
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

2-1-1994

MUSE CSP: An Extension to the Constraint
Satisfaction Problem
Randall A. Helzerman
Purdue University School of Electrical Engineering

Mary P. Harper
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Helzerman, Randall A. and Harper, Mary P., "MUSE CSP: An Extension to the Constraint Satisfaction Problem" (1994). ECE
Technical Reports. Paper 177.
http://docs.lib.purdue.edu/ecetr/177

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages


MUSE CSP: AN EXTENSION TO 

THE CONSTRAINT SATISFACTION 

PROBLEM 

TR-EE 94-8 
FEBRUARY 1994 



MUSE CSP: An Extension to the 

Constraint Satisfaction Problem * 

Randall A. Helzerman and Mary P. Harper 

School of Electrical Engineering 

1285 Electrical Engineering Building 

Purdue University 

West Lafayette, IN 47907-1285 

{helz,harper )@ecn.purdue.edu 

'This work is supported in part by Purdue Research Foundation, NSF grant number IRI-9011179, and 

NSF Parallel Infrastructure Grant CDA-9015696. 



Abstract 

This paper describes an extension to  the constraint satisfaction problem (CSP) ap- 

proach called MUSE CSP (Multiply SEgmented Constraint Satisfaction Problem). 

This extension is especially useful for those problems which segment into multiple sets 

of partially shared variables. Such problems arise naturally in signal processing ap- 

plications including computer vision, speech processing, and handwriting recognition. 

For these applications, it is often difficult to  segment the data in only one way given the 

low-level information utilized by the segmentation algorithms. MUSE CSP can be used 

to  efficiently represent and solve several similar instances of the constraint satisfaction 

problem simultaneously. If multiple instances of a CSP have some common variables 

which have the same domains and compatible constraints, then they can be combined 

into a single instance of a MUSE CSP, reducing the work required to  enforce node and 

arc consistency. 



1 Introduction 

Constraint-satisfaction problems (CSP) have a rich history in Artificial Intelligence [2, 3,4, 7, 

8, 13,14,22] (see [12] for a survey of CSP). Constraint satisfaction provides a convenient way 

to represent and solve certain types of problems. In general, these are problems which can 

be solved by assigning mutually compatible values to a predetermined number of variables 

under a set of constraints. This approach has been used in a variety of disciplines including 

machine vision, belief maintenance, temporal reasoning, graph theory, circuit design, and 

diagnostic reasoning. When using a CSP approach (e.g., Figure I ) ,  the variables are typically 

depicted as circles, where each circle is associated with a finite set of possible values, and the 

constraints imposed on the variables are depicted using arcs. An arc looping from a circle to 

itself represents a unary constraint (a relation involving a single variable), and an arc between 

two circles represents a binary constraint (a relation on two variables). A classic example of 

a CSP is the map coloring problem (e.g., Figure I),  where a color must be assigned to each 

country such that no two neighboring countries have the same color. A variable represents 

a country's color, and a constraint arc between two variables indicates that the two joined 

countries are adjacent and should not be assigned the same color. 

Formally, a CSP [13, 181 is defined in Definition 1. 

Definition 1 (Constraint Satisfaction Problem) 
N = {i, j, . . .) is the set of nodes, with IN I = n, 
L = {a, b,. . .) is the set of labels, with I LI = 1, 
L; = {ala E L and (i, a) is admissible), 
R1 is a unary relation, and (i, a) is admissible if R l  (i, a), 
R2 is a binary relation, (i, a) - (j, b) is admissible if R2(i, a, j, b). 

A CSP network contains all n-tuples in Ln which satisfy R l  and R2. Since some of the 

labels associated with a variable may be incompatible with labels assigned to other variables, 

it is desirable to eliminate as many of these labels as possible by enforcing local consistency 

DiffoNnt 
Cdor 

Figure 1: The map coloring problem as an example of CSP. 



conditions (such as arc consistency) before a globally consistent solution is extracted [5] .  

Node and arc consistency are defined in Definitions 2 and 3 respectively. 

Definition 2 (Node Consistency) An instance of CSP is said to be node consistent if and only if 
each variable's domain contains only labels for which the unary relation R1 holds, i.e.: 

Vi E N :Va  E L; : Rl(i ,a)  

Definition 3 (Arc Consistency) An instance of CSP is said to be arc consistent if and only if for 
every pair of nodes i and j, each element of L; (the domain of i )  has at least one element of L j  for 
which the binary relation R2 holds, i.e.: 

V i , j  E N : V a  E L ; :  3bE L j  : RZ(i,a,j,b) 

Node consistency is easily enforced by the operation L; = L; n { X I  R l  (i, x)). Enforcing arc 

consistency is more complicated, but Mohr and Henderson [18] have designed an optimal 

algorithm (AC-4), which runs in O(ylZ) time (where y is the number of pairs of nodes for 

which R2 does not hold). 

There are many types of problems which can be solved by using this approach in a 

more or less direct fashion. There are also problems which might benefit from the CSP 

approach, but which are difficult to segment into a single set of variables. This is the class of 

problems our paper addresses. For example, suppose the map represented in Figure 1 were 

scanned by a noisy computer vision system, with a resulting uncertainty as to whether the 

line between regions 1 and 2 is really a border or an artifact of the noise. This situation 

would yield two CSP problems as depicted in Figure 2. A brute-force approach would 

be to solve both of the problems, which would be reasonable for scenes containing few 

ambiguous borders. However, as the number of ambiguous borders increases, the number of 

CSP networks would grow in a combinatorially explosive fashion. In the c,ase of ambiguous 

segmentation, it might often be more efficient to merge the constraint networks into a single 

network which would compactly represent all of them simultaneously, as shown in Figure 3. 

In this paper, we develop an extension to CSP called MUSE CSP (Multiply SEgmented 

Constraint Satisfaction Problem) to represent and solve multiple instances of CSP problems. 

The initial motivation for extending CSP came from our work in spoken language parsing 

[23, 11, 91. The output of a hidden-Markov-model-based speech recognizer is often a list of 

the most likely sentence hypotheses (i.e., an N-best list) where parsing can be used to rule out 

the ungrammatical sentence hypotheses. Maruyama [15, 17, 161 has shown that parsing can 

be cast as a CSP with a finite domain, so constraints can be used to rule out syntactically 



Inq m. w Id. urn. -1 

+ M DM& 

Cola 

Figure 2: An ambiguous map yields two CSP problems. 

(nd. pm. -1 I d .  mmm. bl 

(nd. m. b) (nd. gmm. b) 

Figure 3: How the two CSP problems of Figure 2 can be captured by a single instance of 
MUSE CSP. The directed edges form a DAG such that the paths through the DAG correpond 
to instances of combined CSPs. 



