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Muscle redundancy allows the central nervous system (CNS) to choose a suitable
combination of muscles from a number of options. This flexibility in muscle combinations

allows for efficient behaviors to be generated in daily life. The computational mechanism

of choosing muscle combinations, however, remains a long-standing challenge. One
effective method of choosing muscle combinations is to create a set containing the muscle

combinations of only efficient behaviors, and then to choose combinations from that set.
The notion of muscle synergy, which was introduced to divide muscle activations into a

lower-dimensional synergy space and time-dependent variables, is a suitable tool relevant

to the discussion of this issue. The synergy space defines the suitable combinations
of muscles, and time-dependent variables vary in lower-dimensional space to control

behaviors. In this study, we investigated the mechanism the CNS may use to define

the appropriate region and size of the synergy space when performing skilled behavior.
Two indices were introduced in this study, one is the synergy stability index (SSI) that

indicates the region of the synergy space, the other is the synergy coordination index (SCI)
that indicates the size of the synergy space. The results on automatic posture response

experiments show that SSI and SCI are positively correlated with the balance skill of the

participants, and they are tunable by behavior training. These results suggest that the CNS
has the ability to create optimal sets of efficient behaviors by optimizing the size of the

synergy space at the appropriate region through interacting with the environment.
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INTRODUCTION

Human behaviors are a result of complex neural dynamics

between the central nervous system (CNS), proprioceptors, and

muscles. Owing to redundancy in the human musculoskeletal sys-

tem, the CNS can choose the most efficient movements from an

infinite number of behavior options (Bernstein, 1967; Sporns and

Edelman, 1993). Many researches have attempted to clarify the

computational mechanism employed by the CNS for behavior

selection by introducing the optimal parameters of behavior con-

trol (Flash and Hogan, 1985; Uno et al., 1989; Alexander, 1997),

the principles of biological controllers (Tanaka and Kimura, 2008;

Shimoda and Kimura, 2010; Shimoda et al., 2013) and other

methods, but this problem remains an open research topic.

One possible mechanism for choosing a proper behavior from

the numerous options is that through behavior training, the CNS

narrows down the redundancy of the options to a smaller set.

Choosing the behavior from a smaller set would allow the CNS

to control the behavior with less redundancy. In such a scenario,

the redundancy of the musculoskeletal system contributes toward

creating a suitable set depending on the environment. In this

paper, we discuss this scenario and demonstrate through experi-

ments that the CNS can create an optimal set of efficient behaviors

through behavior training.

The notion of muscle synergy is introduced to simplify the

computational mechanism between the CNS and muscle con-

trol (Popovic and Popovic, 2001; Cirstea et al., 2003; D’Avella

et al., 2003; Krishnamoorthy et al., 2003; Sohn and Hallett,

2004; Tresch and Jarc, 2009; Clark et al., 2010; Safavynia et al.,

2011; Cheung et al., 2012). Muscle synergy is defined by using

several modules formulated by either time-dependent or time-

independent parameters. In time-dependent formulations, mus-

cle synergy constitutes the coordinated activations of groups of

muscles with fixed time-varying profiles (D’Avella et al., 2006).

In contrast, in time-independent formulations, muscles are acti-

vated in synchrony with fixed weights (Ting and Macpherson,

2005; Cappellini et al., 2006). These weights can create a new

workspace whose dimensionality is lower than the number of

muscles. A conceptual image of the workspace is illustrated in

Figure 1A. Here three dimensional space of three muscle acti-

vations m1, m2, and m3 are reduced into the two dimensional

synergy space represented by W (1) and W (2). Figure 1B illustrates

a simplified version of the synergy space W . To recruit a behavior

from this synergy space a time-dependent variable referred to as

neural command (C) is used.

