pairs. Importantly, an earlier study has shown
that different linear factorization algorithms (except principal
component analysis) produced similar synergies in both simulated
and experimental datasets (16). This result supports that the
extracted synergies are likely not artifacts contingent upon the
assumptions of NMF, but reflect structures of the motor modules
used by the motor system for movement control.

Fig. 3. The stroke-affected arm muscle synergies of severely impaired patients explained as merging of unaffected-arm synergies. (A) We devised

a computational procedure that systematically finds the subset of unaffected-arm synergies that can be linearly combined to reconstruct each affected-arm

muscle synergy. Each affected-arm synergy from the example shown in Fig. 2B (red, A1–A4) was reconstructed by merging two to three unaffected-arm

synergies (blue, U1–U6). Synergy A1, for instance, could be reconstructed by combining U1 and U5; synergy A2, by combining U2 and U5; and so on. The

reconstructed affected-arm synergies (pink), when compared with the synergies extracted from the affected-arm EMGs (red), yielded high similarity values

(0.89–0.95, shown between each extracted and reconstructed synergy pair for the affected arm). (B) We derived an index quantifying the degree of synergy

merging by calculating the mean number of unaffected-arm synergies found merging into each affected-arm synergy. When calculating this average, we

included in our statistic only those affected-arm synergies that could be well reconstructed as a combination of unaffected-arm synergies (scalar product

>0.75). Across all patients (n = 31), we found a significant, negative correlation between our index of synergy merging (in log scale) and the FM score (r =

−0.512, P = 0.0032). Thus, the more impaired the patient with stroke, the more likely that an affected-arm synergy represents a merging of multiple

unaffected-arm synergies.
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Our factorization procedure has identified three basic patterns
of muscle synergies. In cases of mild-to-moderate impairment
(FM > 30), we observed that the synergies in the affected and
unaffected arms were similar even though the muscle activation
patterns were different (Fig. 2A). This observation indicates that
the output of spinal modules can still be retrieved by the fac-
torization procedure. However, as reflected by the differences in
the activation coefficients of these preserved synergies between
the two arms (Fig. S4), the machinery for activating synergies,
presumably under cortical control, has faltered after stroke. It is
the failure of activating the synergies in a correct way that gen-
erates abnormal motor behaviors.
In cases of severe impairment (FM ≤ 30), we observed a dif-

ferent pattern of muscle synergies. In the affected arm, multiple
synergies appeared to merge (Fig. 2B). As a consequence of this
merging, the EMGs of the affected arm could be reconstructed
with fewer synergies (Fig. S5). This merging of muscle synergies
we observed is compatible with the poststroke “cocontractions”
of muscles described in the literature (17–20) and a previous
report of motor-module fusion in the affected lower limb of
stroke survivors (21). In fact, in our data certain combinations of
muscle synergies were observed to merge more frequently than
others across patients (Fig. S6). The merging of these specific
muscle synergies could potentially account for the previously

observed poststroke couplings of shoulder and elbow actions (22),
which could in turn lead to a reduction in the range of joint motion.
Whereas the former two patterns are related to the severity of

motor impairment, the third pattern we identified emerged only
after years from the initial injury. In a subset of patients with
chronic stroke, a portion of the synergies in the affected arm
appeared to be fractionations of the synergies observed in the
unaffected arm (Fig. 4C), and this fractionation process tended to
increase the number of synergies required for adequate description
of the affected-arm EMGs (Fig. S5). It remains to be verified
whether fractionation is an adaptive process triggered in response
to the poststroke motor impairment. For instance, an increased
flexibility of controlling the shoulder and upper-arm muscles pro-
vided by synergy fractionation could compensate for impaired
motions of the more distal joints resulting from stroke (17).
Even though we present here the preservation, merging, and

fractionation of muscle synergies as three distinct poststroke
responses, we note that two or all three of these responses could
be present simultaneously in the same subject (Fig. S7). The extent
to which each of these three responses manifests itself in the stroke-
affected arm could therefore serve as a precise and quantifiable
marker of the physiological status of the patient at any given time.
At this point it would be hazardous to speculate upon the

neural mechanisms underlying both merging and fractionation of

Fig. 4. The stroke-affected arm muscle synergies of chronic patients explained as fractionations of unaffected-arm synergies. (A) Some of the affected-arm

synergies from the chronic patients in our dataset could neither be directly matched to an unaffected-arm synergy nor be explained as a merging of multiple

unaffected-arm synergies. In fact, the median scalar-product similarity value between the extracted and reconstructed (via the merging model) affected-arm

synergies decreased with the subjects’ poststroke duration (in log scale) (r = −0.610, P = 2.7 × 10−4). (B) The muscle synergies of a very chronic patient