Figure 4: Multiple sentence hypotheses can be parsed simultaneously by propagating con- 
straints over a 'word graph rather than individual sentences. 

Its 

Its 

U L L U ~ ~ C L ~  V C ~ ~ ~ G U L C  L L ~  y u b l l c a ~ a .  ~ ~ U W C V G ~ ,  L ~ L U L  v 1 u u a L l y  y l u ~ c a a ~ l ~ ~  caul a c l l b c l ~ ~ ~  LLY y u u l l c a ~ a  

provided by a speech recognizer is inefficient since many sentence hypotheses are generated 

with a high degree of similarity. An alternative representation for a list of similar sentence 

hypotheses is a word graph or lattice of word candidates which contains information on 

the approximate beginning and end point of each word. Word graphs are typically more 

compact and more expressive than N-best sentence lists. In an experiment in [23], word 

graphs were constructed from three different lists of sentence hypotheses. The word graphs 

provided an 83% reduction in storage, and in all cases, they encoded more possible sentence 

hypotheses than were in the original list of hypotheses. In one case, 20 sentence hypotheses 

were converted into a word graph representing 432 sentence hypotheses. Figure 4 depicts a 

word graph containing eight sentence hypotheses which was constructed from two sentence 

hypotheses: *Its hard t o  recognizes speech and It's hard t o  wreck a nice beach. If the spoken 

language parsing problem is structured as a MUSE CSP problem, then the constraints used 

to parse individual sentences would be applied to a word graph of sentence hypotheses, 

eliminating from further consideration all those hypotheses that are ungrammatical. 

From CSP to MUSE CSP 

hard 

hard 

If there are multiple, similar instances of a CSP which need to be solved, then separately 

enforcing node and arc consistency on each instance can often result in much duplicated 

work. To avoid this duplication, we have provided a way to combine the multiple instances 

of CSP into a shared constraint network and revised the node and arc consistency algorithms 

to support this representation. 

to 

to 

wreck a 

recognizes speech 

nice beach 



Formally, we define MUSE CSP as follows: 

Definition 4 (MUSE CSP) 
N = {i, j , .  ..) is the set of nodes, with IN1 = n, 
C 2N is a set of segments with (CI = s, 
L = {a, b, . . .) is the set of labels, with ILJ = I, 
L; = {ala E L and (i, a) is admissible in at least one segment), 
R l  is a unary relation, and (i, a) is admissible if Rl  (i, a), 
R2 is a binary relation, (i, a)  - (j, b) is admissible if R2(i, a, j, b). 

The segments in C are the different sets of nodes representing instances of CSP which are 

combined to form a MUSE CSP. We also define L(;,,) to be the set of all labels a E L; that 

are admissible for some a E C. 

Because the number of segments in the set C can be exponential in n, it is important to 

define methods for combining instances of CSP into a single, compact MUSE CSP. To create 

a MUSE CSP, we must be able to determine when variables across several instances of CSP 

can be combined into a single shared variable, and we must also be able to determine which 

subsets of variables in the MUSE CSP correspond to individual CSPs. A word graph of 

sentence hypotheses is an excellent representation for a MUSE CSP based constraint parser 

for spoken sentences. Words that occur in more than one sentence hypothesis over the same 

time interval are represented using a single variable. The edges between the word nodes, 

which indicate temporal ordering among the words in the sentence, provide links between 

words in a sentence hypothesis. A sentence hypothesis, which corresponds to an individual 

CSP, is simply a path through the word nodes in the word graph going from a start node to 

an end node1. 

The concepts used to create a MUSE CSP network for spoken language can be adapted 

to other CSP problems. In particular, it is desirable to represent a MUSE CSP as a directed 

acyclic graph (DAG) where the paths through the DAG correspond to instances of CSP 

problems. In addition, CSP networks should be combined only if they satisfy the conditions 

below: 

Definition 5 (MUSE CSP Combinability) p instances of CSP C1,. . . ,Cp am said to be MUSE 
Combinable iff the following conditions hold: 

1. If {al,az,. . .,o,) C {Nl,. . .,Np) A (i E a1 A i E uz A .. . A i E o,) A (a E L(;,,,) A a E 
L( ; ,u~)  A . . . A a E L(;,,,)), then Rl,,(i, a) = Rl,,(i, a) = . . . = Rl,,(i, a). 

' ~ o t e  that there may be more paths through the MUSE CSP than the number of original sentences. 



These conditions are not overly restrictive, requiring only that the labels for each variable i 

must be consistently admissible or inadmissible for all instances of CSP which are combined. 

These conditions do not uniquely determine which variables should be shared across CSP 

instances for a particular problem type. We define an operator $ which combines instances 

of CSP into an instance of MUSE CSP in Definition 6. 

Definition 6 ($, the MUSE CSP Combining Operator) If C1,. . . , Cp are MUSE combinable in- 
stances of CSP, then C = C1 $ . . . $ C, will be an instance of MUSE CSP such that: 

N = NIU ... UNp 
c = {Nl, ..., N,) 
L =  LIU ... UL, 
Li = L ( i , ~ l )  u L ( ~ , N ~ )  u . - . u L(i,NP) 

NP 

Rl ( i ,  a )  = V (Rl,(i, a)  A a E L(;,,)) 
a=Nl 

NP 

Rb(i, a,  j, b) = V (R+(i, a,j ,  b) A (a E L(i,u) A b E L(,u))) 
u=Nl 

As previously mentioned, a DAG is an excellent representation for C, where its nodes are 

the elements of N, and its edges are arranged such that every a in C maps onto a path 

through the DAG. In some applications, such as speech recognition [23, 11, 91, the DAG 

will already be available to us. In applications where the DAG is not available, the user 

must determine the best way to combine instances of CSP to  maximize sharing. We have 

provided an algorithm (shown in Figure 5) which automatically constructs a single instance 

of a MUSE CSP from multiple CSP instances in O(sn  log n) time, where s is the number of 

CSP instances to combine, and n is the number of nodes in the MUSE CSP. This algorithm 

requires the user to assign numbers to variables in the CSPs such that variables that can be 

shared are assigned the same number. As shown by the examples in Figure 5, for a given 

set of CSPs, the greater the intersection between the sets of node numbers across CSPs, the 

more compact the MUSE CSP. 

A MUSE CSP can be solved with a modified backtracking algorithm which finds all 

possible consistent label assignments, where the search space is pruned hy enforcing local 

consistency conditions, such as node and arc consistency. However, to gain the efficiency 



1. Assign each element i of N some number v in the range from 1 to n by using ord(i) = v .  
2. for each a E C d o  
3. beg in  
4. Add to a two distinguished nodes called start and e n d  and 

let ord(start)=O and ord(end)=oo. 
5 .  Sort the elements of a by their ordinal numbers. 
6. for i ,  j E a such that i's position immediatly preceeds j's position 
7. in the sorted a d o  
8. begin 
9. Next-edgei :=Next-edgei U { ( i ,  j ) )  
10. Prev-edgej :=Prev-edgej U {(i, j ) )  
11. e n d  
12. e n d  

01 = (0,~) 
0 2  = {0,0,0) 

Figure 5: The algorithm to create a DAG to represent the set C, and examples of its action. 

resulting from enforcing local consistency conditions before backtracking, node and arc con- 

sistency must be modified for MUSE CSP. 

