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Abstract

We propose a new method for music detection from broadcasting contents using the convolutional neural

networks with a Mel-scale kernel. In this detection task, music segments should be annotated from the broadcast

data, where music, speech, and noise are mixed. The convolutional neural network is composed of a convolutional

layer with kernel that is trained to extract robust features. The Mel-scale changes the kernel size, and the

backpropagation algorithm trains the kernel shape. We used 52 h of mixed broadcast data (25 h of music) to train

the convolutional network and 24 h of collected broadcast data (ratio of music of 50–76%) for testing. The test data

consisted of various genres (drama, documentary, news, kids, reality, and so on) that are broadcast in British English,

Spanish, and Korean languages. The proposed method consistently showed better performance in all the three

languages than the baseline system, and the F-score ranged from 86.5% for British data to 95.9% for Korean drama

data. Our music detection system takes about 28 s to process a 1-min signal using only one CPU with 4 cores.
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1 Introduction

Broadcast contents consist of various signals, such as

music, speech, background music, noise, and sound

effects. The music type of broadcast content is diverse, for

example, classical music, popular song, rap, and instru-

mental music. On average, music has a higher proportion

of broadcast contents than the other signals. Therefore,

music detection is an elementary factor in research related

to the processing of broadcast data, such as automatic

data tagging, speech/music classification, music and back-

ground music detection, and music identification. Among

these, music identification is a research topic that can be

applied to various services to provide music information

to users, or identification when claiming royalties. Music

detection results can be helpful in the preprocessing step

for fast and robust music identification.

IberSPEECH held audio segmentation challenges in

2010 [1] and 2014 [2], while MIREX held music detection

challenges in 2015 [3] and 2018 [4]. The goal of the audio

segmentation challenges in the IberSPEECH 2014 was to

segment and label audio documents indicating where

speech, music, and/or noise were present. Because the

2010 and 2014 IberSPEECH challenges used the Catalan

broadcast news database [5], the proportion of speech in

the test set was high. Consequently, research works

focused on detecting speech, rather than music. The best

system in the 2014 [2] challenge combined the results of

two subsystems. The first subsystem uses the hidden Mar-

kov model (HMM) to classify the non-overlapping class.

The second subsystem used the Gaussian mixture model

(GMM) and multilayer perceptron (MLP) to classify the

detailed classes of speech. In this system [2], they

extracted the Mel-frequency cepstral coefficient (MFCC)

[6] and i-vector [7].

In the music/speech classification and detection chal-

lenge of MIREX2015, the music/speech detection was

attempted for the data set of the British Library’s World

and Traditional Music collections. The challenge provided

a sample of the evaluation data set [3, 8]. The data had a

clear boundary between music and speech, i.e., there was

less overlap between voice and music. The highest per-

formance system [9] in this challenge consisted of two
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steps. In the first step, a symmetric Kullback Leibler (KL)

distance was used to detect the music/speech boundary.

In the second step, a second music/speech classifier was

used to classify each segment. The MFCC was used as a

feature to detect the music/speech boundary. In the music

and/or speech detection challenge of MIREX2018, there

are four tasks of music detection, speech detection, music

and speech detection, and music relative loudness estima-

tion. The system [10] that showed the best performance

in music detection was the CNN model that was trained

using TV and radio broadcasting data and annotation and

that used the Mel-spectrogram.

Theodorou et al. [11] summarized the structure of audio

segmentation in three broad categories, i.e., distance-

based, model-based, and hybrid of distance- and model-

based. The distance-based audio segmentation is an

algorithm that detects the boundary of specific acoustic

categories by the use of a distance matrix of acoustic

features. For distance-based audio segmentation, the

MFCC and zero crossing rate (ZCR) were the main

features used. The distance matrix was computed using

these features with various distance measures. In their

paper, they introduced Euclidian distance, Bayesian in-

formation criterion (BIC), KL distance, generalized like-

lihood ratio (GLR), and so on as distance measures. The

model-based audio segmentation is a method of classi-

fying each frame using a trained model. GMM-HMM and

support vector machine (SVM) were mainly used as

machine learning algorithms for the audio segments.

