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ABSTRACT

Compressive sampling (CS) is a new research topic in

signal processing that has piqued the interest of a wide

range of researchers in different fields recently. In this pa-

per, we present a CS-based classifier for music genre clas-

sification, with two sets of features, including short-time

and long-time features of audio music. The proposed clas-

sifier generates a compact signature to achieve a significant

reduction in the dimensionality of the audio music signals.

The experimental results demonstrate that the computation

time of the CS-based classifier is only about 20% of SVM

on GTZAN dataset, with an accuracy of 92.7%. Several

experiments were conducted in this study to illustrate the

feasibility and robustness of the proposed methods as com-

pared to other approaches.

1. INTRODUCTION

1.1 Acoustic Features for Audio Music Analysis

In the literature of music information retrieval (MIR), var-

ious content-based features have been proposed [1] for ap-

plications such as classification, annotation, and retrieval

[15]. These features can be categorized into two types, that

is, short-time and long-time features. The short-time fea-

tures are mainly based on spectrum-derived quantity within

a short segment (such as a frame). Typical examples in-

clude spectral centroids, Mel-frequency cepstral coefficients

(MFCC) [1], and octave based spectral contrast (OSC) [2].

In contrast, the long-time features mainly characterize the

variation of spectral shape or beat information over a long

segment, such as Daubechies wavelet coefficients histogram

(DWCH) [3], octave-based modulation spectral contrast

(OMSC), low-energy, beat histogram [1], and so on. Ac-

cording to G. Tzanetakis et al. [1], the short and long seg-

ments are often referred to as “analysis window” and “tex-

ture window”, respectively.

Theoretically, both short-time and long-time features

should be used together to realize efficient and effective

MIR system since they provide different information for
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the task under consideration. However, in practice, too

many features usually degrade the performance since there

might be some noises instead of useful cues in the feature

set. Moreover, too many features could also entail exces-

sive computation to downgrade the system’s efficiency. As

a result, we need an effective method for feature selection,

extraction, or distillation. CS turns out to be an effective

tool for such a purpose.

1.2 Compressive Sampling

CS is firstly proposed by Candès, Romberg, Tao and Donoho,

who have showed that a compressible signal can be pre-

cisely reconstructed from only a small set of random linear

measurements whose number is below the one demanded

by the Shannon theorem Nyquist rate. It implies the po-

tential of a dramatic reduction in sampling rates, power

consumption, and computation complexity in digital data

acquisitions. CS has proved to be very effective in imag-

ing [6] [7], channel estimation [8], face recognition [9],

phonetic classification [18], sensor array [19] and motion

estimation [20].

In this paper, we propose a CS-based classifier with

long-time and short-time features for music genre classi-

fication. The remainder of this paper is organized as fol-

lows. In section 2, the multiple feature sets used in the pro-

posed method is briefly discussed. In the section 3, we de-

scribe multiple feature sets for audio music, and introduce

the corresponding CS-based classifier. In section 4, exper-

imental settings and results are detailed to demonstrate the

proposed method’s feasibility. Finally, conclusions and fu-

ture work are addressed in the last section.

2. MULTIPLE FEATURE SETS

In the proposed method, multiple feature sets including

long-time and short-time features are adopted for genre

classification. These acoustic features include timbral tex-

ture features, octave-based spectral contrast (OSC), octave-

based modulation spectral contrast (OMSC), modulation

spectral flatness measure (MSFM), and modulation spec-

tral crest measure (MSCM).

Timbral texture features are frequently used in various

music information retrieval system [11]. Some timbral tex-

ture features, described in Table 1, were proposed for au-

dio classification [1]. Among them, MFCC, spectral cen-

troid, spectral rolloff, spectral flux, and zero crossings are
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Table 1. Timbral texture features
Feature Description

MFCC Representation of the spectral char-

acteristics based on Mel-frequency

scaling [12]

Spectral centroid The centroid of amplitude spectrum

Spectral rolloff The frequency bin below which

85% of the spectral distribution is

concentrated.

Spectral flux The squared difference of succes-

sive amplitude spectrum.

Zero crossings The number of time domain zero

crossings of the music signal.

Low-energy The percentage of analysis win-

dows that have energy less than the

average energy across the texture

window.

short-time features, thus their statistics are computed over

a texture window. The low-energy feature is a long-time

feature.

Besides these features, OSC and OMSC features are

also considered. OSC considers the spectral peak, spec-

tral valley, and spectral contrast in each subband [2]. The

spectrum is first divided into octave-based subband (as ex-

plained next). Then spectral peaks and spectral valleys

are estimated by averaging across the small neighborhood

around maximum and minimum values of the amplitude

spectrum respectively. OMSC [1] is extracted using long-

time modulation spectrum analysis [13].

