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With the rapid development of information technology and communication, digital music has grown and exploded. Regarding
how to quickly and accurately retrieve the music that users want from huge bulk of music repository, music feature extraction and
classification are considered as an important part of music information retrieval and have become a research hotspot in recent
years. Traditional music classification approaches use a large number of artificially designed acoustic features. +e design of
features requires knowledge and in-depth understanding in the domain of music. +e features of different classification tasks are
often not universal and comprehensive.+e existing approach has two shortcomings as follows: ensuring the validity and accuracy
of features by manually extracting features and the traditional machine learning classification approaches not performing well on
multiclassification problems and not having the ability to be trained on large-scale data. +erefore, this paper converts the audio
signal of music into a sound spectrum as a unified representation, avoiding the problem of manual feature selection. According to
the characteristics of the sound spectrum, the research has combined 1D convolution, gating mechanism, residual connection,
and attention mechanism and proposed a music feature extraction and classification model based on convolutional neural
network, which can extract more relevant sound spectrum characteristics of the music category. Finally, this paper designs
comparison and ablation experiments. +e experimental results show that this approach is better than traditional manual models
and machine learning-based approaches.

1. Introduction

With the rapid development of multimedia and digital
technologies [1–3], there are more and more digital music
resources on the Internet, and consumers’ music con-
sumption habits have shifted from physical music to online
music platforms. Massive music resources and a huge online
music library stimulate users to generate a variety of
complex music retrieval needs. For example, at a certain
moment, users are eager to listen to a certain genre or a song
with a certain emotion. At this time, the music label is
essential to the quality of music retrieval. In addition to
music retrieval, many recommendation and subscription
scenarios also require music category information to provide
users with more accurate content [4, 5].

Music is diverse; it is made of different elements such as
melody, rhythm, and harmony combinations according to

certain rules of art forms. Understanding the music of
different forms often requires some background knowledge,
not as a music classification standard, so almost all music
media platforms use text labels as the basis of the classifi-
cation of music or retrieval. Music labels are text descriptors
that express musical properties in high dimensions, such as
“happy” and “sad” to express emotions, and “electronic” and
“blues” to express musical styles [6, 7].

Music genre classification [8–10] is an important branch
of music information retrieval. Correct music classification
is of great significance for improving the efficiency of music
information retrieval. At present, music classificationmainly
includes text classification and classification based on music
content. Text classification is mainly based on music met-
adata information, such as singer, lyrics, songwriter, age,
music name, and other labeled text information. +e ad-
vantages of this classification method are easy to implement,
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simple to operate, and fast to retrieve, but the shortcomings
are also obvious. First of all, this method relies on manually
labeled music data, which requires a lot of manpower, and
manual labeling is difficult to avoid incorrectly labeling
music information problems. Secondly, this text method
does not involve the audio data of the music itself. Audio
data includes many key characteristics of music, such as
pitch, timbre, and melody. +ese characteristics are almost
impossible to label with text; and based on the classification
of the content, the features of the original music data are
extracted, and the extracted feature data are used to train the
classifier, so as to achieve the purpose of music classification.
+erefore, music classification based on content has also
become a research hotspot in recent years. Based on this, the
research direction of this article is also based on content-
based music classification [11].

+e emergence of deep learning has brought music
classification technology into a new period of development.
Deep learning has been widely used in image processing,
speech recognition, and other fields, and its performance on
many tasks surpasses traditional machine learning methods.
Scholars have also begun to use deep learning technology to
study related issues in the field of music information re-
trieval, so it is necessary to research music classification
methods based on deep learning to improve the effect of
music classification [12]. +e following are the main in-
novation points of this paper:

(i) +e paper aims to convert the audio signal of music
into a sound spectrum as a unified representation,
avoiding the problem of manual feature selection.

(ii) It aims to use 1D convolution, gating mechanism,
residual connection, and attention mechanism, and
it proposes a music feature extraction and classifi-
cation model based on convolutional neural net-
work, which can extract and correlate more closely
related sound spectrum features.

(iii) Sufficient comparison and ablation experiments
have been carried out.+e experimental results have
proved the effectiveness and superiority of our al-
gorithm, surpassing several other well-known
methods.