MFCC, ZCR, and spectrum-based features (such as

energy, pitch, bandwidth, flux, centroid, roll-off, spread,

and flatness) were mainly used as the features for training

the model of machine learning algorithms.

Due to the development of deep learning, many recent

studies utilize the deep neural network (DNN) algorithms.

Grill and Schluter [12] used the CNN and self-similarity

lag matrices (SSLMs) for music boundary detection. They

trained the network with two input features that used the

Mel-scaled log-magnitude spectrogram and SSLMs as

inputs of the CNN. They employed four different network

architectures to combine the two input features. Among

the four architectures, the fusion in the convolutional

layer showed the best performance. When used in-

dependently without combining the two features, the

Mel-scaled spectrogram showed better performance

for boundary detection than the SSLM, indicating that

the Mel-scaled spectrogram is a good feature in the

CNN-based processing.

Doukhan and Carrive [13] used a CNN model for

music/speech classification and segmentation. They

extracted the Mel-frequency cepstra, corresponding to 40

Mel-scale bands, to train the model. The CNN model

consisted of two convolutional and two dense layers. They

trained the first convolutional layer with an unsupervised

procedure based on the spherical k-means and zero-phase

component analysis (ZCA)-based whitening [14]. They

used the CNN model to classify each frame into either

speech or music. They then determined the music/speech

segments using the Viterbi algorithm. Using the MIREX

2015 music/speech detection training example material

[3], they achieved a recall performance of 82.73% for only

music segment without post-processing and 91.07% with

post-processing (Viterbi algorithm). They also published

and distributed their systems [15].

Tsipas et al. [16, 17] introduced an audio-driven algo-

rithm for the detection of speech and music events in

multimedia contents. They used a distance-based method

using a self-similarity matrix and a model-based method

using the SVM. They first computed the self-similarity

matrix with cosine distance, to find the boundary between

music and speech. They then used the SVM to classify

each frame into speech or music. Finally, by combining

the classification results of the frame unit and the detected

boundary result, the result of the segment index was

output. They extracted the ZCR, flux, spectral roll-off,

root mean square energy, MFCC, and spectral flatness per

band for boundary detection and classification.

Seyerlehner et al. [18] proposed a new feature, called

continuous frequency activation (CFA), which is espe-

cially designed for music detection. They focused on the

fact that music tends to have more stationary parts than

speech. They extracted features that represented the

horizontal component of music. They detected music

using the extracted features and machine learning algo-

rithms. They detected the music in TV production data

with a lot of speech and noise and provided a sample

audio to publicize their data environment [19]. They

classified music and non-music by comparing the

proposed CFA feature value with the threshold value. Their

method of music detection improved the classification

accuracy from 81.21 to 89.93%. Moreover, they released

some examples of those misclassifications [19]. Wieser et

al. [20] improved the performance of speech/music

discrimination using the SVM with CFA and MFCC.

In addition, Choi et al. [21] improved the automatic

music tagging performance using Mel-spectrogram and

CNN structure, while Jansson et al. [22] improved the

performance of singing voice separation using spectro-

gram and CNN structure.

We propose a convolutional layer with a Mel-scale

kernel (melCL) for music detection in the broadcast data.

We detected music from real broadcast data, which

included music mixed with noise, and speech-like back-

ground music. Our test data is very similar to the data

used in [19]. We trained the CNN model for a model-

based music detection system and applied the proposed

melCL to the first convolutional layer. We used the test

data and a public data set to compare the music detection
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performance between the proposed method and the base-

line systems.

The paper is organized as follows: Section 2 describes

the overall structure of music detection and the proposed

algorithm. Section 3 reports the experimental results and

discussion. Section 4 presents the conclusions and

describes future works.

