
Music Information Retrieval Using Audio Input

Lloyd A. Smith, Rodger J. McNab and Ian H. Witten

Department of Computer Science
University of Waikato

Private Bag 3105
Hamilton, New Zealand

{las, rjmcnab, ihw}@cs.waikato.ac.nz

Abstract
This paper describes a system designed to retrieve
melodies from a database on the basis of a few notes
sung into a microphone. The system first accepts
acoustic input from the user, transcribes it into
common music notation, then searches a database of
9400 folk tunes for those containing the sung pattern,
or patterns similar to the sung pattern; retrieval is
ranked according to the closeness of the match. The
paper presents an analysis of the performance of the
system using different search criteria involving
melodic contour, musical intervals and rhythm; tests
were carried out using both exact and approximate
string matching. Approximate matching used a
dynamic programming algorithm designed for
comparing musical sequences. Current work focuses
on developing a faster algorithm.

Introduction

Retrieval of musical information presents challenging
problems. Although scores are traditionally indexed by
title, composer or subject classification, music librarians
are often asked to identify a piece of music on the basis of
a few sung or hummed notes. The magnitude of this task is
indicated by the sizes of national library music
collections—the Library of Congress holds over six million
pieces of sheet music (not including tens of thousands of
operatic scores and other major works), and the National
Library of France has 300,000 hours of sound recordings,
90% of it music. Fortunately, sequential pattern matching
techniques offer previously unexplored possibilities for
searching large corpora of music information.

This paper describes a system that successfully retrieves
music on the basis of a few notes that are sung, or
otherwise entered. Such a system will form an important
component of the digital music library of the future. With
it, researchers will analyze the music of given composers to
find recurring themes or duplicated musical phrases, and
both musicians and casual users will retrieve compositions
based on remembered (perhaps imperfectly remembered)
musical passages. We assume a database stored in the form
of music notation. One current limiting factor is that few

score collections are available in machine-readable form.
As digital libraries develop, however, scores will be placed
on-line through the use of optical music recognition
technology. Furthermore, with the increasing use of music
notation software, many compositions will be acquired in
electronic form—particularly by national libraries, which
acquire material through copyright administration. Our test
database is a collection of 9400 folk tunes.

With our system, a user can literally sing a few bars and
have all melodies containing that sequence of notes
retrieved and displayed—a facility that is attractive to
casual and professional users alike. Capitalizing on
advances in digital signal processing, music representation
techniques, and computer hardware technology, melodies
are transcribed automatically from microphone input.
Searching large music databases and retrieving items that
contain a given theme or sequence of notes is not a trivial
undertaking, particularly given the inaccuracies that ensue
when people sing known melodies—but, as our scheme
demonstrates, it is certainly within the scope of current AI
technology. Our system searches a database for tunes
containing melodic sequences similar to the sung pattern,
and retrieval is ranked according to the closeness of the
match. We have experimented with different search criteria
involving melodic contour, musical intervals and rhythm;
and carried out tests using both exact and approximate
string matching. For approximate matching we have used a
dynamic programming algorithm designed for comparing
musical sequences, and we are currently experimenting
with a faster state matching algorithm. Our principal
conclusion is that users should be offered a choice of
several matching procedures, and be able to explore the
results interactively in their search for a particular melody.

Melody Transcription

The front end of our music retrieval system performs the
signal processing necessary to automatically transcribe a
melody from audio input. The analog acoustic signal is
sampled for digital processing, notes are segmented from
the acoustic stream, the frequency of each note is identified
and each note is labeled with a musical pitch name and a
rhythmic value.

2

Pitch tracking and note segmentation
Our retrieval system runs on an Apple Macintosh PowerPC
8500, which has built-in sound I/O. The acoustic waveform
is sampled at 44.1 kHz and quantized to an 8-bit linear
representation. For music transcription, we are interested
only in the fundamental frequency of the input. Therefore
the input is filtered to remove as many harmonics as
possible, while preserving the fundamental frequency.
Reasonable limits for the singing voice are defined by the
musical staff, which ranges from F2 (87.31 Hz) just below
the bass staff, to G5 (784 Hz) just above the treble staff.
Input is low-pass filtered, with a cutoff frequency of 1000
Hz, then passed to the pitch tracker, which identifies pitch
by finding the repeating pitch periods which make up the
waveform (Gold & Rabiner 1969). Figure 1 shows 20 ms
of a typical waveform for the vowel ah, as in father. The
pitch tracker returns a pitch estimate for each 20 ms
segment of input; this gives the system a pitch resolution of
approximately five cents, or about 0.29%, which equals
human pitch resolution.