(poststroke duration = 450.7 mo) extracted from the affected-arm EMGs (red, A1–A6) and their corresponding reconstructions by merging unaffected-arm

synergies (pink). Of these six synergies, only one could be well reconstructed (A1). (C) The affected-arm synergies that could not be well reconstructed by the

merging model in B (A2–A6) could instead be explained as fractionations of unaffected-arm synergies. Our computational procedure identified synergies A2

and A3 to be fractionations of synergy U1 for the unaffected arm, and A4–A6 as fractionations of synergy U3. The affected-arm synergies identified as

fractionations (red) could in fact be linearly combined to result in reconstructions of their corresponding unaffected-arm synergies (cyan) that matched very

well to the synergies extracted from the unaffected-arm EMGs (blue) (scalar product = 0.93–0.94). (D) Within the group of subjects in whose affected-arm

synergies fractionations were observed (n = 18), the percentage of affected-arm synergies identified to be fractionations of unaffected-arm synergies in-

creased with the subjects’ poststroke duration (in log scale) (r = 0.66, P = 0.0031).

Cheung et al. PNAS | September 4, 2012 | vol. 109 | no. 36 | 14655

N
E
U
R
O
S
C
IE
N
C
E

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212056109/-/DCSupplemental/pnas.201212056SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212056109/-/DCSupplemental/pnas.201212056SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212056109/-/DCSupplemental/pnas.201212056SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212056109/-/DCSupplemental/pnas.201212056SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212056109/-/DCSupplemental/pnas.201212056SI.pdf?targetid=nameddest=SF7


muscle synergies. The motor system is a complex, integrated
system with ascending and descending pathways working in ways
that defy simple hierarchical descriptions. Even though the
lesions are cortical, the merging and fractionation might be de-
pendent on either neural changes at the cortical level (23) or
other processes at the brainstem or spinal cord levels unmasked
by the cortical lesions (17). Although it is premature to advance
any concrete hypothesis on the origin of these three patterns
of muscle synergy, we believe a description of these patterns is
nonetheless important because the patterns provide physiological
markers that can be used for shedding light on the complex pro-
cesses that follow accidents involving the cortical motor system.
With animal models, the use of these markers, in conjunction

with conventional physiological and behavioral techniques, may
provide an understanding of how cortical and subcortical pro-
cesses interact to produce the motor patterns observed in patients
with stroke. A more challenging task, however, is to develop more
effective rehabilitation procedures on the basis of the data pro-
vided by our factorization analysis. At the very least, the obser-
vation of merging and fractionation of muscle synergies should
prompt the development of different therapeutic approaches.
In the long run, the markers we have identified might be prof-
itably used for assessing the efficacy of any existing or new re-
habilitation therapies by providing physiological information on
how they affect the dynamics of motor recovery from cortical
lesions. Finally, these markers may represent a step toward the
establishment of customized therapies tailored to the conditions
of individual patients.

Materials and Methods
Subjects. Thirty-one stroke survivors were recruited from the San Camillo

Hospital, Lido di Venezia, Italy (n = 21) and the Spaulding Rehabilitation

Hospital, Boston (n = 10). All patients studied suffered from a mostly uni-

lateral cortical and subcortical lesion resulting from either an ischemic or

a hemorrhagic stroke (Table S1). All procedures were approved by the Ethics

Committees of the San Camillo Hospital, Spaulding Rehabilitation Hospital,

and Massachusetts Institute of Technology. All participants gave informed

consent before experimentations.

Behavioral Tasks and EMG Recordings. Each subject was asked to perform

multiple upper-limb tasks with each of the two arms so that the muscle

patterns from the stroke-affected arm could be compared with those from

the unaffected arm of the same subject. At San Camillo, the motor behaviors

tested consisted of seven virtual-reality tasks (10–11 trials per task). At

Spaulding, subjects were asked to perform a point-to-point reaching task

consisting of ballistic movements from an initial position to 1 of 12 possible

targets in 3D space, and then from the target back to the initial position (3–4

trials per target). As the subject performed the tasks, EMG activities of 10–16

shoulder, upper-arm, and forearm muscles of each arm were collected using

surface bipolar electrodes.