2 Proposed method

2.1 Overall structure for music detection

Figure 1 shows the overall structure of the music

detection system. The upper part of the figure shows the

model learning process for music detection. The lower

part shows the music detection process of broadcast

data. We employed mixed data obtained by mixing

music, speech, and noise signals to train the CNN

model. The log power spectrogram was used as input to

CNN for model learning. For music detection, we calcu-

lated the log spectrograms and then classified music and

non-music on a frame-by-frame basis using the trained

CNN model. We post-processed the frame-by-frame

CNN results, and output music sections whose onset

and offset positions were annotated. Figure 2 shows an

example of music detection.

Fig. 1 Overall structure of the music detection system

Fig. 2 An example of music detection
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2.2 Mixing data

We mixed music, speech, and noise database to train the

model for the music detection. To create data similar to

the broadcast data, we created “music with speech,”

“music with noise,” and “speech with noise,” by mixing

each pure data (music, speech, and noise). Equation 1

shows the mixing method:

Mixed data ¼ g � s1 þ s2; g ¼ 10
k
.

20 �
E s2ð Þ

E s1ð Þ
ð1Þ

where s is signal, g is gain, k is target decibel (dB), and

E(·) is energy. We automatically generated the label of

the mixed data, and Fig. 3 shows the criterion. That is,

the music duration of pure music is labeled as the music

duration of the mixed data. The “speech with noise” data

is labeled as non-music in all durations.

2.3 Feature extraction for CNN input

We computed the log power coefficients (spectrogram)

of the short-time Fourier transform (STFT) with a win-

dow size of 25 ms (400 samples at 16 kHz sampling rate),

shift size of 10 ms (160 samples at 16 kHz sampling

rate), and 512-point FFT (fast Fourier transform). In

contrast to the conventional processing that was used in

the previous studies [2, 11–13, 16, 20], we employed the

use of a convolution layer with a Mel-scale kernel,

instead of a Mel-scale filter bank. The final dimension of

a feature vector of CNN input was (257 × 101) by splicing

50 frames on either side.

2.4 Proposed convolutional layer with a Mel-scale kernel

The Mel-scale filter bank is similar to the human

auditory characteristics. Whereas the interval of the

filter banks in the low-frequency region was narrow,

the interval in the high-frequency region was wide.

The filter shape of the common filter banks [6] was

as shown in Fig. 4. Until recently, the features with

the Mel-scale (Mel-scaled spectrogram, MFCC) have

been widely used for processing audio signals and

have produced good performance [2, 11–13, 16, 20,

21, 23]. However, several studies have recently

attempted to detect music by suggesting or adding

new features [12, 18, 20] because there are limitations

in music detection through using features extracted

from fixed filter bank shapes. To overcome the limita-

tions, we attempted to implement a new filter bank

whose center frequency was located in the Mel-scale,

but whose filter shape was learned from input data.

From this reasoning, we proposed to use a convolu-

tional layer with a Mel-scale kernel (melCL).

We describe the Mel-scale spectrograms and one-

dimensional convolutional layers to help understand

melCL. The conventional Mel-scale spectrogram is the

Fourier transform point multiplied by the Mel-scale

filter, as shown below:

Fig. 3 Mixing and labeling

Fig. 4 Mel-scale filter bank
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yti ¼ wi � x
t ð2Þ

where xt is a Fourier transform point vector for the t-th

frame, and wi is the weight of the i-th bin of Mel-scale

filter bank. The weight of the i-th bin has fixed values

with a triangular shape, and the size of the wi bin

changes according to the Mel-scale, as shown in Fig. 4.

The Mel-scale filter bank is advantageous for audio

processing, because of its different sizes depending on

the frequency. Because the low-frequency regions con-

tain more information than the high-frequency regions,

the Mel-scale helps to extract robust features from the

audio data.

Next, the kernel equation of the one-dimensional

convolution layer is as shown below:

yti ¼ F w � xt þ bð Þ ð3Þ

where w and b are the weight and the bias of kernel and

F is an activation function. The kernel weight of CNN

can be trained to benefit music detection through the

Fig. 5 Convolutional layers with a a fixed-size kernel and b a Mel-scale kernel

Fig. 6 The structure of the CNN
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backpropagation algorithm. However, a fixed-size kernel

will be applied for all frequency regions.