1

0

-1
0.010

A
m

pl
itu

de

Time (seconds)

1 Pitch Period

Figure 1. Acoustic waveform of ah

Once pitches have been identified, it is necessary to
determine where notes begin and end. Our system currently
depends on the user’s separating each note by singing da or
ta—the consonant causes a drop in amplitude of 60 ms
duration or more at each note boundary. Adaptive
thresholds are then used to determine note onsets and
offsets; in order to keep a marginal signal from oscillating
on and off, the onset threshold is higher than the offset
threshold. Figure 2 illustrates the use of amplitude to
segment a series of notes. We have investigated the
segmentation of notes based solely on the pitch track, but
this method is not yet as reliable as segmentation based on
amplitude.

After note onsets and offsets are determined, rhythmic
values are assigned by quantizing each note to the nearest
sixteenth according to the tempo set by the user.

1

10

100

0 1 2 3 4 5 6 7 8 9

L
o

g
 a

m
p

lit
u

d
e

Time (seconds)
Figure 2. Amplitude segmentation

Pitch representation
Transcription of Western music requires that each note be
identified to the nearest semitone. For several reasons,
however, it is desirable to represent pitches internally with
finer resolution. Our system expresses each note,
internally, by its distance in cents above 8.176 Hz, or MIDI
note 0. Notes on the equal tempered scale, relative to A-
440, occur at multiples of 100 cents; C4, or middle C, is
6000 cents, while A4, or concert A, is 4400 cents. This
scheme easily incorporates alternative (non-equitempered)
tunings of Western music, such as the “just” or
Pythagorean system, simply by changing the relationship
between cents and note name. It can also be easily adapted
to identify notes in the music of other cultures.

Adapting to the user’s tuning
Our system labels each note according to its frequency and
a reference frequency. In some applications it is desirable
to tie note identification to a particular standard of tuning,
such as A-440. For a melody retrieval application,
however, it is more desirable to adapt to the user’s own
tuning and tie note identification to musical intervals rather
than to any standard.

The system begins a transcription with the assumption
that the user will sing to A-440, but then adjusts by
referencing each note to its predecessor. For example, if a
user sings three notes, 5990 cents, 5770 cents and 5540
cents above MIDI note 0, the first is labeled C4 and the
reference is moved down 10 cents. The second note is
labeled Bb3, which is now referenced to 5790 (rather than
5800) cents, and the reference is lowered a further 20 cents.
The third note is labeled Ab3, referenced now to 5570
cents—even though, by the A-440 standard, it is closer to
G3. Thus the beginning of Three Blind Mice is transcribed.

Searching Musical Databases

Retrieving music from a collection of musical scores is
essentially a matter of matching input strings against a
database. This is a familiar problem in information
retrieval, and efficient algorithms for finding substrings in
a body of text are well known. Unfortunately, there are

several problems with seeking an exact match between the
transcribed melody and the database. The first is the
variability in the way that music is performed. Folk songs,
for example, appear in many variants, while popular songs
and well-known standards are often performed differently
from the way they are notated. Performances of classical
music generally have a more stable relationship to the
score, but there are other sources of error. Problems may be
caused by deficiencies in the user’s singing—or his or her
memory of the tune may be imperfect. We have performed
an experiment to determine the accuracy of people in
singing well known songs (McNab et al. 1996), and our
findings indicate that people make a number of mistakes in
singing intervals and rhythms of songs, even when those
songs are well known to them.

It is necessary, then, to allow approximate string
matching on the score database in order to retrieve music.
Approximate matching algorithms are, in general, far less
efficient than those which match strings exactly, and
invariably take time which grows linearly with database
size rather than logarithmically, as does binary search.

Search criteria
What attributes should be used when searching a musical
score database? The first point to note is that melodies are
recognizable regardless of the key in which they are
played or sung—so it is important to allow users to enter
notes in any key. This is accomplished simply by
conducting the search on the basis of pitch ratios, or
musical intervals. Second, a number of experiments have
shown that interval direction , independent of interval size,
is an important factor in melody recognition (Dowling
1978)—indeed, Parsons (1975) has produced an index of
melodies based entirely on the sequence of interval
directions, which is called the “melodic contour” or “pitch
profile.” Using the notation of Parsons, where * represents
the first note, D a descending interval, U an ascending
interval, and R a repetition, the beginning of Three Blind
Mice is notated: *DDUDDUDRDUDRD

One cardinal advantage of searching on contour, at least
for casual singers, is that it releases them from having to
sing accurate intervals.

Approximate string matching for music
Approximate string matching is a standard application of
dynamic programming. In general, two strings of discrete
symbols are given and the problem is to find an economical
sequence of operations that transforms one into the other.
The basic operations are deletion of a single symbol,
insertion of a single symbol, and substitution of one
symbol by another. These three operations have associated
numeric “costs,” or “weights,” which may be fixed or may
depend on the symbols involved. The cost of a sequence of
operations is the sum of the costs of the individual
operations, and the aim is to find the lowest-cost sequence
that accomplishes the desired transformation. The cost of
this sequence is a measure of the distance between the

strings. Using dynamic programming, the optimal solution
can be found in a time which is proportional to the product
of the lengths of the sequences.