Definition 7 (MUSE Node Consistency) An instance of MUSE CSP is said to be node consistent 
if and only if each variable's domain L; contains only labels for which the unary relation R1 holds, 
2.e.: 

Vi E N : V a E  L ; :  Rl(i ,a)  

Definition 8 (MUSE Arc Consistency) An instance of MUSE CSP is said to be arc consistent if 
and only if for every label a in each domain L; there is at least one segment a whose nodes'domains 
contain at least one label b for which the binary relation R2 holds, i.e.: 

V i e  N : V a €  L i : 3 a € C : i € a ~ V j € a : j # i ~ 3 b € L i : R 2 ( i , a , j , b )  

A MUSE CSP is node consistent if all of its segments are node consistent. Unfortunately, 

arc consistency in a MUSE CSP requires more attention because even though a binary 

constraint might disallow a label in one segment, it might allow it in another segment. 

When enforcing arc consistency in a CSP, a label a in L; can be eliminated from node 

i whenever any other domain Lj has no labels which together with a satisfy the binary 

constraints. However, in a MUSE CSP, before a label can be eliminated from a node, it 

must fail to satisfy the binary constraints in all the segments in which it appears. Therefore, 



Figure 6: Data structures and notation for the MUSE CSP arc consistency algorithm. 

Notation 

( 4  j )  

[(i, j ) ,  a] 

M[(i, j) ,  a] 

E 

S[(i,  j ) ,  a1 

Next-edge; 

Prev-edge; 

Counter[(i, j ) ,  a] 

Prev-Support [(i, j ) ,  a] 

Next-Support[(i, j ) ,  a] 

LOcal-Prev-SuppOrt(i, 

LOcal-Next-SuppOrt(i, 

List 

the definition of MUSE arc consistency is modified as shown in Definition 8. Notice that 

Definition 8 reduces to Definition 3 when the number of segments is one. 

Meaning 

An ordered pair of nodes. 

An ordered pair of a node pair (i, j )  and a label a E L;. 

M [ ( i ,  j) ,  a] = 1 indicates that the label a is not 
admissable for (and has already been eliminated 
from) all segments containing i and j. 
All node pairs (i, j )  such that there exists a 
segment which contains both i and j. 
[(j, i), b] E S[(i, j ) ,  a] means that label a at node i 
and b at j are simultaneously admissible. 
If a directed edge from i to j exists in E 
then ( i ,  j )  is a member of this set. 
If a directed edge from j to i exists in E 
then (j ,  i) is a member of this set. 

The number of labels in Lj which are compatible with a in Li. 

(i, k) E Prev-Support[(i, j ) ,  a] means that a is ad- 
missible in every segment which contains i, j, and k. 
(i, k) E Next-Support[(i, j ) ,  a] means that a is ad- 
missible in every segment which contains i, j, and k. 

set of elements (a, j )  such that (j ,  i) E Prev-edge; 
tnd  a is compatible with at least one of j's labels. 

set of elements (i, j )  such that (i, j )  E Next-edgei 
tnd  a is compatible with at least one of j's labels. 

A queue of arc support to be deleted. 

3 The MUSE CSP Arc Consistency Algorithm 

MUSE arc consistency2 is enforced by removing from the domains those labels in L; which 

violate the conditions of Definition 8. MUSE AC-1 builds and maintains several data struc- 

tures, described in Figure 6, to allow it to efficiently perform this operation. Figure 9 shows 

the code for initializing the data structures, and Figure 10 contains the algorithm for elimi- 

nating inconsistent labels from the domains. 

If label a at node i is compatible with label b at node j, then a supports b. To keep track 

of how much support each label a has, the number of labels in Lj which are compatible 

'We purposely keep our notation and presentation as close as possible to that of Mohr and Henderson in 
[18], in order to aid understanding for those already familiar with the literature on arc consistency. 

8 



with a in L; are counted, and the total is stored in Counter[(i, j ) ,  a]. The algorithm must 

also keep track of which labels that label a supports by using S[(i, j ) ,  a], which is a set of 

arc-label pairs. For example, S[(i, j ) ,  a] = {[(j, i), b], [(j, i) ,  c]) means that a in L; supports b 

and c in Lj. If a is ever invalid for L; then b and c will loose some of their support. This 

is accomplished by decrementing Counter[(j, i ) ,  b] and Counter[(j, i ) ,  c]. For regular CSP 

arc consistency, if Counter[(i, j ) ,  a] becomes zero, a would automatically be removed from 

L;, because that would mean that a was incompatible with every label for j. However, in 

MUSE arc consistency, this is not the case, because even though a does not participate in 

a solution for any of the segments which contain i and j, there could be another segment 

for which a would be perfectly legal. A label cannot become globally inadmissible until it is 

incompatible with every segment. 

By representing C as a DAG, the algorithm is able to use the properties of the DAG 

to identify local (and hence efficiently computable) conditions under which labels become 

globally inadmissible. Consider Figure 7, which shows the nodes which are adjacent to node 

i in the DAG. Because every segment in the DAG which contains node i is represented as a 

path in the DAG going through node i ,  either node j or node k must be in every segment 

containing i. Hence, if the label a is to remain in L;, it must be compatible with at least one 

label in either Lj or Lk. Also, because either n or m must be contained in every segment 

containing i ,  if label a is to remain in L;, it must also be compatible with at least one label 

in either L, or L,. 

In order to track this dependency, two sets are maintained for each label a at node i ,  

Local-Next-Support(i, a)  and Local-Prev-Support(i, a). Local-Next-Support(i, a )  is a set of 

ordered node pairs (i, j )  such that (i, j )  E Next-edge;, and there is at least one label b E Lj 

which is compatible with a. Local-Prev-Support(i,a) is a set of ordered pairs (i, j) such 

that ( j ,  i) E Prev-edge; and there is at least one label b E Lj which is compatible with a. 

Whenever one of i's adjacent nodes, j, no longer has any labels b in its domain which are 

compatible with a,  then (2, j )  should be removed from Local-Prev-Support(i,a) or Local- 

Next-Support(i, a) ,  depending on whether the edge is from j to i or from i to j, respectively. 