In this study, we adopted the time-independent synergy to

reduce the number of behavior options by creating synergy
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FIGURE 1 | (A) A conceptual image of muscle synergy that illustrates two

synergies W (1) and W (2) abstracted from three muscles activations m1,

m2, and m3. (B) A simplified workspace where W represents an example

of the selected solution from possible motions, and C represents the

selected space in time of the selected solution. (C) (Left/right) examples of

high/low SSI of three trials. (D) (Left/right) examples of utilized synergy in a

trial with high/low SCI.

space W corresponding to a suitable set containing only the

efficient behaviors. Here the question to be addressed is how

the CNS defines the appropriate region and size of the synergy

space. To discuss on this issue, we computed the muscle syn-

ergy in the slightly different way from the conventional method

(Torres-Oviedo and Ting, 2007). In the previous studies, mainly

the muscle synergy is computed by averaging the data on sev-

eral trials. However, we computed the synergy in each trial to

emphasize the similarity of the synergies between the trials. Here

we introduce two indices referred to as the synergy stability

index (SSI) (Wojtara et al., 2012a) and the synergy coordina-

tion index (SCI). SSI indicates the similarity between synergy

spaces of repeated similar behaviors. The higher value of SSI

implies that the synergy space of the participant is fixed within

a certain range as illustrated in Figure 1C (left). SCI, on the

other hand, indicates the size of the synergy space. Higher SCI

implies a smaller size of synergy space, Figure 1D (left). Detailed

definitions of these two indices are provided in the following

section.

To analyze behaviors using these two indices, we conducted

experiments on automatic posture response (APR) in humans

(Horak and Diener, 1994; Carpenter et al., 1999, 2001; Bloem

et al., 2002). The importance of studying this task has been

reported by many researchers due to its close relationship to

the overall posture balance of the human body (Tsuruike et al.,

2003; Torres-Oviedo and Ting, 2007; Wojtara et al., 2012b).

Understanding the neural basis underlying posture balance con-

trol is a challenging research topic that can provide insight into

properties of motor neural dynamics, as well as assistance in pre-

dicting and preventing the risk of falls and thus, their consequent

harm (Tinetti et al., 1986; Bloem et al., 2003; Vassallo et al.,

2005).

Through the APR experiments, we show in this paper the SSI

and SCI are strongly related to the balance capability of the partic-

ipants. Furthermore, these two indices are tunable by the behavior

training. These results show that the CNS can optimize the size

of the synergy space at the appropriate region through behavior

training.

MATERIALS AND METHODS

EXPERIMENTAL SETUP AND DATA COLLECTION

Two APR experiments were conducted in this study. The first

experiment was an investigation of the relationship between the

lateral balance ability of participants and the characteristics of

their muscle synergies quantified by SSI and SCI. The second

experiment was a training experiment to explore the plasticity of

muscle synergy during training.

The participants in the first experiment were 8 healthy men

(mean age 35.1 ± 8 years, mean weight 74 ± 18 kg, mean height

173.5 ± 12 cm). The participants in the second experiment were

three out of the eight participants in the first experiment who

showed the weakest ability to maintain balance. All participants

were right-footed, and had no reported neurological disorders.

The protocols of all experiments were approved by the RIKEN

ethics committee.

In the experiments, we instructed participants to stand upright

in the akimbo position on a movable platform, placing their feet

on foot-ground contact sensors located 10 cm apart (Figure 2).

We then triggered a lateral displacement of 11 cm with veloc-

ity of approximately 6.4 cm/s using the platform. We instructed

the participants to make an effort to maintain their balance

when the platform was displaced (i.e., avoid body movements

other than lateral hip flexion/extension and/or ankle inver-

sion/eversion). The direction and timing of displacement were

random and not predictable during the experiment. Before start-

ing the experiment, we asked the participants to practice on

the platform for 20 min (approximately 80 platform displace-

ments with various velocities punctuated by some intermit-

tent breaks) to warm up and get used to the experimental

environment.