We have implemented the melCL by combining these

two advantages. We also implemented a two-dimensional

kernel composed of a two-dimensional convolution layer

to learn more about optimized filters. Figure 5 shows the

basic convolution layer with (a) a fixed kernel and (b) a

convolution layer with the Mel-scale kernel. Figure 5 a

shows the temporal and frequency dimensions of the

kernel fixed at all times. However, Fig. 5 b shows the

frequency dimension of the kernel is large in the

high-frequency region and small in the low-frequency

region. We initialize the kernel weight of the melCL

to the weight of the Mel-scale filter bank, to obtain

the stability of the learning process and improved

performance. The melCL has a temporal dimension of

kernel of 5 with stride 1, the hyperbolic tangent activation

function, and a feature map of 3.

2.5 CNN

We used a CNN with a Mel-scale convolutional layer and

3 convolutional layers appended with 2 fully connected

feed-forward layers, and a softmax layer for class output.

The three subsequent conventional convolutional layers of

the CNN had feature maps of 32, 64, and 128, respectively.

Each convolutional layer had a 3 × 3 kernel with stride

1, ReLU (rectified linear unit) activation function, and a

2 × 2 max pooling with stride 2. Figure 6 shows the

detailed structure of the CNN. The CNN was trained

for 50 epochs with cross-entropy loss function, Adam

optimizer, mini-batch size of 300, learning rate of 0.001,

and dropout probability of 0.4.

2.6 Post-processing

The music detection results obtained from frame-by-

frame processing appear as a very small segment. How-

ever, the music duration of broadcast data is mostly long,

which includes many frames. We applied a median filter

[24] with a size of 5 s to the frame-by-frame detection

results, in order to obtain smoothed segmentation results.

The median filter was repeatedly applied 3 times. The

post-processing removes or merges the small segments to

represent the detection result as a large segment. Figure 7

shows the original and post-processing results.

3 Experimental results and discussion

3.1 Database

We used the mixed data set to train the model for music

detection. This data set was created by mixing music,

speech, and noise. We used 25 h of library music (song,

classic, instrumental, and so on), 25 h of the librivox

(speech) in the MUSAN database [25], and 2 h 46min of

the ESC-50 database (noise) [26]. Table 1 shows the

information on the mixed data used in the training. In

order to equalize the duration of data 1 and 2, we

copied data 2, or cut it to the length of data 1. In

Table 1, k is a random value of 5 units in the range. The

“music with speech” was mixed so that the energy of

Fig. 7 Original and post-processing results

Table 1 Information on mixed data

Mixed data Data 1 Data 2 Target
dB (k)

Total
duration (h)

Music with speech Library music Librivox − 30–0 dB 25

Music with noise Library music ESC-50 0–30 dB 25

Speech with noise Librivox ESC-50 0–30 dB 25
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music signal is lower than that of speech, which is

similar to broadcast data.

We collected the broadcast data in 3 languages, i.e.,

British English, Spanish, and Korean, for the test of

music detection. The broadcast data in British English

and Spanish included various genres, such as drama,

documentary, news, and kids. They had 8 and 12 h,

respectively. The Korean broadcast data consisted of 3 h

of drama and 1 h and 30 min of reality show. They also

included metadata that manually tagged the music

segment. We used Praat [27] to create metadata. The

metadata includes speech and music start and end times.

Tagging of music segment and speech segment was per-

formed independently. Accordingly, these data include

background music and even include music whose power

of music is smaller than the power of speech or noise. In

particular, the metadata of Korean drama data also

includes noise segments. We used the Korean drama

data as a development data set for model selection and

parameter adjustment.

We also used two public data for evaluation. The first

was the MIREX 2015 data for music/speech detection

[3]. The second was Seyerlehner’s dafx 07 data for music

detection in television productions [18]. The length of

the MIREX 2015 data was 5 h and included classical,

folk, ethnic, and country music. We note that the data

also contained a very small amount of overlapping music

and speech. The dafx 07 data was 9 h and includes talk

show, music show, documentary, news, soap opera,

parliament, and cooking show.