Extracting Muscle Synergies. Muscle synergies were extracted from filtered,

rectified, integrated, and variance-normalized EMGs of each arm of each

subject using the NMF algorithm (13). The NMF models the activities of the

recorded muscles as a linear combination of time-invariant muscle synergies,

each activated by a time-varying activation coefficient (Fig. 1). To identify

the number of muscle synergies composing the EMGs, we successively in-

creased the number of synergies extracted from one to the number of

muscles recorded and selected the minimum number of synergies required

for a cross-validated EMG-reconstruction R2 of 80%. Because the synergies

and their coefficients extracted from the data may represent a local extre-

mum on the R2 surface, we repeated the synergy extraction 50 times and

selected the solution giving the highest R2 for further analyses.

Merging and Fractionation of Muscle Synergies. We investigated whether the

observed muscle synergies in the stroke-affected arm could be explained as

multiple synergies merging together by modeling each affected-arm synergy

as a linear combination of the set of unaffected-arm synergies. The coef-

ficients of this linear combination were identified through a standard

nonnegative least-squares procedure (SI Materials and Methods). For every

affected-arm synergy, an unaffected-arm synergy was defined to contribute

to the merging if its associated coefficient was >0.2. Note that in this model,

each unaffected-arm synergy could contribute to the merging of more than

one affected-arm synergy.

In addition, we investigated whether two or more affected-arm synergies

could be fractionations of any unaffected-arm synergy by modeling each

unaffected-arm synergy as a linear combination of the set of affected-arm

synergies. Thus, the fractionation model is equivalent to the one obtained by

swapping the roles of the unaffected- and affected-arm synergies in the

mergingmodel. Because each affected-arm synergy could not simultaneously

be fractionations of more than one unaffected-arm synergy, we imposed the

additional constraint in the least-squares optimization that each affected-

arm synergy could contribute to the reconstruction of at most one unaffected-

arm synergy.
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SI Materials and Methods

Subjects. A total of 31 stroke survivors (mean age = 61.6) were
recruited from theSanCamilloHospital, LidodiVenezia, Italy (n=
21) and the Spaulding Rehabilitation Hospital, Boston (n = 10).
All patients studied suffered from a mostly unilateral cortical and
subcortical lesion resulting from either an ischemic or a hemor-
rhagic stroke (Table S1). The location and extent of the lesion were
obtained from radiological interpretations of the patients’magnetic
resonance imaging records. The residual motor functions of the
patients’ stroke-affected arm were quantified using the upper-
extremity Fugl–Meyer scale (maximum score of 66). Data from
8 of the San Camillo patients have been previously described (1).
All subjects studied had received various amounts of physical

rehabilitation therapy before recording. For the San Camillo
patients, the treatments administered included both standard
physical therapy and upper-limb exercises performed on the
Virtual Reality Rehabilitation System (VRRS) (Khymeia).
AllprocedureswereapprovedbytheEthicsCommitteeof theSan

Camillo Hospital, the Human Studies Committee of the Spaulding
RehabilitationHospital, and theCommittee on theUse ofHumans
asExperimental Subjects ofMassachusetts Institute ofTechnology.
All participants gave informed consent before experimentation.

Behavioral Tasks. Each subject was asked to perform multiple
upper-limb tasks with each of the two arms so that the muscle
patterns from the stroke-affected arm could be comparedwith those
from the unaffected arm of the same subject. At the San Camillo
Hospital, themotorbehaviors testedconsistedof sevenvirtual-reality
tasks (10–11 trials per task) designed for eliciting adequate vari-
ability of shoulder and elbow motions, necessary for the identifica-
tion of muscle synergies, with a reasonable number of movement
trials. They included simple upward reaching, shoulder abduction,
forward reaching across a single spatial constraint, upward reaching
across two spatial constraints, hand pronation, shoulder circum-
duction, and moving the hand along a path together with forearm
pronation. The tasks required for both arms were identical, except
that their trajectories were mirror images of each other.
At the Spaulding Rehabilitation Hospital, motion variability

was elicited with a similar point-to-point reaching task consisting
of ballistic movements from an initial position to 1 of 12 possible
targets in three-dimensional space, and then from the target back
to the initial position. Target locations were specified by equally
spaced points along the circumference of a circular wooden panel
(radius of 20.5 cm) placed in front of a sitting subject. The position
of the panel was adjusted so that its center aligned both vertically
and mediolaterally with the shoulder of the recorded arm, and the
distance between the panel’s center and the shoulder equaled the
shoulder-to-hand length of the fully extended unaffected arm.
The initial starting position for each reach was indicated by
a marker attached to the end of a metal stick mounted on
a frame placed in front of the panel, so that the starting point
was at the height of the panel’s center and the distance between
them equaled the forearm’s length measured from ulnar to lat-
eral epicondyle of the unaffected arm. For each trial, the subject
was instructed to move from the initial position to the target and
then from the target back to the initial position. For each of the
two arms, three to four blocks of trials were performed. Each
block consisted of 12 trials (1 trial per target), and the within-
block ordering of targets was randomized each time.