Each participant experienced approximately (mean ± SD:

18 ± 4) leftward and rightward platform displacements and only

trials of the leftward displacements were used for analysis in order
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FIGURE 2 | Experimental setup that illustrates the experiment

scenario, muscles locations, joint locations, platform motion and

displacement speed, EMG recorded range and a representative EMG

activities of the muscles in response to the platform displacement.

Subject EMG responses were in average occurring at latency of 40 ms after

displacement onset. Thus, we consider this point as a starting time to

record a 160 ms range of EMG data.

to avoid any mixing the differences in behavior arising from using

the dominant foot as compared with the non-dominant foot

(Torres-Oviedo and Ting, 2007).

Electromyography (EMG) wireless surface electrodes (BTC

Free EMG, sampled at 1 kHz) were used to record data from

six major leg and lower-back muscles of the subject’s right

side (Konrad, 2005). Muscles include; flexor hallucis longus

(FHL), tibialis anterior (TA); which support the ankle strat-

egy in lateral perturbation. In addition to the tensor fasciae

latae (TFL), gluteus medius (GM), rectus abdominalis (RA),

erector spinae (ES); which support the hip strategy in lat-

eral perturbation (Runge et al., 1999, see Figure 2). EMG

Electrodes were placed in accordance to the guidelines of the

Surface Electromyography for the Non-Invasive Assessment of

Muscles (SENIAM)–European Community project (Hermens

et al., 1999).

Since we were interested in the initial stage of the APR,

the first recorded 160 ms of muscle activities, after the EMG

response onset, were used for synergy calculations. The entire

time-series EMG data was rectified and processed with a

low-pass filter with a cutoff frequency of 32 Hz. EMGs were

normalized by their maximum mean measured during the

experiment.

SCORING PARTICIPANTS’ BALANCE SKILL

A scoring system was applied to each participant to evaluate

his balance skill in responding to the sudden platform displace-

ment. Scores were displayed to the participant throughout the

experiment on a front screen, in order to increase motivation

to maintain balance. The scores were also used as a reference to

associate balance skill with the resulting synergy characteristics of

the participants. To estimate the scores, we visually observed each

participant responses to each platform displacement and scored

the response according to the criteria listed in Table 1.

Although the scores were considered for all the trials, we

computed muscle synergy using only the trials of similar qual-

ity responses of the subjects (score = +1), to avoid any mixing

the differences in behavior arising from using different response

strategies such as step strategy or falling. Experimentally, 5 trials

were the common number of trials among the subjects that meet

this conditions.

COMPUTING MUSCLE SYNERGIES

An important feature of using muscle synergy is to reduce the

dimensions of controlling the muscles. When m muscles are

controlled, m commands are generally required.

Let us express the EMG data of m muscles by using the

matrix M:

M ∈ Rm × t , (1)

where m and t are the number of muscles and the number of sam-

pling data, respectively. The number of commands for controlling

m muscles can be reduced by using the following matrix of the

muscle synergy W :

M = WC + E, (2)

Where

W ∈ Rm × n, C ∈ Rn × t , E ∈ Rm × t (3)

and n is the number of control commands.

We assume that W is normalized to satisfy the following

conditions:

W =

[

W (1)W (2)W (3) · · · W (n)
]

,

|W (i)| = 1, (4)

Table 1 | Scoring system.

Case Score

Participant does not raise a hand or foot from the initial akimbo

position

+2

Participant moves a hand from the initial akimbo position +1

Participant lifts a foot from the initial position −1

Participant totally loses his balance and moves a foot off the

platform

−2
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where W (i) denote the vector expressed as

W (i) ∈ Rm. (5)

We set n to be smaller than m. Equation 1 implies that n com-

mands are used to control m muscles by using the muscle synergy

W (Figure 3).

C is the matrix containing the n commands to control m

muscles as follows:

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

C(1)
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.