If either Local-Prev-Support (i, a )  or Local-Next-Support (i, a )  becomes the empty set, then 

a is no longer a part of any solution, and may be eliminated from L;. In Figure 7, the label 

a is admissible for the segment containing i and j, but not for the segment containing i and 



Local-Prev-Support i a = ( i n ,(i,rn)) 
Local-Next-SuppMt[i:a{ = ([i:,J 

Figure 7: Local-Prev-Support and Local-Next-Support for an example DAG. The sets in- 
dicate that the label a is allowed for every segment which contains n, m, and j, but is 
disallowed for every segment which contains k. 

k. If because of constraints, the labels in j become inconsistent with a on i, (i, j )  would be 

eliminated from Local-Next-Support(a,i), leaving an empty set. In that case, a would no 

longer be supported by any segment. 

The algorithm can utilize similar conditions for nodes which may not be directly con- 

nected to i by Next-edge; or Prev-edge;. Consider Figure 8. Suppose that the label a 

at node i is compatible with a label in Lj, but it is incompatible the labels in L, and 

L,, then it is reasonable to eliminate a for all segments containing both i and j, because 

those segments would have to include either node x or y. To determine whether a label 

is admissible for a set of segments containing i and j, we calculate Prev-Support[(i, j ) ,  a] 

and Next-Support[(i, j ) ,  a] sets. Next-Support[(i, j ) ,  a] includes all (i, k) arcs which support 

a in i given that there is a directed edge between j and k, and (i, j )  supports a. Prev- 

Support[(i, j ) ,  a] includes all (i, k) arcs which support a in i given that there is a directed 

edge between k and j, and (i, j )  supports a .  Note that Prev-Support[(i, j ) ,  a] will contain an 

ordered pair (i, j )  if (i, j )  E Prev-edgej, and Next-Support[(i, j ) ,a]  will contain an ordered 

pair (i, j )  if (j, i )  E Next-edge,. These elements are included because the edge between nodes 

i and j is sufficient to allow j's labels to support a in the segment containing i and j. Dummy 

ordered pairs are also created to handle cases where a node is at the beginning or end of 

a network: when (s tar t ,  j )  E Prev-edgej, (i, s t a r t )  is added to Prev-support [(i, j ) ,  a], and 

when (j ,  end )  E Next-edgej, (i, end)  is added to Next-support[(i, j ) ,  a]. This is to prevent 

a label from being ruled out because no nodes precede or follow it in the DAG. Figure 9 

shows the Prev-Support, Next-Support, Local-Next-Support, and Local-Prev-Support sets 



Figure 8: If Next-edgej = {(j, x), ( j ,  y)) and S[(i, x), a] = 4 and S[(i, y), a] = 4, then a is 
inadmissible for every segment containing both i and j .  

that the initialization algorithm creates for the label a in the simple example DAG. 

To illustrate how these data structures are used in MUSE AC-1 (see Figure lo), con- 

sider what happens if initially [(I,  3), a] E List for the MUSE CSP in Figure 9. First, it is 

necessary to remove [(I,  3), a] 's support from all S[(3, I ) ,  x] such that [(3, l)  , x] E S[(1, 3), a] 

by decrementing for each x, Counter[(3, I ) ,  x] by one. If the counter for any [(3, I ) ,  x] be- 

comes 0, and the value has not already been placed on the List, then it is added for future 

processing. Once this is done, it is necessary to remove [(I,  3), a]'s influence on the DAG. 

To handle this, we examine the two sets Prev-Support [(l,3), a] = {(1,2), (1,3)) and Next- 

Support[(l, 3), a] = ((1, end)).  Note that the value (1, end)  in Next-Support[(l, 3), a] and 

the value (1,3) in Prev-Support [( l ,3) ,  a], once eliminated from those sets, require no further 

action because they are dummy values. However, the value (1,2) in Prev-Support [( l ,3) ,  a] 

indicates that (1,3) is a member of Next-Support [( l ,2) ,  a], and since a is not admissible 

for (1,3), (1,3) should be removed from Next-Support [(1 ,2), a], leaving an empty set. Note 

that because Next-Support[(l, 2), a] is empty and assuming that M[(1,2), a] = 0, [(I,  2), a] is 

added to List for further processing. Next, (1,3) is removed from Local-Next-Support(1, a) ,  

but that set is non-empty. During the next iteration of the while loop [(I,  2), a] is popped 

from List. When Prev-Support[(l, 2), a] and Next-Support [( l ,2) ,  a] are processed, Next- 

Support [ ( l ,2) ,  a] = 4 and Prev-Support [( l ,2) ,  a] contains only a dummy, which is removed. 

When (1,2) is removed from Local-Next-Support(1, a) ,  the set becomes empty, so a is no 



1. List:=4; 
2. E := {(i, j)13a E C : i, j E a A i # j A i, j E N); 
3. fo r  i, j )  E E do 
4. Lor a E Li do 
5. begin  
6. M[(i, j ) ,  a] := 0; 
7. Prev-Support[(;, j ) ,  a] := 4; Next-Support[(;, j) ,  a] := 4; 
8. Local-Prev-Support(i, a )  := 4; Local-Next-Support(;, a)  := 4; 
9. S[(i, j ) ,  a1 := 4; 
10. end 
11. fo r  (i, j )  E E do 
12. fo r  a E Li do 
13. begin  
14. Total:=O; 
15. fo r  b E Lj do 
16. if Rd(i,  a ,  j, b) then . 

17. begin  
18. Total:=Total+l; 
19. s [ ( j ,  i), bl := S[(j, i), bl u t[( i , j ) ,  a l l ;  
20. e n d  
21. if Total=O t h e n  
22. begin 
23. M[(i, j)! a] := 1; 
24. List:=L~st U{[(i, j) ,  a]); 
25. e n d  
26. Counter[(;, j ) ,  a]:=Total; 
27. Prev-Support[(;, j ) ,  a] := {(i, z)J(i ,  z )  E E A (z ,  j )  E Prev-edgei) 

~ { ( i ,  j)l(i, j )  E Prev-edgej) U { ( i , ~ t a r t ) l ( s t a r t , ~ )  E Prev-edgej); 
28. Next-Support[(;, j ) ,  a] := {(i, z)l(i, z )  E E /\ ( j ,  z)  E Next-edgej) 

U{(i, j ) J ( j ,  i) E Next-edgej) U {(i, end)J ( j ,  end)  E Next-edgej); 
29. if (i, j )  E Next-edge; then 
30. Local-Next-Support(i, a):=Local-Next-Support(i, a)  ~ { ( i ,  j));  
31. if ( j ,  i) E Prev-edge; t h e n  
32. Local-Prev-Support(i, a):=Local-Prev-Support(i, a)  U {(i, j ) ) ;  
33. e n d  

Figure 9: Algorithm for initializing the MUSE CSP data structures along with a simple 
example. The dotted lines are members of the set E. . 