+e organization of the paper is as given. Section 2
depicts the background knowledge of the proposed study.
+e methodology of the paper is shown in Section 3 with the
details in the subsections. Experiments and results are
presented in Section 4. +e paper is concluded in Section 5.

2. Background

As a very important component in the field of music in-
formation retrieval, music feature extraction and classifi-
cation recognition have been widely studied since the 1990s.
In 1995, Benyamin Matityaho and Furst [13] proposed a
method for frequency-domain analysis of music signals.
First, fast Fourier transform is performed on the audio data,
and then the logarithmic scale transformation is performed
to use the obtained data as feature data. Training was done in

a neural network [14–17] containing two hidden layers and
two music genres were finally identified: classical and pop
music. Tzanetakis and Cook [18] systematically proposed in
2002 the division of the characteristics of music into three
feature data sets, namely, timbre texture characteristics,
rhythm content characteristics, and tonal content charac-
teristics; the authors adopted the Gaussian mixture model
and K. +e proximity method is used as a classifier. It is
worth mentioning that, due to the numerous music genres,
there was no relatively fixed classification standard in the
academic circles before. Since the groundbreaking research
results of Tzanetakis, the ten music genres contained in the
GTZAN data set used by George Tzanetakis have become
music information. +e classification standard was generally
recognized in the search field.

As George Tzanetakis’ research results laid a lot of
foundation for us, later scholars in the field of automatic
recognition of music genres mainly focused on two aspects.
On the one hand, they made corresponding improvements
in the selection of music feature extraction and the di-
mension of feature vectors. On the other hand, they im-
proved the choice of classification algorithm. +e extraction
of music features is a very critical part of music genre
recognition. If the extracted features cannot represent the
essential characteristics of music, then the music classifi-
cation effect will undoubtedly be very bad. Scaringella et al.
[19] divided the music signal characteristics into three
categories: pitch, timbre, and rhythm. At present, the
commonly used characteristics of music signals mainly
include short-term zero-crossing rate, short-term energy,
linear prediction coefficient, frequency spectrum, flux, Mel
frequency inverse coefficient, spectral centroid, and spectral
contrast. Since these characteristics are both in the time
domain and in the frequency domain, they can reflect the
musical perception characteristics of pitch, rhythm, timbre,
and loudness to some extent. +e process of music feature
extraction is generally to first perform frame processing on
the original audio signal, then perform related calculations
based on the mathematical statistical significance of the
features, and finally use the calculated results as the training
data of the classifier in the form of vectors. Because music
feature extraction is based on music signal analysis, the
current audio-based music signal analysis techniques mainly
include time-domain analysis methods and frequency-do-
main analysis methods. +e so-called time-domain analysis
method is to analyze and count the waveform state of the
music signal from the time dimension. Frequency-domain
analysis converts the music signal in the time domain into
the frequency domain through Fourier transform, so many
useful features in the frequency domain can be obtained, for
example, Mel to general coefficient, spectral centroid, pitch
frequency, subband energy, spectrogram, etc. Literature [20]
cascades together the Mel-to-Pop coefficient and pitch
frequency, spectral centroid, subband energy, and other
perceptual characteristics to form a high-dimensional fea-
ture vector. In the music classification algorithm, traditional
machine learning methods are mainly used, such as support
vector machines, Gaussian mixture models, decision trees,
nearest neighbors, hidden Markov, and artificial neural
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networks [21–24]. In addition, there are some improvements
to the above algorithms. For example, literature [25] adds a
genetic algorithm to the Gaussian mixture model, which
improves the accuracy of classification from the experi-
mental results.

3. Methodology

3.1. Music Signal Features

3.1.1. Spectral Centroid. +e spectral centroid is a metric
used to characterize the frequency spectrum in digital signal
processing. It indicates where the “centroid” of the fre-
quency spectrum is located. It feels that it has a close re-
lationship with the brightness of the sound. Generally
speaking, the smaller the value is, the more energy is con-
centrated in the low frequency range. Since the spectral
centroid can better reflect the brightness of the sound, it is
widely used in digital audio andmusic signal processing. It is
used as a measure of the timbre of music. Its mathematical
definition is as follows:

Ct �
∑Nn�1Mt[n]∗ n∑Nn�1Mt[n]

, (1)

where Mt[n] represents the magnitude of the Fourier
transform of the t-th frame at the frequency group n.