Electromyographic (EMG) Recordings and Preprocessing. As the
subject performed the behavioral tasks, EMG activities of 10–16

shoulder, upper-arm, and forearm muscles of each arm were
collected at 1,000 Hz (San Camillo) or 3,000 Hz (Spaulding),
using surface bipolar electrodes (San Camillo, Biopac Systems;
Spaulding, MA-300; Motion Lab Systems). The muscles re-
corded included infraspinatus; teres major (at San Camillo only);
latissimus dorsi (at Spaulding only); rhomboid major; superior
trapezius; pectoralis major, clavicular head; deltoid, anterior,
medial, and posterior parts; triceps brachii, lateral head; triceps
brachii, medial head (San Camillo only); biceps brachii, short
and long heads; brachialis; brachioradialis; supinator (San Ca-
millo only); and pronator teres. Before electrode placement, the
skin surface where the electrodes would be positioned was
cleaned with alcohol wipes, and any excess body hair on the
surface was shaved. Placement positions were identified ac-
cording to guidelines of the Surface Electromyography for the
Non-Invasive Assessment of Muscles–European Community
Project (SENIAM) and Delagi et al. (2). All EMGs collected
were stored in a computer and subsequently analyzed offline,
using customized functions written in Matlab (Mathworks).
Before muscle synergy analysis, the collected EMGs were

preprocessed as described before (1). Briefly, the EMGs were
first high-pass filtered (window-based finite impulse response
filter, 50th order, cutoff of 50 Hz), then rectified, and then low-
pass filtered (window-based finite impulse response filter,
50th order, cutoff of 20 Hz), and finally integrated over 20-ms
intervals. Data of every trial were carefully inspected before
extraction of synergies to ensure that none of the trials contained
high-amplitude spikes arising from noise. To equalize EMG-
amplitude differences between muscles so that subsequent ex-
tractions of synergies from the EMGs would not be biased into
describing only the high-amplitude muscles, the data from each
muscle of each arm were normalized to unit variance (3, 4).

Extracting Muscle Synergies. As in previous studies (5, 6), muscle
synergies were extracted from the EMGs of all tasks from each
arm of each subject using the nonnegative matrix factorization
(NMF) algorithm (7), which models the activities of the recorded
muscles as a linear combination of time-invariant muscle syn-
ergies, each activated by a time-varying activation coefficient
(Fig. 1). This model may be mathematically expressed as

~DðtÞ ¼
XN

i¼1

ciðtÞ~wi þ~ε; [S1]

where ~DðtÞ is the vector of EMG activities collected at time t, N
is the number of muscle synergies extracted, ~wi is a time-in-
variant nonnegative vector in muscle space denoting the ith
muscle synergy, ciðtÞ is the nonnegative activation coefficient for
the ith synergy, and~ε is any residual activities unexplained by the
linear combination. For any prespecified N, the NMF finds from
the EMGs both ciðtÞ and ~wi by minimizing~ε, with the additional
assumption that ~ε follows a Gaussian distribution (8). In our
NMF implementation, the algorithm was initialized with random
synergy and coefficient matrices whose elements were drawn
from a uniform distribution between 0 and 1; values of these
matrices were then iteratively updated until convergence, de-
fined as having 20 consecutive iterations that resulted in a
change of EMG-reconstruction R2

< 0.01%. Because the sol-
utions for the synergies and their coefficients found by the al-
gorithm may represent a local extremum on the R2 surface, we
repeated the synergy extraction 50 times for every arm of every

Cheung et al. www.pnas.org/cgi/content/short/1212056109 1 of 9

www.pnas.org/cgi/content/short/1212056109


subject and selected the synergies from the run giving the highest
R2 for further analyses.
To identify the number of muscle synergies composing the

EMGs (N in Eq. S1), we successively increased the number of
synergies extracted from one to the number of muscles recorded
and selected the minimum number of synergies required for an
EMG reconstruction R2 of 80%. More precisely, the R2 values
we used for this step were cross-validated values obtained by first
extracting synergies from a randomly selected half of the epi-
sodes (the training subset), and then fitting the extracted syn-
ergies to the other unused half (the testing subset). We
calculated R2 values for individual EMG trials in the testing
subset (instead of one R2 value for all episodes in the testing
subset), allowing us to derive, from this distribution of R2 values,
a 90% confidence interval for the mean reconstruction R2 for the
individual testing EMG trials. This cross-validation was repeated
10 times, each time with different randomly selected training and
testing subsets. A plot of the confidence-interval upper bound,
averaged across the 10 cross-validations, against the number of
synergies extracted then enabled us to select the minimum
number of synergies required for an 80% R2 reconstruction.