In this paper, the amplitude spectrum of a music signal

is divided into octave-based subbands of 0-100Hz, 100Hz-

200Hz, 200Hz-400Hz, 400Hz-800Hz, 800Hz-1600Hz, 1600Hz-

3200Hz, 3200Hz-8000Hz, 8000Hz-22050Hz. Within each

subband, the amplitude spectrum is summed. Then for

each subband, the modulation spectrum is obtained by ap-

plying the discrete Fourier transform (DFT) on the sequence

of the sum of amplitude spectrum.

OMSC is obtained from spectral peaks and spectral con-

trasts of the modulation spectrum. MSFM and MSCM

are obtained from a texture window [4] using the long-

time modulation spectrum [13] that can describe the time-

varying behavior of the subband energy. These features are

also considered as parts of our multiple feature sets.

3. COMPRESSIVE SAMPLING BASED

CLASSIFIER

As inspired by CS and the sparse signal representation the-

ory, here we shall propose a CS-based classifier for genre

classification. First of all, we shall cover the basics of the

CS theory [5].

In Figure 1, consider a signal x (length N ) that is K-

sparse in sparse basis matrix Ψ, and consider also an M ×
N measurement basis matrix Φ, M << N (M is far less

than N ), where the rows of Φ are incoherent with the columns

of Ψ. In term of matrix notation, we have x = Ψθ, in

Figure 1. The measurement of Compressive Sampling

which θ can be approximated using only K << N non-

zero entries. The CS theory states that such a signal x can

be reconstructed by taking only M = O(K log N) linear,

non-adaptive measurement as follows:

y = Φ · x = Φ · Ψ · θ = A · θ, (1)

where y represents an M × 1 sampled vector, A = ΦΨ
is an M × N matrix. The reconstruction is equivalent to

finding the signal’s sparse coefficient vectors θ, which can

be cast into a ℓ0 optimization problem.

min ‖θ‖
0

s.t. y = Φ · x = A · θ (2)

Unfortunately (2) is in general NP-hard, and an opti-

mization ℓ1 is used to replace the above ℓ0 optimization

[10].

min ‖θ‖
1

s.t. y = Φ · x = A · θ (3)

Let the dimension of the extracted feature be denoted

as m, and the extracted feature vector of the j-th music

in the i-th class as νi,j ∈ Rm. Moreover, let us assume

there are sufficient training samples for the i-th class Ai =
[νi,1, ...νi,ni

] ∈ Rm×ni . Then any new (test) sample y ∈
Rm (i.e, the extracted feature of the test music) from the

same class will approximately lie in the linear span of the

training samples associated with object i:

y =

ni
∑

i=1

αi,ni
νi,ni

, (4)

for some scalars αi,j(j = 1, .., ni). Since the member-

ship i (or the label) of the test sample is initially unknown,

we define a new matrix A for the entire training set as the

concatenation of the n training samples of all k classes:

A = [A1, ...Ak] Then the linear representation of y can be

rewritten in terms of all training samples as:

y = Ax0 ∈ R, (5)

where x0 = [0, .., 0, αi,1, ..., αi,n, ..., 0, .., 0]
T

∈ Rn is a

coefficient vector whose entries are zero except those as-

sociated with the i-th class. As the entries of the vector

x0 encode the identity of the test sample y, it is tempting

to obtain it by solving the equation (4). This is called a

sparse representation based classifier (SRC) [9].
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In SRC, for a new test sample y from one of the classes

in the training set, we first compute its sparse representa-

tion x̂ via (2). Ideally, the nonzero entries in the estimate x̂

will all be associated with the columns of A from a single

object class i, and we can easily assign the test sample y

to that class. To better harness such linear structure, we

instead classify y based on how well the coefficients asso-

ciated with all training samples of each object reproduce

y. For each class i, let δi : Rn → Rn be the characteris-

tic function which selects the coefficients associated with

the i-th class[12]. For x ∈ Rn, δi(x) ∈ Rn is a new vec-

tor whose only nonzero entries are the entries in x that are

associated with class i. Using only the coefficients associ-

ated with the i-th class, one can approximate the given test

sample y as

ŷi = Aδi(x̂) (6)

We then classified y based on these approximations by

assigning it to the object class that minimizes the residual

between y and ŷi:

min ri(y) = ‖yi − Aδ(x̂)‖
2

(7)

The proposed CS-based classifier is based on the prin-

ciple of SRC, with an additional random measurement on

the extracted features to reduce the dimension of the input.

According to the CS theory, this reduction can capture the

structure of the features and automatically remove possi-

ble redundancy. The realization of the algorithm is sum-

marized in Table 2.