Table 2 shows the ratio of music and non-music of

the data we collected and the public data. Since most

of the data is tagged only for music and speech seg-

ments, it is not possible to display the mixing ratio

for the noise. However, since the noise segment is

tagged in the Korean drama data, the mixing ratio of

the noise is also displayed. The dafx 07 data is tagged

only in the music segment. In the case of the British,

Spanish, and dafx 07 data, the ratio of music is low,

unlike other data, because it contains a genre with a

Table 2 Ratio (%) of music and non-music

Label Korean drama (dev) Korean reality British broadcast Spanish broadcast MIREX 2015 Dafx 07

Pure music 35.2 19.8 26.9 29.5 74.3 43.0

Music + noise 15.4

Music + speech 15.7 56.5 20.0 20.5 2.1

Music + speech + noise 1.0

Total music 67.5 76.3 53.0 50.0 76.5 43.0

Total non-music 32.4 23.6 46.9 50.0 23.5 57.0

Total duration (h) 2.9 1.6 7.9 12 5.24 9

Fig. 8 Density of music segment duration
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small proportion of music (news, talk show, and so

on), which can be expected to be more difficult data

for music detection. Figure 8 shows the density of the

music segment duration. The peak of the density

distribution is around 20 s, which means that more

than half the music segment duration is longer than

20 s. A very long music segment is even longer than

700 s. These long segments of music make it difficult

to detect music.

3.2 Baseline systems

We implemented the baseline systems for performance

comparison with our proposed algorithm. The first base-

line system had the same CNN structure as the structure

of the proposed algorithm, but did not include the

melCL. Other baseline systems had a RNN structure,

which was composed of the bidirectional GRU (gated re-

current unit) [28] or LSTM (long short-term memory)

layers [29]. The RNN structure had 2 layers with 1024

node, the hyperbolic tangent activation function, and

backpropagation through time (BPTT) of 101 (the

same as the temporal dimension of the CNN input).

Each baseline system implemented two versions, using

the log power coefficients (spectrogram) of STFT with

512 FFT points or Mel-spectrograms as inputs of

CNN or RNN.

3.3 Model selection

We had the model (baseline and proposed system) learn

with many epochs (over 50 epochs). However, it is well

known that as the model is repeatedly learned, the

model overfits the training data. In addition to our

system, overfitting is a more critical problem, because

the domains of training data (mixed data) and test data

(broadcast data) are very different. For this reason, we

needed to select the optimal model. We saved the model

every 5k iterations (1k for RNN). We evaluated the saved

models using the development datasets and selected the

best performance model. We repeated the overall ex-

periment three times and confirmed the consistency of

the experimental results.

4 Results

We first visualized the weights of the learned Mel-scale

kernels. Figure 9 shows the initial weights and the final

weights of the Mel-scale kernels. Each row corresponds

to the bins #1, #31, and #61 of the Mel-scale filter, the

left is the initial weight, and the right is the weight after

learning. Each bin has three kernels, depending on the

number of feature maps. We did not find any special

patterns in the learned kernel, but we found that the

learned kernel is different from the Mel-scale filter,

Fig. 9 The weight of the Mel-scale kernels
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which indicates that Mel-scale filters are not always the

best solution.

We calculated the frame-by-frame F-score, precision,

and recall to verify the music detection performance.