Model of Synergy Merging. When we inspected the synergies
extracted from the EMGs of the severely impaired stroke
patients, we noticed consistently that the structures of many
synergies for the stroke-affected arm were less sparse (i.e., there
were more muscle components within each synergy) than those
for the unaffected arm. Detailed visual examinations of the
synergy sets of the two arms further suggested to us that some of
the affected-arm synergies may result from merging of multiple
unaffected-arm synergies, similar to what Clark et al. (9) have
previously observed for lower-limb synergies in stroke survivors.
These observations prompted us to derive a computational
method for systematically identifying how the unaffected-arm
synergies merged together in the synergy set of the affected arm.
For this identification, we modeled each affected-arm synergy as
a linear combination of the unaffected-arm synergies,

~wa
i ≈

XNu

k¼1

mi
k~w

u
k ;   mi

k ≥ 0;    i ¼ 1:::Na; [S2]

where~wa
i is the ith affected-arm synergy,~wu

k is the kth unaffected-
arm synergy, Nu is the number of unaffected-arm synergies ex-
tracted, Na is the number of affected-arm synergies extracted,
and mi

k is a nonnegative coefficient denoting the degree of
contribution of the kth unaffected-arm synergy to the structure
of the ith affected-arm synergy in the linear combination. Note
that in this model, each unaffected-arm synergy could contribute
to more than one affected-arm synergy. For every affected-arm
synergy, an unaffected-arm synergy was defined to contribute to
the merging if its associated merging coefficient was >0.2.
Identification of the merging coefficients ~mi was achieved using

nonnegative least squares implemented through the lsqnonneg
function of Matlab (optimization toolbox). This identification
amounts to projecting each ~wa

i onto the space spanned by
f~wu

1 ;~w
u
2 ; :::;~w

u
Nug. Similarity between the original affected-arm

synergy and that reconstructed from combination of unaffected-
arm synergies was measured by the scalar product between them
(after normalization to unit vectors).

Model of Synergy Fractionation. When the above model of synergy
merging was applied to the synergy sets extracted from EMGs of
the impaired arm, we noticed that some affected-arm synergies
could not be well reconstructed by any combination of unaffected-
arm synergies (scalar product<0.75). These synergies, on the other
hand, often contained activations in subsets of muscles present in
another unaffected-arm synergy and thus appeared to be split-off
fractionations of a muscle synergy of the unaffected arm. This ob-
servation prompted us to systematically identify the affected-arm
synergies that could be fractionations of any of the unaffected-arm
synergies, accomplished by swapping the roles of the unimpaired-
and impaired-arm synergies in the merging model described above
(Eq. S2). Thus, in our model of synergy fractionation,

~wu
k ≈

XNa

i¼1

f ki ~w
a
i ;  f ki ≥ 0;    k ¼ 1:::Nu; [S3]

where the coefficients ~f
k
¼ ½f k1 ; f

k
2 ; :::; f

k
Na � specify how the kth

unaffected-arm synergy may be fractionated into multiple
synergies observed in the affected arm. As in the synergy-
merging model,~f

k
was identified using nonnegative least squares.

Because each affected-arm synergy could not simultaneously be
fractionations of more than one unaffected-arm synergy, we im-
posed the additional constraint in the least-squares optimization
that each affected-arm synergy could contribute to the re-
construction of at most one unaffected-arm synergy. This con-
strained optimization was accomplished by first performing the
projection without any constraint. Then, for every affected-arm
synergy, we identified the one unaffected-arm synergy with the
highest associated coefficient, and this unaffected-arm synergy
would be the only one whose reconstruction the affected synergy
in question could contribute to. A second projection for every
unaffected-arm synergy was then performed, this time only onto
the affected-arm synergy(ies) assigned to it. An affected-arm
synergy was defined to be a fractionation only if the~f

k
’s identified

indicated that it could be combined with another affected-arm
synergy to reconstruct one of the unaffected-arm synergies.
We have found that the majority of the affected-arm muscle

synergies identified as fractionations could neither be well
matched directly to any unaffected-arm synergy nor be well
reconstructed as a merging. However, in the case when an af-
fected-arm synergy appeared to be similarly well explained as
a merging or a fractionation, we assigned the synergy to whichever
pattern gave a higher scalar product for the reconstruction.