It should be noted that SRC is a sparse representation

based classifier, without the dimension reduction over the

input signals. Here the random measurement of compres-

sive sampling is used to perform a dimension reduction and

feature extraction. So the classification complexity of CS

based method is remarkably lower than that of SRC. More-

over, the multiple features will also improve the classifi-

cation accuracy. The sparse representation is one part of

compressive sampling. Taking the training samples ma-

trix as the transform matrix will be helpful to the clas-

sification. We will find that the procedure of CS based

classifier are very different from the classical methods, be-

cause steps 3 to 6 are all based on compressive sampling.

Currently many non-linear dimensionality reduction meth-

ods have been proposed, such as Local Coordinates Align-

ment(LCA) and Non-Negative Matrix Factorization(NMF).

Compressive sampling theory provides a random measure-

ment of signals, and proves to be able to keep the informa-

tion of the signals under the condition of enough number of

measurement and incoherence between the measurement

matrix and the transform matrix.

Consequently, it is a natural compressive process of sig-

nals, which can also be regarded as the process of dimen-

sion reduction. CS is different from LCA and NMF due

to that fact that it is a near method, which lend itself to

efficient implementation.

Table 2. CS-based Classification
Algorithm: CS-based Classification

Step 1:

Perform a feature extraction on the music samples

for k classes.

Step 2:

Perform a feature extraction (described in section

2) on the training songs to obtain a matrix of training

samples A = [A1, ...Ak] and calculate the feature y of

the test sample.

Step 3:

Perform a random measurement (the measurement

matrix is a Gaussian random matrix) on the features of the

training samples and the test sample feature to obtain

A′ = H · A and y′ = H · y respectively.

Step 4:

Normalize the columns of A′ to have unit ℓ2 norm

and solve the ℓ1-minimization problem:

min ‖x‖
1

s.t. y′ = A′ · x
Step 5:

Compute the residuals

min ri(y
′) =

∥

∥y′ − A′δi(x̂)
∥

∥

2

Step 6:

Output: identity(y) = arg min ri(y
′)

Table 3. Classification accuracies achieved by various

methods on GTZAN dataset.
Method Dataset Accuracy Feature

dimensions

MF + CSC (Ours) GTZAN 92.7 64

TPNTF + SRC GTZAN 93.7 135

NTF + SRC GTZAN 92.0 135

MPCA + SRC GTZAN 89.7 216

GTDA + SRC GTZAN 92.1 216

4. EXPERIMENTAL RESULTS

The experiments are divided into three parts. Section 4.1

details our experiment with music genre classification. Sec-

tion 4.2 explores multiple features and dimension reduc-

tion. Section 4.3 investigates the feature extractor in an

noisy environment.

4.1 Music Genre Classification

Our experiments of music genre classification are performed

on GTZAN dataset, which are widely used in the liter-

ature [16]. GTZAN consists of the following ten genre

classes: Classical, Country, Disco, Hip-Hop, Jazz, Rock,

Blues, Reggae, Pop, and Metal. Each genre class contains

100 audio recordings of 30 seconds, with sampling rate of

44.1kHz and resolution of 16 bits.

To evaluate the proposed method for genre classifica-

tion, we set up all the experimental parameters to be as

close as possible to those used in [18]. In particular, the

recognition rate is obtained from 10-fold cross validation.

Table 3 is a comparison table which lists several other ex-
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Figure 2. Genre classification result.(CSC is ours)

isting methods together with their recognition rates, such

as Topology Preserving Non-Negative Matrix Factoriza-

tion (TPNMF), Non-Negative Tensor Factorization (NTF),

Multilinear Principal Component Analysis (MPCA), and

General Tensor Discriminant Analysis (GTDA) [17]. As

can be seen from the table, the proposed method (MF +

CSC) outperforms all the state-of-the-art SRC-based ap-

proaches except one. Moreover, the feature dimension of

the proposed approach is considerably lower than those of

the SRC-based approaches, demonstrating the effective of

CS in extracting features with discriminating power.

This experiment addresses the problem of genre classi-

fication using Compressive Sampling. A CS recovery is

applied on short-term and long-term features that are rele-

vant for genre classification. The measurement vectors are

trained on labeled sets, then the classification is performed

by computing the approximation of unknown samples with

each class-specific features.

Figure 2 plots the recognition rates of the four meth-

ods with respect to no. of training samples per class. (The

no. of training samples were randomly selected from each

class, while the test samples stayed the same.) The fig-

ure demonstrates that multiple features indeed improve the

classification accuracy. Moreover, CSC and SRC do have

consistent higher accuracy than SVM classifier. More im-

portantly, these two methods do not require the long train-

ing process of SVM. In Figure 3 , the computation time

of MF+SRC and MF+CSC is only 30% and 20%, respec-

tively, of SVM, due to dimension reduction in compressive

sampling.

