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This paper proposes a method to translate human EEG into music, so as to represent mental state by music. The arousal levels of
the brain mental state and music emotion are implicitly used as the bridge between the mind world and the music. The arousal level
of the brain is based on the EEG features extracted mainly by wavelet analysis, and the music arousal level is related to the musical
parameters such as pitch, tempo, rhythm, and tonality. While composing, some music principles (harmonics and structure) were
taken into consideration. With EEGs during various sleep stages as an example, the music generated from them had different
patterns of pitch, rhythm, and tonality. 35 volunteers listened to the music pieces, and significant difference in music arousal levels
was found. It implied that different mental states may be identified by the corresponding music, and so the music from EEG may
be a potential tool for EEG monitoring, biofeedback therapy, and so forth.

1. Introduction

Music is a universal human trait throughout the human
history and across all cultures, and it is also a powerful
tool for emotion and mood modulation [1]. Music is not
only a kind of entertainment, but another kind of language;
thus music composition may be conceived as a specific
representation of human mind.

Along with the widespread of computer application,
some researchers attempted to “teach” the computer to
compose music, where a variety of mathematic algorithms
[2] and fundamental music rules [3] were explored. In gen-
eral, for such a computer composition, subjective algorithm
design and artificial selection of music rules are crucial and
difficult. To learn from the nature and ourselves, various
signals from human body, such as the DNA [4], proteins [5],
electromyograms (EMGs) [6], and brainwaves [7], have been
utilized in computer composition in 1990s.

The brainwaves, the electroencephalograms (EEGs), are
the visual plotting of the brain neural electric activities

projected to the scalp surface. The earliest attempt to hear
brainwaves as music was made in 1934 [8]. In most of these
early works, however, only the amplitude of the alpha waves
or other simple and direct characters of EEG signals was
utilized as the driving sources of the musical sound. In the
1990s, various new music generating rules were created from
digital filtering or coherent analysis of EEG [9]. In general,
these techniques may be classified into two categories. The
first one is sonification, which aims at monitoring the
brainwaves in an auditory way and includes various methods,
such as the direct parameter mapping [10], the one based
on the interictal epileptic discharges as triggers for the
beginning of music tones [11], and rules worked on the scale-
free phenomena which exists at both EEG and music [12].
The second one is the brainwave music which has involved
musical theories in composition. The typical work is the
application of brainwave music in Brain Computer Interface
(BCI) [7].

In this work, we proposed a method to translate the
mental signal, the EEG, into music. The goal is to represent
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FIGURE 1: Overview of the brainwave music generation.

the mental state by music. The arousal levels corresponding
to both the brain mental states and music emotion are
implicitly used as the bridge between the mind world and
music melody. EEGs during various sleep stages were tested
as the example.

2. Material and Methods

2.1. Sleep EEG Data. To show the performance of the
proposed mapping rules, we apply this method to the real
EEG data recorded during the different sleep stages. The
sleep stages were recognized by two of the authors according
to the rules of Rechtschaffen and Kales (R&K). The data
of rapid-eye movement sleep (REM) and nonrapid eye
movement were utilized. For the nonrapid eye movement
sleep data, we chose segments from both stage 2 (named
NREM henceforth) and stages 3 or 4 (the slow-wave sleep
(SWS)). The subject was a 25-year-old male, physically and
mentally healthy, right-handed. The study was approved by
the local Review Board for Human Participant Research. The
subject signed an informed consent form for the experiment.
The signals were recorded by a 32 channel NeuroScan system
with a sampling rate of 250 Hz and were band-pass filtered
from 0.5 Hz to 40 Hz. The data is referenced to infinity [13].
The data for music generation is acquired from the second
night of the subject sleeping with the braincap. The following
analysis was performed on the data at electrode Cz, which is
at the central of the head and is a channel less affected by the
body movement.

2.2. EEG, Music, and Arousal

2.2.1. Sleep EEG and Mental Arousal Level. 1t is believed that
the arousal level in different sleep stages is associated with the
brain activities; it means that a sleep stage, REM, NREM, or
SWS, is a phenomenological representation of the underlying
neural activities which are the electrophysiological reflection
of a specific mental arousal state. For example, REM is
considered to be deeply related to dreams, which involves
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learning and memory [14]; thus it is considered being more
alert than SWS; that is, it has a high arousal level than SWS.

The time-frequency EEG features are different among
REM, NREM, and SWS. The REM stage shows small
amplitude activities, similar to light drowsiness, and its alpha
band (8-13 Hz) activity is slightly slower than in wakefulness.
The brainwaves of SWS are of quite preponderant delta waves
(1-4Hz) and theta rhythm (4-7 Hz), thus typically of low
frequency and high amplitude. And the wave amplitude and
frequency of NREM are between REM and SWS. As the sleep
stages can be identified by the features of EEG, which may be
utilized as the physiological indexes of different mental states
for music composition of various arousal levels.