Mongeau and Sankoff (1990) adapt dynamic
programming to music comparison by adding two music-
related operations: consolidation , which combines a
sequence of notes into one whose duration is their sum and
whose pitch is their average (computed with respect to the
distance metric), and fragmentation , which does the
reverse. While Mongeau and Sankoff designed their
algorithm to compare complete melodies, it is necessary
for a general music retrieval system to allow a search for
embedded patterns, or musical themes. This capability is
incorporated into the dynamic programming algorithm by
modifying the start condition so that deletions preceding
the match of the pattern receive a score of 0.

Retrieving Tunes from Folk Song Databases

The weaker the matching criteria, the larger the musical
fragment that is needed in order to identify a particular
song uniquely from a given corpus. To get a feeling for the
tradeoffs involved, we performed an extensive simulation
based on two corpora of folk songs. The first is a collection
of 1700 tunes, most of North American origin, from the
Digital Tradition folksong database (Greenhaus 1994). The
other is comprised of 7700 tunes from the Essen database
of European and Chinese melodies (Schaffrath 1992).
Combining the two sources gave us a database of 9400
melodies. There are just over half a million notes in the
database, with the average length of a melody being 56.8
notes.

Retrieval experiments
We are interested in the number of notes required to
identify a melody uniquely under various matching
regimes. The dimensions of matching include whether
interval or contour is used as the basic pitch metric,
whether or not account is taken of rhythm, and whether
matching is exact or approximate.

Based on these dimensions, we have examined exact
matching of:

• interval and rhythm

• interval regardless of rhythm

• contour and rhythm

• contour regardless of rhythm
and approximate matching of:

• interval and rhythm

• contour and rhythm
For each matching regime we imagine a user singing the

beginning of a melody, comprising a certain number of
notes, and asking for it to be identified in the database. If it
is in the database, how many other melodies that begin this
way might be expected? We examined this question by
randomly selecting 1000 songs from the database, then
matching patterns ranging from 5 to 20 notes against the

4

entire database. This experiment was carried out both for
matching the beginnings of songs and for matching
sequences of notes embedded within songs. For each
sequence of notes, we counted the average number of
“collisions”—that is, other melodies that match.
Fragmentation and consolidation are relevant only when
rhythm is used in the match; in these experiments,
fragmentation and consolidation were allowed for
approximate matching but not for exact matches.

Figure 3 shows the expected number of collisions, for
each of the matching regimes, when queries are matched at
the beginnings of songs. The number of notes required to
reduce the collisions to any given level increases
monotonically as the matching criteria weaken. All exact-
matching regimes require fewer notes for a given level of
identification than all approximate-matching regimes.
Within each group the number of notes decreases as more
information is used: if rhythm is included, and if interval is
used instead of contour. For example, for exact matching
with rhythm included, if contour is used instead of interval
two more notes are needed to reduce the average number of
items retrieved to one. The contribution of rhythm is also
illustrated at the top of Figure 3, which shows that, if
rhythm is included, the first note disqualifies a large
number of songs. It is interesting that melodic contour with
rhythm is a more powerful discriminator than interval
without rhythm; removing rhythmic information increases
the number of notes needed for unique identification by
about three if interval is used and about six if contour is
used. A similar picture emerges for approximate matching
except that the note sequences required are considerably
longer.

10000

1000

100

10

1
0 5 10 15 20

A
ve

ra
ge

 n
um

be
r

of
 c

ol
lis

io
ns

Number of notes

Figure 3. Number of collisions for different lengths of
input sequence when matching start of song. From
left to right:
• exact interval and rhythm
• exact contour and rhythm
• exact interval
• exact contour
• approximate interval and rhythm
• approximate contour and rhythm

An important consideration is how the sequence lengths
required for retrieval scale with the size of the database.
Figure 4 shows the results, averaged over 1000 runs,
obtained by testing smaller databases extracted at random

from the collection. The number of notes required for
retrieval seems to scale logarithmically with database size.

Figure 5 shows the expected number of collisions for
matching embedded note patterns. As expected, all
matching methods require more notes than searches
conducted on the beginnings of songs. In general, an
additional three to five notes are needed to avoid collisions,
with approximate matching on contour now requiring, on
average, over 20 notes to uniquely identify a given song.

0

5

10

15

20

10000100010010

A
ve

ra
ge

 n
um

be
r

of
 n

ot
es

Size of database

re
qu

ire
d

to
 r

et
ur

n
on

e
so

ng

Figure 4. Number of notes for unique tune retrieval in
databases of different sizes. Lines correspond,
from bottom to top, to the matching regimes listed
in Figure 3.