Table 3 shows the music detection performance of the

proposed algorithm and baseline systems. Here, the

number of bins for the melCL and Mel-spectrogram was

64, and the temporal dimension of the input of all sys-

tems was 101. The number of parameters to be studied

were about 29.47 million in the proposed system,

114.66 million for the first baseline system (using spec-

trogram + CNN), 29.46 million for the second baseline

system (using Mel-spectrogram + CNN), 20.46 million for

the third baseline system (using spectrogram + bi-GRU),

19.28 million for the fourth baseline system (using Mel-

spectrogram + bi-GRU), and about 25.71 million for the

fifth baseline system (using Mel-spectrogram + bi-LSTM),

respectively. The F-score in the table shows that the

Table 3 Performance of the proposed and baseline systems

Test data Model type F-score (%) Precision (%) Recall (%)

Korean drama (dev) Spectrogram + CNN with melCL (proposed) 95.9 95.9 96.0

Spectrogram + CNN 92.2 94.0 90.5

Mel-spectrogram + CNN 94.2 95.7 92.8

Spectrogram + bi-GRU 88.0 87.0 89.0

Mel-spectrogram + bi-GRU 93.4 91.9 95.0

Mel-spectrogram + bi-LSTM 90.6 90.1 91.1

Korean reality Spectrogram + CNN with melCL (proposed) 94.7 93.0 96.4

Spectrogram + CNN 90.7 91.4 89.9

Mel-spectrogram + CNN 93.5 91.1 95.9

spectrogram + bi-GRU 90.6 84.9 97.2

Mel-spectrogram + bi-GRU 92.3 88.5 87.8

Mel-spectrogram + bi-LSTM 92.6 87.5 98.4

British 8 h Spectrogram + CNN with melCL (proposed) 86.5 85.3 87.8

Spectrogram + CNN 83.5 79.8 87.5

Mel-spectrogram + CNN 86.8 83.3 90.5

Spectrogram + bi-GRU 75.0 65.7 87.4

Mel-spectrogram + bi-GRU 78.5 67.8 93.1

Mel-spectrogram + bi-LSTM 80.5 72.5 90.5

Spanish 12 h Spectrogram + CNN with melCL (proposed) 88.9 84.7 93.4

Spectrogram + CNN 86.6 80.0 94.4

Mel-spectrogram + CNN 80.9 70.6 94.6

Spectrogram + bi-GRU 75.3 63.8 92.0

Mel-spectrogram + bi-GRU 74.1 61.5 93.2

Mel-spectrogram + bi-LSTM 75.6 63.4 93.6

MIREX
2015

Spectrogram + CNN with melCL (proposed) 95.3 99.4 91.6

Spectrogram + CNN 93.8 98.8 89.3

Mel-spectrogram + CNN 92.5 93.8 91.2

Spectrogram + bi-GRU 92.8 94.9 90.8

Mel-spectrogram + bi-GRU 94.3 92.3 96.4

Mel-spectrogram + bi-LSTM 95.3 94.1 92.7

Dafx 07 Spectrogram + CNN with melCL (proposed) 84.9 84.0 85.9

Spectrogram + CNN 84.4 77.7 92.3

Mel-spectrogram + CNN 80.1 69.2 95.1

Spectrogram + bi-GRU 68.4 57.5 84.5

Mel-spectrogram + bi-GRU 69.0 53.3 98.0

Mel-spectrogram + bi-LSTM 70.6 55.4 97.3
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proposed system was better than the baseline systems for

all the data sets, except the British 8-h data set. The high-

est F-score in the British 8-h data set was 86.8% in the sec-

ond baseline system, which is very similar to the 86.5% in

the proposed system. The proposed system showed stable

values of more than 84% in both precision and recall of all

data sets. This means that the proposed system achieved a

stable performance regardless of the type of data. The

F-score of the proposed system showed the highest

value of 95.9% on the Korea drama data. In the base-

line systems, the Mel-spectrogram and spectrogram

have different performance, depending on the data.

We measured the performance by genre to investigate

the cause of performance degradation of the British and

Spanish data among our collected data. Table 4 shows

the performance by genre of the British and Spanish data.

Both data have low detection performance in drama and

documentary. In particular, the news genre of the Spanish

data showed very low precision, which is expected to be

very small in the news genre. Interestingly, both data have

the highest performance for the kids genre, and we

assume that this is because the kids genre uses a lot of

music and universal music, compared to other genres.