2.2.2. Music and Emotion Arousal. As a representation of
the internal emotion of a composer, music with some
features can be adopted to evoke emotion and mood state.
Some studies indicated that music emotion is able to be
communicated with various acoustic cues, including tempo,
sound level, spectrum, and articulation [15]. And musical
structures or patterns usually have their inherent emotional
expressions [16]. To evaluate music emotion, a popular
one is the Thayer’s model, which describes emotion in
two dimensions, the valence and the arousal. The valence
indicates whether the music is pleasant or unpleasant, while
the arousal represents the activity of the music, the activeness
or passiveness of the emotion [17]. The two-dimension
structure gives us important cues for computational mod-
eling.

Therefore, the musical structure and some features such
as pitch, tonality, rhythm, and volume played important
roles in the emotion expression. For example, a fast tempo
(dense rhythm cadence) usually represents a high arousal
level, while a slow tempo (sparse rhythm cadence) indicates
the low arousal emotion [18].

2.3. Music Generation from EEG. For music generation, the
overview of the method is shown in Figure 1, where the blue
arrow indicates the conceptual framework and the yellow
arrow shows the actual realization in this work. Using arousal
as a bridge, EEG features were extracted as a reflection of
the mind state, and it was mapped to the parameters of
music which had similar arousal level according to the two-
dimension mood model.

The music generation consists of five steps, details shown
in Figure 2. First, extract the EEG signal features; second,
define the music segments (parameters: main note, tonality,
and rhythm cadence) based on the corresponding EEG
features; third, generate music bars (parameters: chord and
note position) from the EEG features and music segment
parameters; fourth, fix the values of notes (timbre, pitch,
duration, and volume) according to the bar parameters; the
last, construct the music melody by a software (Max/MSP)
and a MIDI file is made.

2.3.1. EEG Features and Music Segment. For different mental
states, EEGs are of distinct features in frequency and
amplitude, that is, different time-frequency (T-F) patterns.
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FIGURE 3: Sleep EEG and Wavelet analysis. (a) REM; (b) NREM; (c) SWS.

The main frequency, rate of alpha, and variance are obtained
from the complex morlet wavelet coefficients, while the wave
amplitude and average energy are estimated directly from the
EEG signal.

The music sequence has the same time length as the real
EEG. The segmentation is based on the following inequation
(1), so that when it exists, a new segment is assumed:

Ix® x| ) (1)
X
where x(i) denotes the value of the EEG signal at the current
point i, and X is the average of the data x(i) from the last
segment ending to the current time.
In a segment, the three parameters, main note, tonality,
and rhythm, are kept the same. As shown in Figure 2, the

main note, the most important note in a music melody,
is based on the EEG main frequency. When the EEG main
frequency is high, the main note is high, and vice versa.

According to music esthetic theory about tonality, a
major music usually is utilized for a positive melody, while
a minor is identified to be soft and mellow [18]. In this work,
we defined an empirical threshold that when the average
energy is lower than the threshold, we take the Major; else
the Minor. Therefore, a deep sleep stage, SWS, would be
represented by a minor key, and the REM stage would be
matched with the major. The key transfer would make the
music pieces have a rich variety, and the stage change can be
identified by the music modulation.

The rhythm cadence is related to the rate of alpha. When
it is high, the rhythm cadence is dense, which means that the
number of notes in a fixed length is large. The result is that
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FIGURE 4: Music scores for REM (a), SWS (b), NREM segment 1
(c), and NREM segment 2 (d).
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a fast tempo corresponds to a high arousal level. When the
rate is low, the condition is adverse.

2.3.2. Music Generation: Bar. In a music segment, the
substructure is the bar, where the chord and note position
are finally determined. As variance of the wavelet coefficients
can represent the change of the frequency combination in the
time-frequency domain, we use it to determine the chord.
Since the chord is complex, here we simply assume that the
stability of the chord and the change of EEG spectrum are
consistent.

In this work, we take 4 beats in a bar and 4 positions in
a beat. The parameter “note position” indicates a note on or
off at a position. The rhythm cadence determines the number
of notes on, and then the EEG amplitude over an empirical
threshold for each bar determines the specific position for a
note “on.”

2.3.3. Music Generation: Note. Music melody is the combi-
nation of notes, and for each note, there are four essential
features: timbre, pitch, duration, and volume.

The timbre of the note is assumed to be piano in this
work. And in general, we may have different timbres for
different segments if necessary.

The pitch of a note is related to the chord. In our method,
each bar has a chord, and the notes in a bar are selected from
two families: the first family consists of the note pitches of
the harmonic chord (chord tone) and the second includes
the other note pitches of the scale (none chord tone). For
example, when the chord is major C, the family of chord tone
consists of C, E, G, while the none chord tone family includes
D, F A, B. To ensure the tonality of the melody, there are a few
rules for pitch family choice; for example the chord notes are
usually placed at the downbeat (the first beat of the bar); the
pitch interval is limited to 7 semitones.

The duration of a note is represented by the note position.
A note starts at the position of a note on and lasts until the
next note-on position. However, the lasting must be in the
same bar so that if the next note-on position is in the next
bar, the current note’s duration will stop at the current bar
end.

The volume of a note is indicated by the note position of
the beat. A downbeat has a large volume, while an upbeat has
a small volume.