Clustering Muscle Synergies. The unaffected-arm muscle synergies
obtained from all subjects were categorized into classes to allow
detection of the combinations of unaffected-arm synergies that
tended to merge in the stroke-affected arm more frequently than
others across subjects. Clustering was performed using theMatlab
statistics-toolbox functions pdist (Minkowski option, P = 3),
linkage (Ward option), and cluster.
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Fig. S1. The similarity between the extracted affected-arm synergies and their reconstructions through merging of unaffected synergies was statistically

significant. To assess the goodness-of-fit of the synergy-merging model, we calculated the scalar-product values between the affected-arm synergies extracted

from the EMGs and their reconstructions through merging of unaffected-arm synergies. For every subject (x axis), we averaged this scalar-product value across

the affected-arm synergies (y axis, mean ± SD; blue). To assess the significance of these values, we compared them against baseline scalar-product values

expected from chance (mean ± SD; red), obtained by comparing the original affected synergies with their reconstructions through merging of random syn-

ergies. The random synergies were generated by shuffling the muscle components of each of the original unaffected-arm synergies. For every affected-arm

synergy, 100 trials of merging analysis were performed on random synergies, each time with a different shuffling, and an average scalar product was cal-

culated across these 100 trials. As can be seen, for all subjects (n = 31), the original scalar-product values were higher than their corresponding baseline values,

and for all but 4 subjects, this difference was statistically significant (t test, P < 0.05; thin red lines). Thus, the good agreement between the extracted and

reconstructed affected-arm synergies is not a default result expected from the synergy-merging model per se.

Fig. S2. The degree of muscle-synergy merging in the stroke-affected arm varied as a function of the degree of motor impairment, but not of the poststroke

duration or of the side affected by stroke. To quantify the degree of muscle-synergy merging in the stroke-affected arm, for every subject we calculated the

mean number of unaffected-arm synergies found merging into each affected-arm synergy as an index of the degree of merging. Thus, for this index, a value of

1 means no merging was observed. When calculating this average, we included in our statistics only those affected-arm synergies that could be well re-

constructed (scalar product >0.75) as merging of unaffected-arm synergies. We found that this merging index (mean ± SE) was significantly higher in the

severely impaired subject group [Fugl–Meyer scale (FM) ≤ 30, n = 10] than in the mildly to moderately impaired group (FM > 30, n = 21) [three-way ANOVA:

F(1, 30) = 8.0, *P < 0.01], but showed no difference between the acute (poststroke duration ≤12 mo, n = 18) and chronic (>12 mo, n = 13) groups (F = 0.01, P >

0.9) or between the groups affected on the nondominant (n = 19) and dominant (n = 12) sides (F = 0.9, P > 0.3).
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Fig. S3. The goodness-of-fit between the affected-arm muscle synergies and their reconstructions by merging unaffected-arm synergies was worse in patients

with chronic stroke. For every patient, how well the affected-arm synergies could be reconstructed by linearly combining unaffected-arm synergies was

quantified by the scalar product between the extracted and reconstructed synergies normalized to unit length, and the median scalar-product value was used

as a goodness-of-fit measure for all subjects. We found that the median scalar product (mean ± SE) for the patients with chronic stroke (poststroke duration

>12 mo) was significantly lower than that for the acute group (≤12 mo) [three-way ANOVA: F(1, 30) = 9.8, *P < 0.005]. However, it showed no difference

between the mildly impaired (FM > 30) and severely impaired (FM ≤ 30) groups (F = 1.4, P > 0.2) or between the groups affected on the nondominant and

dominant sides (F = 0.2, P > 0.6). Thus, our model for explaining affected-arm synergies by merging unaffected-arm synergies was inadequate for the data

obtained from patients with chronic stroke.
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Fig. S4. Cortical stroke lesions changed the activation amplitude and duration of the coefficients of the preserved muscle synergies. We present analytic

results of synergy coefficients from a mildly impaired patient (FM = 50) whose muscle synergies in the unaffected arm were preserved in the stroke-affected

arm (Fig. 2A). (A) The preserved muscle synergies of this subject. In both arms, seven muscle synergies were required to achieve an EMG reconstruction R2 of