3.1.2. Spectral Flux. +e spectrum flux is generally a mea-
sure of the rate of change of the signal spectrum. It is
calculated by comparing the spectrum of the current frame
with the spectrum of the previous frame. More precisely, it is
usually calculated as the 2-norm between two normalized
spectrums. Since the spectrum is normalized, the spectrum
flux calculated in this way does not depend on the phase;
only the amplitudes can be compared. Spectrum flux is
generally used to determine the timbre of an audio signal or
to determine whether to pronounce. Its mathematical def-
inition is as follows:

Ft � ∑N
n�1

Nt[n] −Nt−1[n]( ). (2)

3.1.3. Spectral Contrast. Spectral contrast is a feature used to
classify music genres. Spectral contrast is expressed as the
difference in decibels between peaks and valleys in the
frequency spectrum, which can represent the relative
spectral characteristics of music. It can be seen from the
experimental results of the literature [26] that the spectral
contrast has a good ability to discriminate music genres.

3.1.4. Mel-Scale Frequency Cepstral Coefficients. Since the
cochlea has filtering characteristics (as shown in Figure 1),
different frequencies can be mapped to different positions of
the basilar membrane. So the cochlea is often regarded as a
filter bank. Based on this feature, psychologists obtained a set
of filter banks similar to the cochlear effect through

psychological experiments, that is, the Mel frequency filter
bank. Since the sound level perceived by the human ear is
not linearly related to its frequency, researchers have pro-
posed a new concept called Mel frequency. +e Mel fre-
quency scale is more in line with the auditory characteristics
of the human ear. +e relationship between Mel frequency
and frequency f is as follows:

fmel � 25951g 1 +
f

700
( ), (3)

where fmel is the converted Mel frequency, f is the fre-
quency, and the unit is Hz.

Firstly, the audio signal is divided into frames, pre-
emphasized, and then windowed, and then short-time
Fourier transform (STFT) is performed to obtain its fre-
quency spectrum. Secondly, set the Mel filter bank of L
channels on the Mel frequency.+e L value is determined by
the highest frequency of the signal, generally 12 to 16, and
each Mel filter has the same interval on the Mel frequency.
Let o(l), c(l), and h(l) be the lower limit frequency, center
frequency, and upper limit frequency of the l-th triangular
filter, respectively; then, the relationship between the three
frequencies of adjacent triangular filters is as follows:

c(l) � h(l − 1) � o(l + 1). (4)

Pass the linear amplitude spectrum of the signal through
the Mel filter to get the output of the filter:

Y(l) � ∑h(l)
k�o(l)

Wl(k) Xm(k)
∣∣∣∣ ∣∣∣∣, l � 1, 2, . . . , L. (5)

+e frequency features of the filter are

Wl(k) �

k − o(l)

c(l) − o(l)
, o(l)≤ k≤ c(l),

h(l) − k

h(l) − c(l)
, c(l)≤ k≤ h(l).


(6)

Take the natural logarithm of the filter output value, and
then transform the discrete cosine to MFCC.+e expression
is as follows:

MFCCMFCC(n) �∑L
l�1

lgY(l)∗ cos π(l − 0.5)
n

L
[ ],

n � 1, 2, . . . , L.

(7)

3.2. 1D Residual Gated Convolutional Neural Model

3.2.1. Selection of Convolution Kernel. Convolutional neural
networks can well identify potential patterns in the data. By
superimposing convolution kernels to perform repeated
convolution operations, more abstract features can be ob-
tained in the deep layers of the network. One-dimensional
convolution is often used to deal with problems related to
time series. Unlike two-dimensional convolution that
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attempts to convolve in multiple directions, one-dimen-
sional convolution focuses more on capturing the transla-
tion invariance of data features in a specific direction. When
dealing with time-related data, this direction is often the
direction of time change. One-dimensional convolution is
often used to analyze time series or sensor data and is
suitable for signal data analysis within a fixed period of time,
such as audio signals.

