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Curitiba, Brazil
‡Pontifical Catholic University of Paraná
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Abstract—In this paper we present an alternative approach
for music genre classification which converts the audio signal
into spectrograms and then extracts features from this visual
representation. The idea is that treating the time-frequency
representation as a texture image we can extract features to
build reliable music genre classification systems. The proposed
approach also takes into account a zoning mechanism to perform
local feature extraction, which has been proved to be quite
efficient. On a very challenging dataset of 900 music pieces
divided among 10 music genres, we have demonstrated that the
classifier trained with texture compares similarly to the literature.
Besides, when it was combined with other classifiers trained with
short-term, low-level characteristics of the music audio signal
we got an improvement of about 7 percentage points in the
recognition rate.

I. INTRODUCTION

Music genres are categorical labels created by humans to

determine the style of music. Because of the human perception

subjectiveness, assigning a genre to a music piece is not a

trivial task. In spite of that, music genre is probably the most

obvious descriptor which comes to mind, and it is probably

the most widely used to organize and manage large digital

music databases [1].

The literature shows us that in the last decade several

researchers have devoted a considerable amount of efforts

towards automatic music genre classification.One of the earlier

works was introduced by Tzanetakis and Cook [2] where

they represented a music piece using timbral texture, beat-

related, and pitch-related features. The employed feature set

has become of public use, as part of the MARSYAS framework

(Music Analysis, Retrieval and SYnthesis for Audio Signals),

and it has been widely used for music genre recognition

[3], [4]. Other characteristics such as Inter-Onset Interval

Histogram Coefficients, Rhythm Patterns and its derivatives

Statistical Spectrum Descriptors, and Rhythm Histograms also

have been proposed in the literature recently [4].

In spite of all efforts done during the last years, the auto-

matic music genre classification still remains an open problem.

McKay and Fujinaga [5] pointed out some problematic aspects

of genre and refer to some experiments where human beings
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were not able to classify correctly more than 76% of the

musics. In spite of the fact that more experimental evidence is

needed, these experiments give some insights about the upper

bounds on software performance. McKay and Fujinaga also

suggest that different approaches should be proposed to realize

further improvements.

In light of this, in this paper we propose an alternative

approach for music genre classification which converts the

audio signal into a spectrogram [6] (short-time Fourier rep-

resentation) and then extract features from this visual repre-

sentation. The rationale behind this is that treating the time-

frequency representation as a texture image we can extract

different features, which we expect to be complementary to

the traditional ones, to build a more robust music genre

classification system. The characteristics used in this work

are some of the Gray Level Co-occurrence Matrix (GLCM)

descriptors introduced by Haralick [7].

By analyzing the spectrogram images, we have noticed that

the textures are not uniform, so it is important to consider a

local feature extraction rather than a global one. With this in

mind, we propose an efficient zoning technique to obtain local

information of the given pattern. We also demonstrate through

experimentation that certain zones of the spectrogram have no

discriminant information for most of the music genres.

Through a set of comprehensive experiments on the Latin

Music Database [3], a very challenging dataset of 900 music

pieces divided among 10 music genres, we demonstrate that

the proposed approach compares favorably to the traditional

approaches reported in the literature. In addition, the experi-

mental results show that the classifier trained with the texture

features produces complementary information which can be

used to build more reliable music genre classification systems.

When combining the results of the proposed system with

another one based on short-term, low-level characteristics of

the music audio signal [8] we were able to get an improvement

of about 6% on the recognition rate.

II. TEXTURE FEATURES

Since our approach is based on visual representation of the

audio signal, the first step of the feature extraction process
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consists in converting the audio signal to a spectrogram.

The spectrograms were created using a bit rate = 352kbps,

audio sample size = 16 bits, one channel, and audio sam-

ple rate = 22.5kHz. In this work we have used the idea

of time decomposition [9] in which an audio signal S is

decomposed into n different sub-signals. Each sub-signal is

simply a projection of S on the interval [p, q] of samples, or

Spq =< sp, . . . , sq >. In the generic case, one may extract

K (overlapping or non-overlapping) sub-signals and obtain a

sequence of spectrograms Υ1,Υ2, . . . ,ΥK . We have used the

strategy proposed by Silla et al [3] which considers three 30-

second segments from the beginning (Υbeg), middle (Υmid),

and end (Υend) parts of the original music. Figure 1 depicts

this process.

Figure 1. Creating spectrograms using time decomposition.

After generating the spectrograms, the next step consists

in extracting the features from the images. As stated before,

the approach proposed in this work considers the spectro-

gram as a texture and it uses the well-known GLCM texture

descriptors as features. Among the statistical techniques of

texture recognition, the GLCM has been one of the most

used and successful ones. This technique consists of statistical

experiments conducted on how a certain level of gray occurs

on other levels of gray. It intuitively provides measures of

properties such as smoothness, coarseness, and regularity. By

definition, a GLCM is the joint probability occurrence of gray

level i and j within a defined spatial relation in an image.