2.3.4. Music Emotion Evaluation Test. In order to ascertain
if the music of different sleep states can be identified, and
to see the emotion dimensions when people listen to them,
35 healthy students (20 males, 15 females), ranging in age
from 21 to 28 years (mean 22.49, SD 1.65), were asked
to participate in this test. None of the volunteers reported
any neurological disorders, psychiatric diseases, or were
on medication. All had normal hearing. 94.3% of them
had never received special musical education, and 5.7% of
them (two subjects) had special musical training less than
2 years.

Since the waveforms of REM and SWS are more typical
than NREM (see Figure 3), we designed a test with 10 music
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TaBLE 1: Music parameters of REM and SWS.

Music parameters Main note Tonality Rhythm cadence Pitch Duration Volume

REM High Major Dense High Short Large

SWS Low Minor Sparse Low Long Small

pieces consisting of 5 from REM and 5 from SWS with
the proposed mapping rule. Each music piece lasted 60
seconds and they were randomly played to the volunteers.
The volunteers were asked to focus on the emotions of the
music pieces. After listening to each piece, they were required
to mark a table for the arousal levels which had a 9-point
scale from 1 to 9 (with “1 = very passive” and “9 = very
excited” on the arousal scale).

3. Results

3.1. Music of Sleep EEG. Figure 3 shows the wavelet analysis
results of REM, NREM, and SWS. Apparently, the REM and
SWS data may be assumed to be one segment, while the
NREM data should be segmented into five segments for its
very clear variety of features in frequency and amplitude
related to the spindle waves. For the data in Figure 3, we
found that segment 1 of NREM was quite similar to REM,
segment 2 is similar to SWS, and the reason is that the wave
amplitude and frequency of NREM are between REM and
SWS as noted above.

The music pieces of different sleep stages are of differ-
ent features in music structure. Table 1 shows the music
parameters of REM and SWS EEG. The REM music has
high-pitch notes and dense rhythm; thus it indicates a high
arousal state. The SWS music has notes of low pitch, and
the rhythm is sparse; thus it denotes a low arousal state.
Figure 4 shows the examples of the music scores of the sleep
EEG.

3.2. Music Emotion Evaluation. In the music emotion evalu-
ation test, the arousal level of REM and SWS is 6.02 + 0.99
and 3.59 = 0.97, respectively. And the differences between
them are significant (T(34) = 12.571, P < .01). Figure 5
showed the points from all the volunteers in the emotion
space with blue stars and green circles for the REM and SWS
music pieces, respectively. It is quite clear that the music of
REM has high arousal level than SWS, which means that
the music of REM is more active. Figure 5 demonstrates
that our method can translate the different arousal mental
state to the corresponding music arousal level. The arousal
level of REM music is higher than SWS music for all the
listeners, although their absolute arousal level points are
different.

4. Discussions and Conclusion

There is growing interest in the relation between the brain
and music. The approach to translate the EEG data into
music is an attempt to represent the mind world with music.
Although arousal has been a common topic in both brain

mental state and music emotion studies, it is a new attempt
to use arousal as the bridge between the brain mental state
and the music. The above results show that the approach is
advisable and effective and that the music pieces of different
sleep stages are of distinct music features corresponding to
the different levels of arousal. The active state is represented
by music pieces with high arousal level, while music for the
calm state has a low arousal level.

In this EEG music generation, some basic music theories
have been considered. As EEG is a physiologic signal, if we
translate it into music directly, the music may be stochastic;
if the music rules are too strictly followed, some detailed
meaningful EEG information may be ignored. To keep a
proper balance between the science (direct translation) and
art (composition), only some important principles of music
were involved in the program, and the features of the EEG
were chosen carefully to maintain the most meaningful
physiologic information. If some random parameters are
utilized to replace these features, the music would show
no specific patterns. In general, the choice of the feature
extraction method would influence the meaning of the
derived music, and any principle followed by both the brain
activity and music would be an appropriate bridge between
the brainwave and music.

In this pilot experiment, the method was evaluated on
the sleep EEG data from one subject. Though individual
EEG data is different from one subject to another, the basic
features of sleep EEG with different mental states are quite
steady, such as the characteristic waves of different sleep
stages. That means, for the same sleep stage, that the music of
different subjects would be different in details, but the main
patterns would be similar.

To improve this work, other EEG signal processing meth-
ods can be adopted, such as complexity analysis, independent
component analysis, and fractal analysis (power law [12]). In
our current method, we just consider the arousal level of the
brain and music while the other emotion dimensions, such as
valence, can also be involved in the further music generation
studies. Moreover, the program needs to be tested on more
data to improve itself to adapt to various cases.

This method might be used potentially in an assistant
sleep monitor in clinical applications because the music
of different sleep stages can be identified easily and more
comfortably. However, it needs further experimental studies
before any practical application. Also, it can work as a
musical analytical method for the ample states of EEG.
Furthermore, this method can be utilized as a unique
automatic music generation system, which enables those
people who have no composition skills to make music
through using their brainwaves. Therefore, it can be utilized
as a bio-feedback tool in disease therapy and fatigue
recovery.
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