Figure 2 shows the convolution process of one-dimen-
sional convolution and two-dimensional convolution on the
sound spectrum. It can be seen that the receptive field of the
one-dimensional convolution kernel covers all frequency
ranges on the sound spectrum, which is only performed on
the time axis. Convolution can capture the percussion
components of the musical instruments appearing on the
sound spectrum, and their overtones and other musical
elements. Unlike the one-dimensional convolution that only
convolves in the time direction, the two-dimensional con-
volution performs convolution in the two dimensions of
time and frequency and can extract specific patterns of
frequency within a certain time range, such as the rise and
fall of pitch. In the field of music classification, many models
use two-dimensional convolution as the basic convolution
structure of convolutional networks.

+e time perception of two-dimensional convolution is
not as good as one-dimensional convolution, and the range
of perception in the frequency range is not as broad as one-
dimensional convolution, and the computational complexity
of one-dimensional convolutional neural networks is
smaller. In addition, two-dimensional convolution also
performs convolution in the frequency dimension of the
sound spectrum, which is inexplicable for sound signals.
+erefore, the model in this article will use one-dimensional
convolution as the basic convolution structure, which is
more in line with the fact that the audio signal is expanded in
time and has less correlation in the frequency range.

+e essential difference between one-dimensional con-
volution and two-dimensional convolution lies in the

translation direction, and its calculation method is not es-
sentially different from that of two-dimensional convolu-
tion. Although the original audio signal is a time series, after
it is converted into a sound spectrum, its expression is
similar to a single-channel grayscale picture, so the calcu-
lation of convolution can be expressed by the following
equation:

aij � h ∑fw−1
m�0

∑fh−1
n�0

wmnxi+m,j+n + b , (8)

where aij is the width and height of the feature map, h is the
activation function used by the convolution layer, fw is the
width of the convolution kernel, fh is the height of the
convolution kernel, b is the offset of the convolution, and w
and x represent the weight matrix and data input of the
product core, respectively. In the one-dimensional convo-
lution operation based on the sound spectrum, fh and the
frequency range l of the sound spectrum have the following
relationship:

l � fh. (9)

+at is, the height of the convolution kernel in one-
dimensional convolution is equal to the frequency range in
the sound spectrum, and the receptive field of the convo-
lution kernel covers the entire frequency axis, so as to
capture a specific frequency pattern. +en the convolution
operation can be expressed as

conv(X,W) � ∑Fw−1
m�0

∑L−1
n�0

wmnxi+m,j+n. (10)

Assuming that the output of the convolution kernel is R
and the bias matrix is B, then the convolution operation can
be simply expressed as

R � conv(X,W) + B. (11)

FFT
Split

window
BufferAudio input

Mel frequency binning

Mel sound
spectrum

Sum

Sum

Sum

Figure 1: +e calculation process of Mel sound spectrum.
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+e width Rw of R can be obtained by the following
formula:

Rw �
t − fw + 2p

s
+ 1, (12)

where t represents the length of the sound spectrum on the
time axis, that is, the width of the sound spectrum. p
represents the size of the padding, and fw represents the
width of the convolution kernel. Since the one-dimensional
convolution only performs translation in the time dimen-
sion of the sound spectrum, the height Rh of the output
feature map R is as follows:

Rh � 1. (13)
In other words, Rh has nothing to do with the frequency

range l of the acoustic spectrum and the high fh of the
convolution kernel. After one-dimensional convolution, the
dimension of the acoustic spectrum changes to that of the
two-dimensional convolution. After one-dimensional con-
volution, the specification of the feature graph is also
reduced.

3.2.2. Gated Linear Units. Assuming that the sound spec-
trum sequence to be processed isX � [x1, x2, . . . , xn] and the
output of the convolution kernel is Y, then the gated linear
unit can be expressed as

Y � Conv1D1(X)⊗ σ Conv1D2(X)( ). (14)

+e two Conv1D1 and Conv1D in the above formula
represent two identical one-dimensional convolutions, but
the weights are not shared. ⊗ represents the (element-wise)
operation, and σ represents the Sigmoid activation function.
One of the results after the two convolutions is activated by
the Sigmoid function, and the other is not added with the
activation function, and then the creation gate is multiplied
bit by bit. Formally, it is equivalent to adding a “valve” to
each output of one-dimensional convolution to control the
flow. +e convolution-based gating mechanism is different
from the complex threshold mechanism in the LSTM net-
work. It does not need to forget the gate, only an input gate,
which also makes the network model based on the gated
convolution unit perform better than LSTM in training
speed.