That spatial relation is defined in terms of a distance d and an

angle θ. Given a GLCM, some statistical information can be

extracted from it. Assuming that Ng is the gray level depth,

and p(i, j) is the probability of the co-occurrence of gray level

i and gray level j observing consecutive pixels at distance d

and angle θ, to describe the texture.

Haralick [7], the precursor of this technique suggested a set

of 14 characteristics, but most of works in the literature con-

sider a subset of these descriptors. In our case, we have used

the following seven descriptors, which have produced interest-

ing results for other texture problems: Entropy, Correlation,

Homogeneity, 3rd Order Momentum, Maximum Likelihood,

Contrast, and Energy.

Entropy = −

Ng∑

i=1

Ng∑

j=1

p(i, j) log(p(i, j)) (1)

Correlation =
p(i, j)− µxµy

σ2
xσ

2
y

(2)

where µx =
∑Ng

i=1
i× px(i)], px(i) =

∑Ng

j=1
p(i, j),

σ2

x =
∑Ng

i=1
(i− µx)

2px(i), µy =
∑Ng

j=1
j × py(j),

py(j) =
∑Ng

i=1
p(i, j) e σ2

y =
∑Ng

j=1
(j − µy)

2py(j).

Homogeneity =

Ng∑

i=1

Ng∑

j=1

p(i, j)

1 + (i− j)2
(3)

3rd Order Momentum =

Ng∑

i=1

Ng∑

j=1

(i− j)3 × p(i, j) (4)

Maximum Likelyhood = max p(i, j) (5)

Contrast =

Ng∑

i=1

Ng∑

j=1

(i− j)2 p(i, j) (6)

Energy =

Ng∑

i=1

Ng∑

j=1

(p(i, j))2 (7)

In our experiments we have tried different values for d as

well as different angles. The best setup we have found is d = 1
and θ = [0, 45, 90, 135]. Considering the seven descriptors

aforementioned, in the end we have a feature vector of 28

components.

At this point we could have a piece of music represented by

three 28-dimensional feature vectors. However, by analyzing

the texture images, we have noticed that the texture produced

by the spectrograms are not uniform, so it is important to

consider a local feature extraction rather than a global one.

With this in mind, we have used a zoning technique which

is a simple but efficient way to obtain local information of a

given pattern. Figure 2 depicts the zoning mechanism used

in this work. We discuss in Section IV that several other

configurations of zoning have been tried out but this one

produced the better results. Therefore each spectrogram image

is represented by ten 28-dimensional feature vectors, summing

up 30 vectors for a music piece.

III. METHODOLOGY USED FOR CLASSIFICATION

The classifier used in this work was the Support Vector

Machine (SVM) introduced by Vapnik in [10]. Normalization

was performed by linearly scaling each attribute to the range

[-1,+1]. Different parameters and kernels for the SVM were

tried out but the best results were yielded using a Gaussian

kernel. Parameters C and γ were tuned using a grid search.

Training and classification were carried out using the stan-

dard 3-fold cross-validation: 1 fold used for training a N-

class SVM classifier, 1 fold for testing, 3 permutations of the

training fold (i.e. 2-3, 3-1, 1-2). Considering that 30 feature
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Figure 2. Zoning mechanism used to extract local information

vectors are extracted for each piece of music, for each fold we

have 18,000 and 9,000 feature vectors for training and testing,

respectively.

After training, the classification process is done as follows:

The three 30-second segments of the music are converted to

the spectrograms (Υbeg , Υmid, and Υend). Each of them is

divided into 10 zones and one feature vector is extracted from

each zone. The 28-dimensional feature vector is then sent to

the classifier which assigns it to one of the 10 possible classes.

The final decision is performed through a majority voting

scheme as depicted in Figure 3, where each square represents

the output of the classifier for each zone.

Figure 3. Voting mechanism used for classification

The rationale behind the zoning and voting scheme is that

music signals may include similar instruments and similar

rhythmic patterns which leads to similar areas in the spec-

trogram images. By zoning the images we can extract local

information and try to highlight the specificities of each music

genre. In Figure 4 we can notice that at low frequencies the

textures are quite similar but they get different as the frequency

increases. The opposite can happen as well and for this reason

the zoning mechanism becomes an interesting alternative. In

this work we have investigated fixed zones. Other zoning

strategies using different scales will be the subject of further

investigation.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments are carried out on a subset of the Latin Mu-

sic Database (LMD) [3]. The LMD is made up of 3,227 full-

length music pieces uniformly distributed along 10 classes of

music genres: “Axe”, “Bachata”, “Bolero”, “Forro”, “Gaúcha”,

“Merengue”, “Pagode”, “Salsa”, “Sertaneja”, and “Tango”. In

our experiments we use 900 music pieces from the LMD,

Figure 4. Spectrograms of different music genres with areas of similarity

which are split into 3 folds of equal size (30 music pieces per

class). The splitting is done using an artist filter [11], which

places the music pieces of an specific artist exclusively in

one, and only one, fold of the dataset. The use of the artist

filter does not allow us to employ the whole dataset since the

distribution of music pieces per artist is far from uniform.