10000

1000

100

10

1
0 5 10 15 20

Average number of collisions

Number of notes

Figure 5. Number of collisions for different lengths of
input sequence when matching embedded
patterns. Lines correspond, from left to right, to
those in Figure 3.

A System for Tune Retrieval

the displayed tune.

matching schemes returned a manageable number of tunes,
although, when embedded patterns were matched,
approximate contour and rhythm returned over a third of
the database; matching exact contour, without rhythm, did
not perform markedly better.

Figure 6. Display from the tune retrieval system

Search Criteria No. Songs Returned Matching:
Start Embedded Patterns

Exact interval & rhythm 1 1
Exact contour & rhythm 4 14
Exact interval 1 2
Exact contour 153 2603
Approx. interval & rhythm 22 96
Approx. contour & rhythm 349 3595
Table 1. Number of songs retrieved using Figure 6 input

On the PowerPC 8500, with a clock speed of 120 MHz,
pitch tracking and display of audio input takes
approximately 2.8% of recorded time; the input for Figure
6 was processed in less than 230 ms. Exact matching on the
9400 song database takes about 500 ms, but approximate
matching can take much longer. Matching a 20 note search
pattern, for example, requires approximately 21 seconds.
While it may be reasonable to expect a user to wait that
length of time for a search to complete, much larger
databases—a million folk songs, for example, or a
thousand symphonies—will take an unacceptably long time
to search. We are currently investigating the use of a state
matching algorithm (Wu and Manber 1992) for reducing
the time taken for approximate searches.

One way of speeding retrieval based on embedded
patterns is to automatically identify themes using an offline
matching method, storing those themes in a separate
collection indexed to the original database. Because themes
are relatively short (in comparison to an entire
composition), a theme database can be searched much
more quickly; furthermore, it is unnecessary to search for
embedded patterns in a database containing only themes.

Conclusion

We have presented and analyzed a novel scheme for audio
information retrieval by searching large databases of

musical scores. Searching such corpora requires efficient
string matching algorithms. Previous experiments on
melody recognition suggest that search should be carried
out on the basis of melodic contour and/or musical
intervals, and our own experiments suggest that there
should be provision for approximate matching of the input,
and that the audio transcription module should adapt to the
user’s musical tuning, which may vary during input.

The time taken to perform approximate matches in large
databases of musical scores is a matter for some concern.
We are investigating two ways of speeding these searches.
One approach is to use a fast approximate search method
(Wu and Manber 1992), suitably guided by knowledge of
the errors people make in singing well known melodies.
Another possibility is to automatically create, offline,
databases of themes which allow fast indexing into the
main database. It may be possible, for example, to use the
Mongeau and Sankoff algorithm to find recurring themes
in symphonies or popular songs; these themes can then be
stored in a separate, and much smaller, database.

Our investigations have focused on retrieval of musical
scores. While it may someday be feasible to directly match
acoustic input against digital audio files, it is likely that the
musical score will be an intermediary representation for
some time to come. We envision a system where the user
might whistle the theme to Grieg’s Piano Concerto in A
Minor; this input is then matched to a database of musical
scores, and the corresponding recording is returned to the
user’s terminal. We believe that acoustic interfaces to
online music databases will form an integral part of the
digital music library of the future.

References

Dowling, W. J. 1978. Scale and Contour: Two Components
of a Theory of Memory for Melodies. Psychological
Review 85: 341–354.
Gold, B., and Rabiner, L. 1969. Parallel Processing
Techniques for Estimating Pitch Periods of Speech in the
Time Domain. J. Acoust. Soc. Am. 46: 442-448.
Greenhaus, D. 1994. About the Digital Tradition.
http://www.deltablues.com/DigiTrad-blurb.html.
Schaffrath, H. 1992. The ESAC Databases and MAPPET
Software. In Computing in Musicology, Vol 8. , ed. W.
Hewlett and E. Selfridge-Field. Menlo Park, Calif.: Center
for Computer Assisted Research in the Humanities.
McNab, R.J., Smith, L.A., Witten, I.H., Henderson, C.L.,
and Cunningham, S.J. 1996. Towards the Digital Music
Library: Tune Retrieval From Acoustic Input. In
Proceedings of ACM Digital Libraries ‘96, 11–18.
Mongeau, M., and Sankoff, D. 1990. Comparison of
Musical Sequences. Computers and the Humanities 24:
161–175.
Parsons, D. 1975. The Directory of Tunes and Musical
Themes. Cambridge: Spencer Brown.
Wu, S., and Manber, U. 1992. Fast Text Searching
Allowing Errors. Commun. ACM 35(10), 83–91.