Figure 3 shows the basic structure of the one-dimen-
sional gated convolution unit. You can see the data flow
inside the one-dimensional gated convolution unit. After the
input of the convolution unit undergoes two identical
convolutions, one of the 1D convolution kernels is extra.+e
activation operation of the Sigmoid function is performed,
and then the output of another convolution kernel is
multiplied bit by bit to produce the output of this layer.

Convolution kernel Time

(a)

Convolution kernel Time

(b)

Figure 2: Convolution process comparison of 1D convolution and 2D convolution on the sound spectrum. (a) 1D conv. (b) 2D conv.
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3.2.3. Residual Connection. +e entire convolutional neural
network can be regarded as a process of information ex-
traction.+emore the layers of the network, the stronger the
ability of the network to gradually extract from the un-
derlying features to the highly abstract features. When the
network layers are deepened, the model is more likely to
discover high-level abstract features related to music cate-
gories. Increasing the depth of the network too much will
cause gradient disappearance and explosion problems to the
model. +e solution to gradient disappearance and explo-
sion is generally to add regular initialization and an inter-
mediate regularization layer, but the network degradation
problem also arises. When the network begins to degenerate,
the accuracy on the training set will decrease as the number
of network layers increases. +is problem is essentially
different from overfitting, which will show excellent results
on the training set.

+e basic residual module is shown in Figure 4. It can be
seen that the residual structure has an additional identity
mapping channel, so that when the depth of the network
increases and it is not conducive to the enhancement of
network performance, the network can directly skip these
useless layers. Directly accept the output of the upper layer.
+e calculation equation of the residual structure is as
follows:

xl+1 � xl + F xl,Wl( ). (15)

3.3. Music Feature Extraction and Classification Model.
+e model in this paper can be divided into GLU stacking
layer, global pooling feature aggregation layer, and fully

connected layer from input to output. +e overall structure
of the network is shown in Figure 5.

To make full use of the statistical information of the
pooling layer, the model in this chapter combines the global
maximum pooling and the global average pooling to form a
global pooling feature aggregation layer. +e feature maps
obtained from the GLU block stacking layer undergo global
average pooling and global maximum pooling to obtain
average pooling statistics and maximum pooling statistics,
respectively. +e results of the pooling operation here are all
one-dimensional. In Figure 5, two rectangular blocks of
different colors are used to represent these two one-di-
mensional features, and the two pooled statistical features
are spliced into the next layer of fully connected network.

4. Experiments and Results

4.1. Experimental Setup. Due to the repetitive information in
the multichannel of the original audio, all audio is converted
to mono, and downsampling is performed at a sampling rate
of 16 kHz. +e Fourier transform window length used when
converting the Mel sound spectrum is 512, the window jump
size is 256, and the number of frequency bins is 128. +e
original audio sample is segmented by the segmentation

Input

Output

1D conv1D conv

σ

Figure 3: Schematic diagram of 1D convolutional gated unit.

Input

Output

Weight layer

Weight layer

X

identityF (x)

F (x) + x

ReLU

Figure 4: Schematic diagram of residual module.
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method. +e slice duration is 5 seconds, and the overlap rate
is 50%.+eMel sound spectrum specification of a single slice
generated after processing according to the above settings is
(313, 128), and each audio sample produces 11 slices of the
same size.

4.2. Data Set. +e experiment in this chapter uses the
GTZAN data set, which is widely used to verify the per-
formance of music classification methods and is the most
popular music classification data set. +e GTZAN data set
has 10 music genre categories (as shown in Table 1). +e
number of audio samples in each genre category is 100, the
sample duration is 30 seconds, and the sampling rate is
22050Hz.

4.3. Evaluation Index. +e classification accuracy rate (Acc)
is selected as the evaluation index of the music classification
method proposed in this chapter. +e calculation method of
classification accuracy is as follows:

Acc �
NC

N
× 100%. (16)

4.4. Experimental Results. Different models produce dif-
ferent recognition results by learning different deep features.
In order to make a fair comparison, all experiments were
implemented in the same environment, and all parameters
were retained, comparing the proposed model with SVM,
CNN, GLU, RCNN, and RGLU.