∼80%. We pooled the EMGs of the unaffected and stroke-affected arms together and reextracted muscle synergies (1–7) from this combined data matrix so

that the we could compare the synergy coefficients of the two arms with respect to an identical set of basis vectors. The muscle synergies from this extraction

were obviously very similar to the ones extracted separately from the EMGs of either arm (compare Fig. 2A). (B) To assess how the coefficient amplitude

differed between the two arms, for each of the seven synergies we calculated the average coefficient amplitude of every trial across the data points exceeding

5% of the maximum coefficient amplitude. Because the EMGs of each arm were normalized values, an interarm amplitude comparison is possible only after the

coefficient amplitude is standardized to a reference amplitude common to both arms. We accomplished this standardization by expressing, in both arms, the

average amplitude of each task (tasks 2–7; mean ± SD; n = 10–11) as a fold-change deviation from the average amplitude of task 1. As can be seen, the relative

coefficient amplitude of the stroke-affected arm (red) differed from that of the unaffected arm (blue) in a synergy- and task-specific manner. For instance, for

synergy 3, the affected-arm amplitude was significantly smaller than the unaffected-arm amplitude only in tasks 3, 5, 6, and 7 (t test, *P < 0.001); for synergy 4,

on the other hand, the coefficient amplitude for the two arms was identical for all tasks except task 4. (C) The duration of activation of each synergy of the

stroke-affected arm (red) was similarly compared with that of the unaffected arm (blue). They differed in a synergy- and task-specific manner, although in

general the activation duration in the stroke-affected arm tended to be longer (e.g., in synergies 2, 3, and 5).
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Fig. S5. EMG-data dimensionality in the stroke-affected arm decreased with more severe motor impairment, but increased with longer poststroke duration.

In the data of each subject, the number of muscle synergies needed for adequate EMG reconstruction was determined by successively increasing the number of

synergies extracted from one to the number of muscles recorded and then identifying the number at which an 80% of cross-validated R2 (black dotted line)

was achieved. We show here how the R2 varied as a function of the number of synergies extracted in both the stroke-affected (red, mean ± SE) and the

unaffected (blue) arms, in four nonoverlapping subject groups: subjects with mild-to-moderate motor impairment (FM > 30) (A and B), severe motor im-

pairment (FM ≤ 30) (C and D), a ≤30-mo poststroke duration (A and C), and a >30-mo poststroke duration (B and D). An increase in the severity of motor

impairment coincided with a left shifting of the stroke-affected R2 curve relative to the unaffected-arm R2 curve (compare A with C and B with D). This left-

shifting of the R2 curve suggests that fewer synergies were needed in the affected arm of severely impaired subjects for EMG reconstruction, consistent with

the observation that the degree of synergy merging varied as a function of the degree of motor impairment (Fig. 3B and Fig. S2). On the other hand, an

increase in the poststroke duration coincided with a right shifting of the stroke-affected R2 curve relative to the unaffected-arm R2 curve (compare A with B

and C with D). This right-shifting of the R2 curve indicates that more synergies were needed in the affected limb of very chronic stroke survivors for EMG

reconstruction, consistent with the observation that the extent of synergy fractionation varied as a function of poststroke duration (Fig. 4D).
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Fig. S6. Specific combinations of muscle synergies merged more frequently than others in the stroke-affected arm. (A) The muscle synergies of the unaffected

arm across subjects. We grouped the unaffected-arm muscle synergies from all subjects into eight categories, using hierarchical clustering (SI Materials and

Methods). Shown here are the averages (mean ± SE) of the synergy clusters (dark gray components, P < 0.01 and magnitude >0.1). (B) Heat map showing the

frequency of occurrence of synergy merging in the stroke-affected arm, across all subjects, for all pairwise combinations of muscle synergies. The synergy

clusters here (1–8) correspond to the ones shown in A. The frequency statistic reported for each combination includes instances of merging any number of

synergies; thus, for example, the statistic for synergies 5 and 8 includes instances of merging just synergies 5 and 8, as well as instances of merging these two

synergies plus another synergy. Note that some combinations of merging occurred much more frequently than others. In particular, synergy 8 (comprising

mainly back muscles controlling the shoulder motion) merged frequently with synergies 4–7 (comprising muscles over both the elbow and the shoulder joints).