..
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⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

C(i) ∈ Rt (6)

The error between M and WC is expressed as E, which must be

small enough that m muscles are controlled by n commands in

Equation 1. The magnitude of E is described by an index of simi-

larity L, which is sensitive to both the shape and magnitude of the

measured and reconstructed muscle patterns (Torres-Oviedo and

Ting, 2007):

L = 100

⎛

⎜

⎜

⎜

⎜

⎝

1 −
1

m

m
∑

i = 1

√

1
t

t
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j = 1

E2
ij

√

1
t

t
∑

j = 1

M′2

ij

⎞

⎟

⎟

⎟

⎟

⎠

, (7)

where

M′ = WC,

and Eij and M′
ij are the elements of matrices E and M′,respectively.

The range of L is 0 < L < 100. When the magnitude of

E becomes smaller, L becomes larger. We considered a

value of L > 75% to indicate a good fit with the origi-

nal data (Torres-Oviedo et al., 2006). This criterion ensured

that each muscle would be well reconstructed. A reason-

able value of n is chosen by using the index L through the

non-negative matrix factorization algorithm (Lee and Seung,

2001).

W (i) in Equation (2) is regarded as the base vectors of the

space created by W. We call this space a synergy space. C is the

= +

t

m

EMG data (M)

n

m

t

Muscle synergy (W) 

Neural command (C)

n

Error (E)

t

m

FIGURE 3 | A conceptual-mathematical model for identifying muscle

synergies.

commands moving in the synergy space. We assume that m mus-

cles are controlled in this n-dimensional space to simplify their

controls.

INDICES FOR ANALYZING MUSCLE SYNERGY

To analyze APR behavior based on muscle synergy, we use two

indices: SSI and SCI. SSI indicates the similarity in muscle synergy

between multiple APRs, and SCI indicates the size of the synergy

space.

Synergy stability index

SSI is describes the similarity in muscle synergy between the sev-

eral APRs conducted by a same participant. SSI is calculated by

using Pearson’s correlation coefficient:

SSI =
1

n

n
∑

i = 1

⎛

⎝

2

p(p − 1)

p
∑

l �= q

r
(

W
(i)
l , W (i)

q

)

⎞

⎠. (8)

Here, Wj is the muscle synergy of the jth behavior
(

j = 1 · · · p
)

,

and the Pearson’s correlation coefficient is defined as:

r(x,y) =

m
∑

i = 1

(xi − x)
(

yi − y
)

mSxSy
, (9)

where x and y are two vectors to be compared, x and y are their

mean values, and Sx and Sy are their standard deviations. SSI has

the following range:

0 ≤ SSI ≤ 1.

A high SSI value indicates that the participant uses simi-

lar muscle synergies in all motions. In the case where the

synergies of all motions are completely the same, SSI equals

to 1. To avoid the ordering issue of the resulting synergies,

we were re-sorting the resulting synergies so to produce the

highest SSI.

SSI is also applicable to describing the stability of neural com-

mand C in Equation 1. The following equation is used to compute

the stability of C:

SSIc =
1

n

n
∑

i = 1

⎛

⎝

2

p(p − 1)

p
∑

l �= q

r
(

C
(i)
l , C(i)

q

)

⎞

⎠ , (10)

where Cj is the neural command of jth motion. The range of SSIC

is from 0 to 1. Where the 1 means that the C’s are the same on

multiple movements.

Synergy coordination index

SCI is used to evaluate the size of the resulting synergy space, or

in other words, the coordination between the utilized synergies.

Let us assume that muscle synergy W is expressed as

W =

[

W (1) W (2) W (3) · · · W (n)
]

,
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where W (i) ∈ Rm is the base vector of the synergy space. Because

we use the non-negative matrix factorization algorithm to esti-

mate W, the synergy space exists for only positive vector compo-

nents. Furthermore, vectors W (i)(i = 1 · · · n) are in general not

orthogonal to each other. The size of the synergy space depends

on the relative angles of the vectors Wi. To quantify the size

of the synergy space, we define SCI by using the inner product

of Wi:

SCI =
2

n(n − 1)

n
∑

i �= j

W (i)W (j). (11)

The range of SCI is 0 ≤ SCI ≤ 1. SCI = 1, implies that all

vectors W (i) are identical, whereas SCI = 0, implies that all vec-

tors W (i) are orthogonal each other. Therefore, as shown in

Figure 1C the synergy space becomes smaller when SCI becomes

larger.