1. while List # 4 do 
2. begin 
3. choose [ ( j ,  i , b] from List and remove it from List; 
4. for ( i ,  j , a  E S [ ( j ,  i) ,  b] do 
5. 
6 .  

6..1, 
Counter[(i, j ) ,  a]:=Counter[ i, j ) ,  a] - 1; 

7 .  if Counter[(i, j ) ,  a] = 0 A M ( i ,  j ) ,  a] = 0 then 
8. begin 
9. 

t 
List:=List ~ { [ ( i ,  j ) ,  a ] ) ;  

10. M [ ( i ,  $ ,a]  := 1; 
11. end 
12. end 
13. for ( j ,  z )  E Next-Support[(j, i ) ,  b] do 
14. begin 
15. Prev-Support[(j, z ) ,  b] :=Prev-Support[(j, z ) ,  b] - { ( j ,  i ) ) ;  
16. if Prev-Support[(j, z ) ,  b] = 4 A M [ ( j ,  z ) ,  b] = 0 then 
17. begin 
18. List:=List ~ { [ ( j ,  z ) ,  b]);  
19. M [ ( j ,  z ) ,  b] := 1;  
20. end 
21. end 
22. for ( j ,  z )  E Prev-Support[(j, i ) ,  b] do 
23. begin 
24. Next-Support[(j, z ) ,  b]:=Next-Support[(j, z ) ,  b] - { ( j ,  i ) ) ;  
25. if Next-Support[(j, z ) ,  b] = 4 A M [ ( j ,  z ) ,  b] = 0 then 
26. begin 
27. List:=List U { [ ( j ,  z ) ,  b]);  
28. M [ ( j ,  z ) ,  b] := 1; 
29. end 
30. end 
31. if ( j ,  i) E Next-edgej then 
32. Local-Next-Support j ,  b :=Local-Next-Support(j, b) - { ( j ,  i ) ) ;  
33. if Local-Next-Support j ,  b = 4 then 
34. begin 
35. 

I I 
Lj := Lj - {b) ;  

36. for ( j ,  z )  E Local-Prev-Support(j, b) do 
37. if M [ ( j , z ) , b ]  = 0 then 
38. begin 
39. List:=List U { [ ( j ,  z ) ,  b]);  
40. M [ ( j ,  z ) ,  b] := 1; 
41. end 
42. end 
43. if ( i ,  j )  E Prev-edgej then 
44. Local-Prev-Support j ,  b :=Local-Prev-Support(j, b) - { ( j ,  i ) ) ;  
45. if Local-Prev-Support j, b = 4 then 
46. begin 
47. 

I I  
L, := L, - {b) ;  

48. for ( j ,  z )  E Local-Next-Support(j, b) do 
49. if M [ ( j ,  z ) ,  b] = 0 then 
50. begin 
51. List:=List U { [ ( j ,  z ) ,  b]); 
52. M [ ( j ,  z ) ,  b] := 1; 
53. end 
54. end 
55. end 

Figure 10: Algorithm to enforce MUSE CSP arc consistency. 



longer compatible with any segment containing 1 and can be eliminated from further con- 

sideration as a possible label for node 1. Once a is eliminated from node 1, it is also 

necessary to remove the support of a E L1 from all labels on nodes that precede node 

1, that is for all nodes x such that (1, x) E Local-Prev-Support(1, a). Since Local-Prev- 

Support(1,a) = {( l , s ta r t ) ) ,  and start is a dummy node, there is no more work to be 

done. 

In contrast, consider what happens if initially [(1,2), a] E List for the MUSE CSP in 

Figure 9. In this case, Prev-Support [( l ,2) ,  a] contains (1,2) which requires no additional 

work; whereas, Next-Support [( l ,2) ,  a] contains (1,3), indicating that (1,2) must be removed 

from Prev-Support [( l ,3) ,  a]'s set. After the removal, Prev-Support [( l ,3) ,  a] is non-empty, 

so the segment containing nodes 1 and 3 still supports the label a on 1. The reason that 

these two cases provide different results is that nodes 1 and 3 are in every segment; whereas, 

nodes 1 and 2 are only in one of them. 

3.1 The Running Time of MUSE AC-1 

The running time of the routine to initialize the MUSE CSP data structures (in Figure 9) is 

O(n212 + n31 + n21), where n is the number of nodes in a MUSE CSP and I is the number of 

labels. Given that the number of (i, j) elements in E is O(n2) and the number of labels in 

L; and Lj  is O(I), there are O(n21) counters and S sets to calculate values for. To determine 

the number of supporters for a given arc-label pair requires O(1) work; hence, the initializing 

all of the counters and S sets requires O(n212) time. However, the determination of each 

Prev-Support [(i, j), a] and Next-Support [(i, j), a] requires O(n) time, so the time required 

to calculate all Prev-Support and Next-Support sets is O(n31). Finally, the time needed to 

calculate all Local-Next-Support and Local-Prev-Support sets is O(n21) because there are 

O(n1) sets with up to O(n) elements per set. 

The running time for the algorithm which prunes labels that are not arc consistent (in 

Figure 10) also operates in O(n212 + n31 + n21) time. Clearly there are only O(n21) counters 

to keep track of in the algorithm. Each counter can be at most 1 in magnitude, and, it can 

never become negative, so the maximum running time for line 6 in the algorithm (given that 

elements, because of M, appear on the list only once) is O(n212). Because there are O(n21) 

Prev-Support and Next-Support Lists, each up to O(n) in size, the running time required for 



lines 15 and 24 is O(n31). Finally, since there are O(n1) Local-Next-Support and Local-Prev- 

Support sets to eliminate O(n) elements from, the running time of lines 32 and 44 is O(n21). 

Hence, the running time of the MUSE CSP arc consistency algorithm is O(n212 + n31 + n21). 

By comparison, the running time for CSP arc consistency is (n212), assuming that there 

are n2 constraint arcs. Note that for applications where 1 = n, the running times of the 

algorithms are the same (this is true for parsing spoken language with a MUSE CSP). Also, 

if C is representable as planar DAG (in terms of Prev-edge and Next-Edge, not E), then 

the running time of the algorithms is the same because the average number of values in 

Prev-Support and Next-Support would be a constant. In the general case, the increase in 

the running time for arc consistency of a MUSE CSP is reasonable considering that it is 

possible to combine a large number of CSP instances (possibly exponential) into a compact 

graph with a small number of nodes. 

3.2 Correctness of MUSE AC-1 

Next we prove the correctness of MUSE AC-4. A label is eliminated from a domain by 

MUSE AC-4 only if its Local-Prev-Support or its Local-Next-Support becomes empty. To 

prove this, we must show that a label's local support sets become empty if and only if 

that label cannot participate in a MUSE arc consistent solution. This is proven for Local- 

Next-Support (Local-Prev-Support follows by symmetry.)' Observe that if a E L;, and it is 

incompatible with all of the nodes which immediately follow L; in the DAG, then it cannot 

participate in a MUSE arc consistent solution. In line 32 in Figure 10, (i,  j )  is removed from 

Local-Next-Support (i, a )  set only if [(i, j ) ,  a] has been popped off List. 