Table 4 shows the confusion matrix of the CS-based

classifier [1]. The columns stands for the actual genre and

the rows for the predicted genre. It can be seen that the

recognition rate of each class is almost evenly distributed.

4.2 Multiple Features Dimension

In this experiment, we combine feature sets (long-time fea-

tures and short-time features, and short-time features only)

and different classifiers (SVM [14], SRC and the proposed

classifier) to investigated their joint effects. The descrip-

Table 4. Confusion matrix of the proposed method

cl co di hi ja ro bl re po me

cl 96 0 0 3 1 0 0 0 0 0

co 0 92 4 0 2 0 0 1 0 1

di 0 4 93 0 0 1 0 1 0 1

hi 3 0 0 94 0 1 1 1 0 0

ja 1 2 0 0 93 0 3 1 0 0

ro 0 0 1 1 0 89 2 3 3 1

bl 0 0 0 1 3 2 90 1 3 0

re 0 1 1 1 1 3 1 92 0 0

po 0 0 0 0 0 3 3 0 94 0

me 0 1 1 0 0 1 0 0 0 97

Figure 3. Genre classification time analysis.(CSC is ours)

tions of these methods and their parameter settings are shown

in Table 5.

All the samples are digitized 44.1 kHz, 16-bit, and mono

signal in preprocessing. The 30-seconds of audio clips af-

ter initial 12 seconds are used. The length of the analysis

window was set to 93ms, and 50% overlap was used for

feature extraction. The length of texture window was set

to 3 second, thus a texture window contains 63 analysis

windows. The 13-dimensional MFCCs are computed in an

analysis window, mean and variance of each dimension are

computed in a texture window.

Table 6 shows the multiple features set and dimension.

As mentioned in section 2, eight octave subbands were

used to compute the OSC, OMSC, MSFM, and MSCM.

They are computed based on octave subband. Thus, the

dimensions of the features are dependent on the number

of octave subband (eight subbands were used in this ex-

periment). The dimensions of the OSC, the OMSC, the

MSFM, and the MSCM are respectively 32, 32, 8 and 8.

4.3 Under Noise Environment

In Figure 2, sparse representation based classifier and CS-

based classifier have similar performance in music genre

classification. The robustness of the system is tested under
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Table 5. Methods used in the experiment

Method Description Parameters

STF+SVM Short-time feature

only and followed

by a SVM classi-

fier

SVM is used and α

takes between 0 and

1. The optimal value

is chosen experien-

tially.

MF+SVM Multiple feature

and followed by a

SVM classifier

As above

MF+CSC Multiple feature

and followed by

a compressive

sampling based

classifier

The sampling rate

takes 67% and the

optimization algo-

rithm is basis pursuit

algorithm.

MF+SRC Multiple feature

and followed by

a sparse repre-

sentation based

classifier

The optimization al-

gorithm is basis pur-

suit algorithm.

Table 6. Multiple features set and dimension

Feature Set Dimension

OMSC Long-time feature 32

Low-energy Long-time feature 1

OSC Short-time feature 32

MFCCs Short-time feature 26

MSFM Short-time feature 8

Spectral centroid Short-time feature 2

Spectral rolloff Short-time feature 2

Spectral flux Short-time feature 2

Zero crossings Short-time feature 2

the following conditions.

• Additive white uniform noise (AWUN)

• Additive white Gaussian noise (AWGN)

• Linear speed change (LSC)

• Band-pass filter (BPF)

The robustness of these two methods was compared, as

shown in Table 7. We can find the average BER of the CSC

system is lower than SRC. CSC has better performance un-

der the conditions of linear speed change, band-pass filter,

and additive white uniform noise.

Figure 4 shows the classification results of different meth-

ods when the Gaussian noise with different variance are

added to the music. From the figure, we can see that the

proposed method is quite immune to noise.

5. CONCLUSIONS

In this study, we have proposed a CS-based classifier and

verified its performance by a common dataset for music

genre classification. Moreover, we have also explored the

Table 7. The comparison result about robustness

CSC SRC

Rate(%) BER Rate (%) BER

AWUN 73.8 0.262 73.5 0.265

AWGN 76.6 0.234 78.8 0.212

LSC 81.7 0.183 64.8 0.352

BPF 71.2 0.288 65.8 0.342

Figure 4. Genre classification result under noise.

possibility of using multiple feature sets for improving the

performance of genre classification. The experiments demon-

strates that the proposed CS-based classification together

with the use of multiple feature sets outperform quite a

few state-of-the-art approaches for music genre classifica-

tion. The success of the proposed CS-based classifier is

attributed to CS’s superb capability in feature extraction

for generating parsimonious representation of the original

signals.

For immediate future work, we will focus on the possi-

bility of porting the proposed CS-based classifier for other

MIR tasks, such as onset detection, beat tracking, and tempo

estimation.
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