Furthermore, in our particular implementation of the artist

filter we added the constraint of the same number of artists

per fold.

The main characteristics of the LMD dataset is the fact

of bringing together many genres with a significant similarity

among themselves with regard to instrumentation, rhythmic

structure, and harmonic content. This happens because many

genres present in the database are from the same country or

countries with strong similarities regarding cultural aspects.

Hence, the attempt to discriminate these genres automatically

is particularly challenging.

Before discussing the experiments it is important to mention

that we have tried out different configurations of zoning.

Figure 5 reports the average performance for the number of

zones ranging from 1 to 40. As we can observe, after ten zones

there is no improvement in terms of recognition rate.

Figure 5. Evolution of the recognition rates for different number of zones

Table I reports the average recognition rate for 10 zones

considering the three folds aforementioned. To have a better

insight of these results we also report the results achieved

by Lopes et al in [8]. In this case both works can be

directly compared since they rely on the same experimental

protocol. Lopes et al, though, use a different approach based

on instances, which are feature vectors representing short-term,

low-level characteristics of music audio signals.
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Table I
AVERAGE RECOGNITION RATE (RR) FOR 10 ZONES WITH STANDARD

DEVIATIONS (σ)

Genre RR(%) σ RR (%) [8] σ

Axé 73.3 8.8 61.1 13.4
Bachata 82.2 15.0 91.1 6.9
Bolero 64.4 8.4 72.2 9.6
Forró 65.5 8.4 17.7 17.1
Gaúcha 35.5 5.1 44.0 8.4
Merengue 80.0 6.6 78.8 11.7
Pagode 46.6 17.6 61.1 8.4
Salsa 42.2 6.9 40.0 12.0
Sertaneja 17.7 6.9 41.1 35.5
Tango 93.3 6.6 88.9 9.6

Average 60.1 9.0 59.6 13.4

As we can observe from Table I both classifiers perform

very poorly for some music genres. In spite of the fact that

both systems have similar recognition rates, they produce

different confusions due to the different representations used to

train the classifiers. From Table I we can see that the difference

of performances can reach more than 10% for certain music

genres. Sertaneja and Forró feature the biggest differences.

Such differences indicate some complementarity between

both feature sets. As stated in the beginning of this work,

our motivation was to explore a different representation for

music genre expecting that it could be complementary to the

traditional features reported in the literature. Table I indicates

that the classifier trained with texture features offers some

degree of complementarity to that developed by Lopes et al

[8].

In order to show how complementary are both classifiers

we combined our results with the results published by Lopes

et al in [8]. Their approach is based on an instance selection

method where a music piece is represented by 646 instances.

The classifier used is a SVM and the final decision is also

done through majority voting.

We converted the outputs of both systems into probabilities

simply dividing the number of votes received for a given

hypothesis from the classifiers by the total number of votes.

With this in hand we have applied several different combi-

nation methods described by Kittler et al in [12]. The two

methods that provided best results were Max and Sum, which

are reported in Table II.
Table II

RESULTS USING MAX AND SUM COMBINATION RULES

Genre Max (%) Sum (%)

Axé 72.2 76.6
Bachata 87.7 87.7
Bolero 80.0 83.3
Forró 53.3 52.2
Gaúcha 47.7 48.8
Merengue 86.6 87.7
Pagode 56.6 61.1
Salsa 48.8 50.0
Sertaneja 34.4 34.4
Tango 90.0 90.0

Average 65.7 67.2

From Table II we can observe that the Sum rule explores

better the diversity produced by the two different classifiers

achieving an recognition rate of 67.2%. In other words,

an improvement of 7 percentage points compared with the

baseline system presented in Table I. Those results compare

to the literature, specially to those published in the last MIREX

contest on audio genre classification [13].

V. CONCLUSION

In this paper we have presented an alternative approach

for music genre classification which is based on texture

images. Such visual representations are created by converting

the audio signal representation into spectrograms which are

divide into zones so that features can be extracted locally.

We have demonstrated that after 10 zones there is no further

improvement in term of recognition rate.

Experiments combining two different systems using dif-

ferent combination strategies have proved that the proposed

approach can provide complementary information to that pro-

vided by short-term, low-level characteristics of the music

audio signal. Using the Max rule we were able to reach an

improvement of about 7 percentage points in the recognition

rate. Our future works will be focused towards the develop-

ment and tests of other texture features and other strategies

for zoning.
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