Therefore, it must be shown that [(i, j ) ,  a] is put on List only if a E Li is incompatible 

with every segment which contains i and j. This is proven by induction on the number of 

iterations of the while loop in Figure 10. 

Base case: The initialization routine only puts [(i, j ) ,  a] on List if a E L; is incompatible 

with every label in Lj  (line 24 of Figure 9). Therefore, a E L; is in no solution for any 

segments which contain i and j .  

Induction step: Assume that at the start of the kth iteration of the while loop all 

[(x, y), c] which have ever been put on List indicate that c E L, is incompatible with every 

segment which contains x and y. It remains to show that during the kth iteration, if [(i, j ) ,  a]  



is put on List, then a E L; is incompatible with every segment which contains i and j. There 

are four ways in which a new [(i, j ) ,  a] can be put on List: 

1. All labels in Lj which were once compatible with a E L; have been eliminated. This 

item could have been placed on List either during initialization (see line 24 in Figure 

9) or during a previous iteration of the while loop (see line 9 in Figure lo)), just as in 

the CSP AC-4 algorithm. It is obvious that, in this case, a E L; is incompatible with 

every segment containing i and j. 

2. Prev-Support[(i, j ) ,  a] = 4 (see line 16 in Figure 10) indicating that a E L; is incom- 

patible with all nodes k for (k, j )  E Prev-Edgej. The only way for [(i, j ) ,a]  to be 

placed on List for this reason (at line 18) is because all tuples of the form [(i, k), a] 

(where (k, j )  E Prev-edgej) were already put on List. By the induction hypothesis, 

these [(i, k), a] items were placed on the List because a E L; is incompatible with all 

segments containing i and k in the DAG. But if a is incompatible with every node 

which immediately precedes j in the DAG, then a is incompatible with every segment 

which contains j .  Therefore, it is correct to put [(i, j ) ,  a] on List. 

3. Next-Support[(i, j ) ,  a] = 4 ( see line 25 in Figure 10) indicating that a E L; is incom- 

patible with all nodes k for ( j ,  k) E Next-Edgej. The only way for [(i, j ) , a ]  to be 

placed on List (at line 27) for this reason is because all tuples of the form [(i, k), a] 

(where ( j ,  k) E Next-edgej) were already put on List. By the induction hypothesis, 

these [(i, k), a] items were placed on the List because a E L; is incompatible with all 

segments containing i and k in the DAG. But if a is incompatible with every node 

which immediately follows j in the DAG, then a is incompatible with every segment 

which contains j. Therefore, it is correct to put [(i, j ) ,  a] on List. 

4. Local-Next-Support(i, a )  = 4 (see line 33 in Figure 10) indicating that a E L; is no 

longer compatible with all nodes k such that (i, k) E Next-Edge;. The only way for 

[(i, j ) ,  a] to be placed on List (at line 39) for this reason is because no node which 

follows i in the DAG supports a,  and so all pairs (i, k) have been legally removed 

from Local-Next-Support(i, a)  during previous iterations. Because there is no segment 

containing i which supports a,  it follows that no segment containing i and j supports 

that label. 



At the beginning of the (k + 1)th iteration of the while loop, every [(x, y), c] on List implies 

that c is incompatible with every segment which contains x and y. Therefore, by induction, 

it is true for all iterations of the while loop in Figure 10. 

4 MUSE CSP Path Consistency 

Path consistency ensures that any pair of labelings (i, b) - (j,c) allowed by the (i, j) arc 

directly are also allowed by all paths from i to j. Montanari [19] has proven that to ensure 

path consistency for a complete graph, it suffices to check every path of length two. A 

definition of path consistency for a CSP is shown in Definition 9. In that definition, we use 

the predicate Path(i, k, j) to indicate that there is a path of arcs in E between i and j which 

goes through k. 

Definition 9 (Path Consistency) An instance of CSP is said to be path consistent if and only if: 

Vi,jE N : i #  j*(VaE L;:VbE Lj:VkE N : k # i ~ k # j ~ P a t h ( i , k , j ) *  
(Rt(i,a,j,b)* 3c E Lk : RZ(i,a, k,c)A R&(k,c, j,b))) 

Path consistency can also be ensured for MUSE CSP problems. The definition of MUSE 

path consistency is shown below: 

Definition 10 (MUSE Path Consistency) An instance of MUSE CSP is said to be path consistent 
if and only if: 

t l i , j € N : i # j * ( V a E  L;:VbE L j : 3 ~ E C : i , j E o A V k ~ ~ : k # i A k #  jAPath(i ,k, j)* 
(R2(i, a, j, b) * 3c E Lk : R&(i, a, k, c) A R&(k, c, j, b))) 

MUSE path consistency is enforced by removing from the domains t,hose labels in L; 

and Lj which violate the conditions of Definition 10. MUSE PC-1 builds and maintains 

several data structures comparable to the data structures defined for MUSE AC-1. Figure 

11 shows the code for initializing the data structures, and Figure 12 contains the algorithm 

for eliminating inconsistent labels from the domains. 

MUSE PC-1 must keep track of which labels in Lk concurrently support, label a at node i 

and label b at node j .  To keep track of how much path support each arc-label triple [(i, j ) ,  a ,  b] 

has, the number of labels in Lk which satisfy the relation RZ(i, a ,  k, c) A, RZ(k, c, j ,  b) are 

counted using Counter[(i, j), k, a,  b]. Additionally, the algorithm must keep track of which 

arc-label triples are supported by the label c E Lk. In the case that c E Lk supports 

[( i , j ) ,a ,b],  we add the value [(i , j ) ,a ,b] to the set S[(k,i),c]. In the c.ase that c E Lk 



supports [(j, i), b, a], we add the value [(j, i), b, a] to the set S[(k, j), c]. MUSE PC-1 also uses 

the Local-Next-Support, Local-Prev-Support, Prev-Support, and Next-Support sets just as 

in MUSE AC-1. The algorithm for setting up these data structures for an instance of a 

MUSE CSP is shown in Figure 11. 

To prune the graph of all labels that are path inconsistent in a MUSE CSP, it is important 

to ensure that one segment does not disallow a path consistent solution in another segment. 

Hence, as soon as one path inconsistency is found, we must remove support for the values on 

other previously consistent paths by using the properties of the DAG, as in arc consistency. 