RESULTS

DIMENSIONS OF SYNERGY SPACE

All subjects successfully completed the assigned tasks. Our next

step was to identify the appropriate dimensions of the synergy

space of each participant, or in other words, the number of syn-

ergies that represent the recorded EMG patterns. To do so, first

we used the recorded EMG data to calculate all possible syner-

gies of each participant in each successful trial, and second we

reconstructed back muscle activations based on those computed

synergies.

Based on the quantitation of Equation 7, Figure 4 shows

the similarity L between the recorded and reconstructed mus-

cle activations from the possible computed synergies of par-

ticipants. The minimum number of synergy space dimensions

giving similarity in excess of the threshold value (L > 75%) was

two synergies for all the subjects (we have also tested different

thresholds to validate our threshold selection; see the supple-

mentary materials for details). Accordingly, we assumed that the

collected muscle patterns from the participants could be enough

represented by two-dimensional synergy spaces. From the fig-

ure, we can note the correlation between the decomposition
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FIGURE 4 | Similarity L between the recorded and reconstructed

muscle activation patterns from all possible computed synergies. The

plots show the means and SD across participants. The dashed line

indicates the threshold L > 75%.

errors of the subjects and their balance skill, see the scores in

Figure 7.

Figure 5 shows an example of the original EMG data of two

different trials recorded from a representative good performer.

Figure 6 shows an example of the resulting synergies of two rep-

resentative subjects; good performer and bad performer. From

Figures 5 and 6, we can observe that the recorded original EMG

data is variable on all subjects regardless the quality of their

responses.

SYNERGY CHARACTERISTICS

During experiments, the 8 participants exhibited various skill lev-

els in response to the displacement of the platform. In each trial,

we visually evaluated each participant’s response according to

the criteria in Table 1. Figure 7 shows the mean of each partici-

pants scores across the successful trials. The results show that the

participants had various levels of balance skill.

Figures 8A,B shows the relationships of SSI and SSIc with the

participants’ scores. Here we see that participants with a high

score (low score) showed lower (higher) C stabilities and higher

(lower) W stabilities, respectively. Figure 8C shows also the rela-

tionships of SCI with the participants’ scores. The plots here

reveal that participants with a higher score used a smaller size of

synergy space to respond to the disturbance, whereas those with

a lower score used a larger size. Figures 6A,B show an example

of the resulting synergies of higher and lower scores participants,

respectively. In the higher score participant, the resulting syn-

ergy space in each trial are significantly similar (SSI = 0.95). On

the other hand, the stability of the recruiting neural commands

are lower (SSIc = 0.67). The lower score participant, however,

showed the opposite, Figure 6B.

From these results we may conclude that stability level of C

and W could be a possible index to reflect participants’ skills

to maintain balance against the sudden disturbance. Regardless

the variability of original EMG data on all subjects, high scores

participants used almost fixed region of the synergy space across

trials combined with a variable representation of the neural

command C, while low scores participants utilized variable

regions of the synergy spaces combined with a fixed repre-

sentation of the neural command C. Furthermore, high scores

participants used smaller size of synergy space than low scores

participants.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 51 101 151

E
M

G
[m

V
]

Time [ms]

FHL

TA

TFL

GM

RA

ES
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 51 101 151

E
M

G
[m

V
]

Time [ms]

FHL

TA

TFL

GM

RA

ES

FIGURE 5 | The recorded EMG from 2 different trials of a representative

good performer (sub.2).
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TRAINING EXPERIMENT

In the second experiment, we aimed to observe the changes

of muscle synergy during training. We asked the participants

with the lowest scores (i.e., participants 6, 7, and 8) to con-

tinue performing a similar set of experimental trials for addi-

tional five sessions. Each session was conducted every two days.