Next, we compared the proposed method with open

source programs. We used open source of music/speech

discrimination [16] and audio segmentation toolkit [15].

The two open-source sources are different from the data

and learning methods we use for learning. Because both

open sources do not allow overlap of music and speech,

there is a limitation in performance comparison with

our system. However, we performed this comparison

experiment to verify that the performance of our algo-

rithm was reliable. In order to compare the performance

fairly, we measured the detection performance of the

music segment without speech.

Table 5 shows the music detection performance of our

proposed algorithm and other algorithms. The perfor-

mance of the music segment without speech is indicated

by “recall_nosp.” Because unlike our algorithm, the other

algorithms [15, 16] do not allow overlap, we mainly com-

pared the performance of precision and recall_nosp. The

algorithm with the highest precision varied with the test

data. This fact seems to result from the difference in the

algorithm structure and the influence of the learning data

(especially music). Nevertheless, our algorithm showed

Table 4 Performance of the proposed algorithm by genre

Test data Genre F-score (%) Precision (%) Recall (%)

British 8 h Documentary 81.6 75.5 88.8

Drama 78.4 82.5 74.7

Kids 96.1 95.5 96.7

Reality 86.0 86.5 85.5

Show 86.9 86.2 87.5

Spanish 12 h Documentary 79.6 72.8 88.0

Drama 88.9 82.3 96.5

Kids 95.6 98.6 92.7

News 22.8 13.1 89.8

Show 92.3 91.5 93.1

Table 5 Performance of the proposed and other discrimination algorithms

Test data Algorithm F-score (%) Precision (%) Recall (%) Recall_nosp (%)

Korean drama Proposed 95.9 95.9 96.0 96.8

Tsipas et al. [16] 77.9 97.0 65.1 74.6

Doukhan et al. [15] 79.9 95.4 68.7 80.3

Korean reality Proposed 94.7 93.0 96.4 97.5

Tsipas et al. [16] 66.6 96.2 51.0 67.6

Doukhan et al. [15] 68.0 96.4 52.5 75.6

British 8 h Proposed 86.5 85.3 87.8 92.2

Tsipas et al. [16] 67.8 83.2 57.3 72.2

Doukhan et al. [15] 67.4 80.6 57.9 86.7

Spanish 12 h Proposed 88.9 84.7 93.4 96.8

Tsipas et al. [16] 71.1 91.8 58.0 76.4

Doukhan et al. [15] 73.1 92.9 60.2 86.5

MIREX 2015 Proposed 95.3 99.4 91.6 92.5

Tsipas et al. [16] 96.4 99.3 93.7 96.1

Doukhan et al. [15] 95.4 99.3 91.9 94.1

Dafx 07 Proposed 87.6 88.3 87.0 87.0

Tsipas et al. [16] 70.6 88.7 58.7 58.7

Doukhan et al. [15] 65.7 87.9 52.4 52.4
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the highest recall in most of these data (except MIREX

2015). We think that the reason is because we used

music with noise as training data. We guess that the

recall of our algorithm is somewhat low because of

the large proportion of pure music in MIREX 2015 data.

5 Conclusion

In this paper, we propose a new method of music detec-

tion in broadcast content by using a convolutional layer

with a Mel-scale kernel. Our proposed system is the CNN

model with melCL, which is trained by mixed data with

music, speech, and noise. To verify the performance, we

developed a baseline system, collected the broadcast data

in various languages of British English, Spanish, and

Korean, and performed various music detection experi-

ments. As a result, the proposed method showed better

performance than the baseline system. For the Korean

drama data set, it showed an F-score of 95.9%. In addition,

the proposed method showed a higher performance than

the other methods of music detection that used open

sources. We also submitted our algorithm to the MIREX

2018 Challenge [4] and achieved the second-best result

in the music detection task. However, we found that

sometimes there are missed detections of music (per-

cussive and traditional music) and false detection of

noise (bells ringing). We will study robust music detec-

tion and music/non-music separation based on the

proposed method. We also plan to extend our research

to speech/non-speech detection.
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