If there is no segment a E C which contains Path(i,  k ,  j) such that there exists c E Lk 

such that R2  (i, a, k ,  c) and R2(k, c, j, b), then a can be eliminated from L;, and b can be 

eliminated from Lj. The routine for eliminating inconsistent labels frorn the domains is 

shown in Figure 12. If [(k, x), c] appears on List, then c E Lk no longer participates in a 

path which contains both k and x. 

4.1 The Running Time of MUSE PC-1 

The running time of the routine to initialize the MUSE CSP data structures (in Figure 

11) is O(n3P + n31 + n21), where n is the number of nodes in a MUSE CSP and 1 is the 

number of labels. Given that the number of (i, j) elements in E is O(n2) and the number of 

labels in L; and Lj is O(l), there are O(n312) Counter[(i, j), k, a ,  b]s to calculate values for. 

To determine the number of supporters for a given counter requires O(1) work; hence, the 

initializing all of the counters requires O(n313) time. Additionally, there are O(n21) S[(i, k) ,  a] 

sets to determine. Each support set can have up to O(n12) values, so the time required to 

initialize the support sets. is O(n3P). Determining each Prev-Support[(i, j), a] and Next- 

Support[(i, j), a] requires O(n) time, so the time required to calculate all Prev-Support and 

Next-Support sets is O(n31). Finally, the time needed to calculate all Local-Next-Support 

and Local-Prev-Support sets is O(n21) because there are O(n1) sets with up to O(n) elements 

per set. 

The running time for the algorithm which prunes labels that are not path consistent (in 

Figure 12) also operates in O(n3P + n31 + n21) time. Clearly there are O(n312) counters to 

keep track of in the algorithm. Each counter can be at most 1 in magnitude, and, it can 

never become negative, so the maximum running time for line 6 in the algorithm (given that 



1. List:=d; 
2. E := {(i, j)13a E C : i, j E a A i # j A i ,  j E N) ;  
3. for  (i, j )  E E do 
4. f o r a E L i d o  
5. begin 
6. M[(i, j ) , a ]  := 0; 
7. Prev-Support[(i, j) ,  a] := 4; Next-Support[(i, j ) ,  a] := 4; 
8. Local-Prev-Support(i, a )  := 4; Local-Next-Support(i, a )  := 4; 
9. for  k E N such that k # i, k # j d o  
10. for  c E Lk d o  
11. S[(k, i), c] := 4; 
12. end 
13. for  (i, j )  E E d o  
14. f o r a E L i d o  
15. begin  
16. for  b E Lj such that R2( i ,a ,  j, b) d o  
17. for  k E N such that k # i ,  k # j d o  
18. begin  
19. Total:=O; 
20. for  c E Lk do 
21. if R2(i,  a ,  k, c) and R2(k, c, j, b) t h e n  
22. begin  
23. Total:=Total+l; 
24. S[(k, 4, cl := SKk, i), cl u {[(i , j) ,  a ,  bl) ;  
25. end 

if %ta1=0 t h e n  
begin  

M[(i, k), a] := 1; M[(j ,  k), b] := 1; 
List:=List ~ { [ ( i ,  k), a], [(j, k), b]); 

end 
Counter[(i, j ) ,  k, a ,  b]:=Total; 

end 
Prev-Support[(i, j ) ,  a] := {(i, z)l(i, z )  E E A (z ,  j )  E Prev-edgej) 

U{(i, j)l(i, j )  E Prev-edgej) U {(i, s tar t ) l (s tar t ,  j )  E Prev-edgej); 
Next-Support[(i, j ) ,  a] := {(i, z )  l(i, z )  E E A ( j ,  z )  E Next-edgej) 

U{(i, j)l(j, i) E Next-edgej ) U {(i, end)  l(j, end )  E Next-edgej); 
if  (i, j )  E Next-edgei t h e n  

Local-Next-Support(i, a):=Local-Next-Support(i, a)  U{(i, j));  
if ( j ,  i) E Prev-edgei then 

Local-Prev-Support(i, a):=Local-Prev-Support(i, a)  U {(i, j ) )  ; 
end 

Figure 11: Algorithm for initializing the MUSE CSP data structures for path consistency. 



1. w h i l e  List # 4 do 
2. b e g i n  
3. choose [ ( k ,  z ) ,  c] from List and remove it from List; 
4. for ( 2 ,  y), a ,  bl E S [ ( k ,  21, cl d o  
5.  Legin 
6. Counter[(z, y),  k ,  a ,  b]:=Counter[(z, y),  k ,  a ,  b] - 1; 
7. i f  Counter[(z, y),  k ,  a ,  b] = 0 then 
8. b e g i n  
9. i f  M [ ( z ,  k ) ,  a] = 0 then 
10. b e g i n  
11. List:=List U { [ ( z ,  k ) ,  a ] ) ;  
12. M [ ( z ,  k ) ,  a] := 1; 
13. end 
14. i f  M[(y , k ) , b ]  = 0 then 
15. b e g i n  
16. List:=List ~ { [ ( y ,  k ) ,  b]);  
17. M [ ( Y ,  k ) ,  b] := 1; 
18. e n d  
19. e n d  
20. e n d  
21. for  ( k ,  z)  E Next-Support[(), z ) ,  c] d o  
22. b e g i n  
23. Prev-Support[(k, z ) ,  c]:=Prev-Support[(k, z ) ,  c] - { ( k ,  z ) ) ;  
24. if Prev-Support[(k, z ) ,  c] = 4 A M [ ( k ,  z ) ,  c] = 0 then 
25. b e g i n  
26. List:=List ~ { [ ( k ,  z ) ,  c] ) ;  
27. M [ ( k ,  z ) ,  c] := 1; 
28. e n d  
29. end 
30. for  ( k ,  z)  E Prev-Support[(k, z ) ,  c] d o  
31. b e g i n  
32. Next-Support[(k, z ) ,  c]:=Next-Support[(k, z ) ,  c] - { ( k ,  z ) ) ;  
33. i f  Next-Support[(k, z ) ,  c] = 4 A M [ ( k ,  z ) ,  c] = 0 then 
34. b e g i n  
35. List:=List ~ { [ ( k ,  z ) ,  c ] ) ;  
36. M [ ( k ,  z ) ,  c] := 1; 
37. end 
38. end 
39. i f  ( k ,  z )  E Next-edgek then 
40. Local-Next-Support k ,  c :=Local-Next-Support(), c )  - { ( k ,  z ) ) ;  
42. i f  Local-Next-Support k ,  c = 4 then 
42. b e g i n  
43. 