The merging of these combinations of muscle synergies may account for previous observations of abnormal elbow–shoulder couplings in the paretic arm of

stroke survivors. Note also that some merging combinations (e.g., merging of synergy 6 and synergy 1 or 2) were not observed in any patient.
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Fig. S7. Preservation, merging, and fractionation of muscle synergies in the stroke-affected arm of the same subject. We demonstrate here how the three

patterns of muscle synergies we have described could be simultaneously present in the same subject. In this mildly impaired (FM = 65) and chronic (33.0 mo

poststroke) survivor, six muscle synergies were identified for the unaffected arm (blue, U1–U6), and seven muscle synergies, for the stroke-affected arm (red,

A1–A7). We found that one affected muscle synergy (A4) could be explained as a merging of two unaffected synergies (U4 and U5) and be very well matched

to its reconstruction (pink) via merging (scalar product of 0.98). Three affected synergies (A5–A7) were identified as fractionations of one unaffected synergy

(U6), and together they could be linearly combined to reconstruct the fractionated unaffected synergy (cyan; scalar product of 0.91). The remaining affected-

arm synergies unaccounted for by merging or fractionation (A1–A3) could each be matched to an unaffected synergy (U1–U3; scalar product of 0.75–0.91).

Note that the three affected-arm synergies identified as fractionations (A5–A7) could be only very poorly reconstructed via merging (scalar product of 0.62–

0.73), suggesting that merging and fractionation are two distinct, but complementary, patterns of muscle synergies in the stroke-affected arm.
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Table S1. Summary of the stroke survivors recruited for this study

Subject Sex Age FM score

Poststroke

duration, mo

Side

affected

No. muscles

recorded Lesion

1 F 59 58 8.5 D 12 Fronto-temporal: basal ganglia, internal capsule, insular

2 M 61 59 10.9 Nd 11 Fronto-temporo-parietal: M1, basal ganglia, insular

3 F 68 60 5.2 D 12 Fronto-parieto-occipital: M1, PMA, SMA

4 F 76 47 11.0 Nd 16 Fronto-temporal: M1, basal ganglia, internal capsule, insular

5 F 70 64 2.7 D 16 Fronto-temporo-parietal: M1, possibily PMA

6 M 57 18 14.7 Nd 12 Fronto-parietal: M1, PMA

7 F 46 29 17.5 Nd 14 Fronto-temporo-parietal: M1, with old lesions

8 M 44 64 2.0 Nd 13 Frontal: internal capsule, corona radiata, with old lesions

9 M 72 27 0.8 D 13 Fronto-temporo-parietal: M1, PMA, internal capsule,

striatum, periventricular

10 F 75 50 2.1 Nd 13 Periventricular white matter

11 F 75 34 4.0 Nd 13 Fronto-temporo-parieto-occipital: M1, PMA, lenticular

nucleus, cerebral white matter

12 F 51 0 1.6 D 12 Fronto-temporal: internal capsule, corticospinal tract,

thalamus, pons, medulla oblongata

13 M 42 64 2.1 D 13 Fronto-parietal: focal ischemic lesion in parietal lobe

14 M 64 63 7.9 Nd 13 Fronto-temporal: M1, basal ganglia

15 M 58 66 0.9 D 13 Fronto-temporal: thalamus, lenticular nucleus

16 F 65 40 1.9 D 13 Fronto-temporal: lenticular nucleus, cerebral white matter

17 F 44 66 1.6 D 13 Fronto-temporal: M1, PMA, caudate nucleus, putamen,

cerebral peduncle

18 M 72 25 4.5 Nd 13 Fronto-temporal: lenticular nucleus, cerebral peduncle

19 M 83 10 2.7 D 16 Fronto-temporal: thalamus

20 M 76 34 10.9 D 15 Parietal: postcentral gyrus

21 F 40 30 57.7 Nd 16 Fronto-temporo-parietal: M1, SMA, PMA

22 M 50 35 450.7 Nd 11 Corona radiata and basal ganglia lesions from hemorrhage

23 F 67 20 91.2 Nd 10 Frontal: basal ganglia

24 M 59 38 21.2 D 10 Fronto-temporo-parietal: M1, SMA, PMA

25 M 77 64 15.2 Nd 13 Fronto-temporo-parietal: bilateral subdural hematomas

26 F 69 66 23.1 Nd 13 Frontal: basal ganglia

27 F 46 65 33.0 Nd 13 Frontal: basal ganglia

28 M 60 41 13.0 Nd 14 Fronto-temporo-parietal: M1, SMA, PMA; contralateral

occipital lobe

29 M 61 32 18.0 Nd 14 Fronto-temporal: M1, SMA

30 M 63 21 33.2 Nd 14 Fronto-temporal: postcentral gyrus and basal ganglia

31 M 60 16 263.6 Nd 14 Fronto-temporal lobes

D, dominant arm; Nd, nondominant arm; M1, primary motor cortex; PMA, premotor areas; SMA, supplementary motor cortex.
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