At each session, we requested the participants to do additional

pre- and post-session practice on the platform for roughly 80

trials interspersed with adequate rest periods. Electrode posi-

tions on the participant’s body were marked at each session

to ensure similar electrode placement in the next experimental

session.
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FIGURE 8 | (A) Relation between synergy stability index (SSI) and the

scores. (B) Relation between synergy stability index of the neural

command (SSIc ) and the scores. (C) Relation between synergy coordination

index (SCI) and the scores (Mean and SD across 5 trials.). Linear

least-squares regression line.

Experimental results were as follows. Firstly, regarding the

balance scores, participants show improvements in their scores,

Figure 9A. Secondly, with respect to SSI and SSIc, a gradual

decrease in the stability of C and a gradual increase in the stability

of W occurred, see Figures 9B,C. Thirdly, with respect to SCI,

gradual decrease was observed in the synergy size (i.e., an increase

in SCI), Figure 9D. From the Figure 9, the scores, SSI, and SCI

were associated with one another; thus, the overall relationships

were fairly consistent with the outcomes presented in the above

experiment.

From this training experiment, we can highlight two main

points: (1) synergies seem to be altered through systematic train-

ing: the adaptation of W occurs until a proper region is located.

This stage occur in conjunction with the adaptation of C. (2) The

CNS appears to force the recruitment direction of the muscle
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FIGURE 9 | (A) Participant’s scores during the adaptation experiment

(mean and the SD across all trial). (B) Adaptation of synergy stability index

(SSI) along the 9 days (Mean and SD across the 3 subjects). (C) Adaptation

of synergy stability index of the neural command (SSIc). (D) Adaptation of

synergy coordination index (SCI). Linear least-squares regression line.

synergy to ensure higher coordination between the utilized syn-

ergies (i.e., a smaller size of synergy space), which could be

the reason for the resulting quality of the subsequent behaviors

(Video1, appendix: shows the behavior of a representative subject

before and after the training).

DISCUSSION

Results show various SSI for both synergy space (W) and neu-

ral commands (C), which were both associated with participant

balance skill. Participants with a high score exhibited higher

stability of W (high SSI) and lower stability of C (low SSIc),

and vice versa. These findings were also reiterated in a train-

ing experiment: participants with an initially low score could

improve their score by creating the new synergy spaces through

training.

The value of SCI also appears to encode essential factors

regarding the quality of the behavior. Participants with high

scores exhibited remarkably smaller size of synergy spaces, and

vice versa for the participants with low scores.

To ensure that these designed indices reflect universal fea-

tures about the muscle synergy and is not just the artifact of

EMG data decomposition, we applied the indices on various
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dimensions of synergy spaces (see the supplementary materials

for details). Results showed that SSI increased as the dimen-

sion of the synergy space increased by increasing the threshold.

The increase of the dimension implies that the variability of

the data comes closer to the variability of the original EMG

data. SCI also increased as the dimension of the synergy space

increased. In SCI, we assume that the same data is decomposed

in the different number of vectors. The average of the spaces

between the vectors in W gets smaller when the number of vec-

tors is increased. The analyses of SCI, however, show us another

possibility of SCI. SCI can represent how much the current

dimension is close to the lower or higher dimensional space. Thus,

it might be used as the sub-scale of the dimension of muscle

synergy.

Our results suggest that the behaviors of the participants with

good balance skills were recruited from the appropriate region

and size of synergy space, which were indicated by SSI and

SCI, respectively. The improvements of SSI and SCI through the

balance training show that the appropriate region and size of the

synergy space are learnable. We think that the learning of syn-

ergy space region and size by the training depend on individuals

because of the difference of the body parameters such as the body

heights, weights and the strength of muscles.