I I 
Lk := Lk - { c ) ;  

44. for  ( k ,  z )  E Local-Prev-Support(k, c )  do 
45. i f  M [ ( k ,  z ) ,  c] = 0 then 
46. b e g i n  
47. List:=List U{[ ( k ,  z ) ,  c] ) ;  
48. M [ ( k ,  z ) ,  c] := 1; 
49. end 
50. end 
51. i f  ( 2 ,  k )  E Prev-edgek then 
52. Local-Prev-Support(k, c):=Local-Prev-Support(k, c)  - { ( k ,  2 ) ) ;  
53. i f  Local-Prev-Support(k, c )  = 4 then 
54. b e g i n  
55. Lk := Lk - { c ) ;  
56. for  ( k ,  z )  E Local-Next-Support(k, c )  do 
57. i f  M [ ( k ,  z ) ,  c] = 0 then 
58. b e g i n  
59. List:=List ~ { [ ( k ,  z ) ,  c ] ) ;  
60. M [ ( k ,  z ) ,  c] := 1; 
61. e n d  
62. end 
63. end 

Figure 12: Algorithm to enforce MUSE CSP path consistency. 
20 



elements, because of M, appear on the list only once) is O(n3P). Because there are O(n21) 

Prev-Support and Next-Support Lists, each up to O(n) in size, the running time required for 

line 23 and 32 is O(n31). Finally, since there are O(n1) Local-Next-Support; and Local-Prev- 

Support sets to eliminate O(n) elements from, the running time of lines 40 and 52 is O(n21). 

Hence, the running time of the MUSE CSP path consistency algorithm is O(n3P + n31 + n21). 

By comparison, the running time for CSP path consistency is (n3P). 

The proof of correctness for MUSE PC-1 is similar to our proof for MUSE AC-1. Induc- 

tion on the iterations of the while loop is sufficient to demonstrate the correctness of the 

algorithm in Figure 12. The extension of our algorithm for general k-consistency [:I] should 

now be apparent to the reader. 

5 Conclusion 

In conclusion, MUSE CSP can be used to efficiently represent and solve several similar 

instances of the constraint satisfaction problem simultaneously. If multiple instances of a 

CSP have some common variables which have the same domains and compatible constraints, 

then they can be combined into a single instance of a MUSE CSP, and much of the work 

required to enforce node, arc, and path consistency need not be duplicated across the multiple 

instances. 

We have already developed a MUSE CSP constraint-based parser, PARSEC [lo, 23,11,9], 

which is capable of parsing word graphs containing multiple sentence hypotheses. We have 

developed syntactic and semantic constraints for parsing single sentences, which when applied 

to a word graph, eliminate those hypotheses that are syntactically or semailtically incorrect. 

Speech processing is not the only area where segmenting the signal into higher-level chunks 

is problematic. Vision systems and handwriting analysis systems have comparable problems. 

Additionally, Pearl [20] has pointed out how a large number of instances of CSP can be used 

to compute Dempster's rule of combination [6, 211. These instances can easily be replaced 

by a single instance of MUSE CSP. 

References 

[l] M.C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence, 41:89-95, 



[2] A.L. Davis and A. Rosenfeld. Cooperating processes for low-level vision: A survey. 

Artificial Intelligence, 17:245-263, 1981. 

[3] R. Dechter, I. Meiri, and J .  Pearl. Temporal constraint networks. Artificial Intelligence, 

34:l-38, 1988. 

[4] R. Dechter and J .  Pearl. Network-based heuristics for constraint-satisfaction problems. 

Artificial Intelligence, 34:l-38, 1988. 

[5] Rina Dechter. From local to global consistency. Artificial Intelligence, 55:87-107, 1992. 

[6] A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping. 

Annals of Mathematical Statistics, 38:325-339, 1967. 

[7] E. Freuder. Partial constraint satisfaction. In Proceedings of the In.temationa1 Joint 

Conference on Artificial Intelligence, pages 278-283, 1989. 

[8] E. Freuder. -Complexity of K-tree-structured constraint-satisfaction problems. In Pro- 

ceedings of the Eighth National Conference on Artificial Intelligence, pages 4-9, 1990. 

[9] M. P. Harper and R. A. Helzerman. PARSEC: A constraint-based parser for spoken 

language parsing. Technical Report EE-93-28, Purdue University, School of Electrical 

Engineering, West Lafayette, IN, 1993. 

[lo] M.P. Harper, R.A. Helzerman, and C.B. Zoltowski. Constraint parsing: A powerful 

framework for text-based and spoken language processing. Technical Report EE-91-34, 

Purdue University, School of Electrical Engineering, West Lafayette, IN, 1991. 

[ll] M.P. Harper, L.H. Jamieson, C.B. Zoltowski, and R. Helzerman. Semantics and con- 

straint parsing of word graphs. In Proceedings of the International Conference on Acous- 

tics, Speech, and Signal Processing, pages 11-63-11-66, April 1992. 

[12] V. Kumar. Algorithms for constraint-satisfaction problems: A survey. A I  Magazine, 

13(1):32-44, 1992. 



[13] A.K. Mackwort h. Consistency in networks of relations. Artificial Intelligence, 8(1):99- 

118, 1977. 

[14] A.K. Mackworth and E. Freuder. The complexity of some polynomial network- 

consistency algorithms for constraint-satisfaction problems. Artificial Intelligence, 

25:65-74, 1985. 

[15] H. Maruyama. Constraint dependency grammar. Technical Report #RT0044, IBM, 

Tokyo, Japan, 1990. 

[16] H. Maruyama. Constraint dependency grammar and its weak generative capacity. Com- 

puter Software, 1990. 

[17] H. Maruyama. Structural disambiguation with constraint propagation. In The Proceed- 

ings of the Annual Meeting of ACL, 1990. 

[18] Roger Mohr and Thomas C. Henderson. Arc and path consistency revisited. Artificial 

Intelligence, 28:225-233, 1986. 

[19] U. Montanari. Networks of constraints: Fundamental properties and applications to 

picture processing. Information Science, 7:95-132, 1974. 

[20] Judea Pearl. A constraint-propagation approach to probabilistic reasoning. In Laveen N. 

Kanal, John F. Lemmer, and A. Rosenfeld, editors, Uncertainty in Artificial Intelligence, 

volume 4 : Machine Intelligence and Pat tern Recognition. Nort h-Holland, Amsterdam, 

1986. 

[21] G. Shafer. A Mathematical Theory of Evidence. Princeton' University Press, Princeton, 

NJ, 1976. 

[22] M. Villain and H. Kautz. Constraint-propagation algorithms for temporal reasoning. In 

Proceedings of the Fifth National Conference on Artificial Intelligence, pages 377-382, 

1986. 

[23] C.B. Zoltowski, M.P. Harper, L.H. Jamieson, and R. Helzerman. PARSEC: A 

constraint-based framework for spoken language understanding. In Proceedings of the 

International Conference on Spoken Language Understanding, October 1992. 


	Purdue University
	Purdue e-Pubs
	2-1-1994

	MUSE CSP: An Extension to the Constraint Satisfaction Problem
	Randall A. Helzerman
	Mary P. Harper