+e above five types of networks with different structures
are tested with the same experimental settings, and the
results are shown in Table 2 and Figure 6. +e GLU network
using the gated structure has higher accuracy than the or-
dinary convolutional network CNN, which indicates that the
stacking of multiple gated convolutions used in the model in
this chapter is more conducive to the sound spectrum
characteristics than the ordinary convolution learning. +e
gating structure makes the features passed to the next layer
of the network pay more attention to the sound spectrum
features that are more important for the music classification
task, and the information that is not related to the music
classification task is ignored by the gating mechanism. +e
results of the comparison experiment verify that the gating
structure is based on the effectiveness of the sound spectrum

Sound spectrum input

GLU block A GLU block B GLU block C

Global average
pooling

Global max
pooling

Music
features and
categories

Figure 5: Schematic diagram of the overall model.

Table 1: Introduction to the GTZAN data set.

ID Category

1 Rock
2 Reggae
3 Pop
4 Metal
5 Jazz
6 Hip hop
7 Disco
8 Country
9 Classical
10 Bruce

Table 2: Comparative experiment results on the GTZAN data set.

Method Acc Std

SVM 0.52 0.03
CNN 0.70 0.01
GLU 0.75 0.03
RCNN 0.80 0.01
RGLU 0.82 0.02
Ours 0.87 0.01
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Figure 6: Confusion matrix.
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in the task of music classification. From the perspective of
information filtering, GLU can be used as another imple-
mentation of the attention mechanism. Unlike the RGLU
structure that determines an attention weight for each
feature map channel, GLU can adaptively determine the
time during the network learning process. +e attention
weight in the one-dimensional convolution is expanded in
time; this kind of gated structure that increases attention in
the time dimension, combined with the one-dimensional
convolution in the time dimension, can get better perfor-
mance. Compared with CNN and GLU without residual
structure, the accuracy of RCNN and RGLU with added
residual structure has been improved, which shows that the
use of residual connection can improve the accuracy of
classification to a certain extent. It is worth noting that the
accuracy of RGLU using the residual structure is improved
compared to GLU, and the accuracy of RCNN is greater than
that of CNN.+is indicates that the combination of residual
structure and gated convolution is more beneficial for the
transmission of information in the network. +erefore, this
experiment fully proves the effectiveness and superiority of
our algorithm.

4.5. Ablation Study of Global Pooling. +is section will
compare the classification performance of different pooling
features and their combinations in the global pooling feature
aggregation layer. We used three pooling methods to con-
duct experiments, and the experimental results are shown in
Table 3.

+e aggregation of the two global pooling features can
make the model obtain a higher accuracy rate. Using the
global average pooling feature alone is more accurate than
using the global maximum pooling feature alone, which
means the overall statistical information in the spectroscopic
feature map is more conducive to classification. +e model
in this chapter combines two types of global pooling fea-
tures, which enables the fully connected layer to grasp more
statistical information of the features abstracted by the
convolutional layer and makes the classification perfor-
mance of the model stronger.

5. Conclusion

Digital music has grown and exploded with the growing
developments of information technology and communica-
tion. Music feature extraction and classification are con-
sidered as a significant portion of music information
retrieval. +e design of features requires knowledge and in-
depth understanding in the domain of music.+e features of
different classification tasks are often not universal and
comprehensive. Traditional music classification approaches

use a large number of artificially designed acoustic features.
It is difficult to effectively extract music features due to
manual and traditional machine learning methods. +ere-
fore, the contribution of this paper is to convert the audio
signal of music into a sound spectrum as a unified repre-
sentation, avoiding the problem of manual feature selection.
According to the characteristics of the sound spectrum,
combined with one-dimensional convolution, gating
mechanism, residual connection, and attention mechanism,
a music feature extraction and classification model based on
convolutional neural network is proposed, which can extract
and correlate more closely related sound spectrum features
of music category. Finally, this paper designs a comparison
and ablation experiment. Experimental results show that this
method is superior to traditional manual models and ma-
chine learning-based methods.
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