LEARNING MODEL

These resulting characteristics of SSI, SSIc, and SCI reveal an

important learning methodology of muscles, which we summa-

rized in the following four points:

First, when participants were introduced to the task; if the

proper region and size of their synergy space for responding to

the task were not yet solved (e.g., in participants with low scores),

the CNS tried at each trial to search for the most appropriate syn-

ergy space region, evoking various strategies by tuning the value

of W. Due to this search stage, low stability of W was observed.

Second, the search criterion that the CNS appeared to rely

on in this stage was the size of the synergy space. Narrow space

appeared to be the desired target of the CNS. Thus, high SCI was

observed in the participants with higher scores. After a number

of search trials throughout training, the appropriate coordination

of the muscles gradually emerged, and a gradual increase in the

stability of W.

Third, during the search stage of W, and to simplify han-

dling of its high temporal variability, the CNS attempted to

reduce the degrees of freedom of the resulting motions by

restricting the variability of C, and thus, high stability of C

was observed. One possible mechanism that might be used by

the CNS to manage this stage could be decreasing sensitivity

to changes caused by sensory inputs. Such sensitivity reduc-

tion can necessitate extra energy from CNS to maintain high

stability of C (considering that the inputs were variable in

nature).

Fourth, eventually after learning, W was stable in a particular

region and smaller in size, and the constraint on the variability

of C was gradually eased. Thus, a reduction in the stability of C

occurred as a natural response to the variability from the input

side.

Our findings could be consistent to some extent with

the individual learning stages reported by Bernstein (1967),

where individuals learn motor coordination first by temporar-

ily restricting the degrees of freedom that they use. This

enables the learner to simplify the dynamics of the involved

body parts and the range of movement options when search-

ing for the optimal muscle combinations. Once the individ-

ual has gained a certain level of proficiency, the constraint

can be relaxed, thereby allowing them to use the full poten-

tial of their body (decreased variability of W and increased

variability of C).

The resulting variability of W and C in this study could be also

associated to the bad and good variability hypothesis discussed by

Latash and Anson (2006). This hypothesis mainly indicates that

variability is naturally presented in human movements. Thus, bad

variability is the one which affects the final performance results of

the motor task. Good variability, on the other hand, always works

to achieve better outcome. The CNS, therefore, may, in our case,

works to decrease the bad variability W and increase the good

variability C.

FUTURE DIRECTIONS

Although the above results offer hints to the possible learning

method of muscle synergies, an open question remains: what is

the criterion that the CNS uses to recruit muscle synergies tak-

ing into account environment interaction inputs? To answer this

question, we are currently working to expand the concept of mus-

cle synergy, to include the concept of sensory synergy, the form

of input to the CNS (Ting, 2007; Alnajjar et al., 2012). The idea

behind this extension is that, if the CNS deals with body muscles

through muscle synergies, the possibility should be explored as

to whether the CNS deals with body sensory receptors through

sensory synergies as well.

Recently, several studies have shown that the activation of

muscle synergies correlates with environment inputs (Burgess

et al., 1982; Ivanenko et al., 2003; Krishnamoorthy et al., 2003).

Krishnamoorthy et al., for instance, examined a possible cor-

relation between muscle synergies and center of pressure dis-

placement. Ivanenko et al. also examined the correlation between

muscle synergies and endpoint foot kinematics during locomo-

tion. In these studies, the concept of input synergies has not yet

been fully discussed, and therefore, we are intending to addressed

it in our future direction and investigate its relationship with our

current results.

With the aim of developing an effective neurorehabilitation

model, we believe that our current results, as a preliminary learn-

ing model, will lay the groundwork for a new avenue of research

toward understanding the CNS and motor learning. Linking these

results to classify post-stroke patients based on their impair-

ment level and the positional of recovery, as well as, building

rehabilitation-training robots to assist them is a goal for future

work.
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