
Music Recommendation by Unified Hypergraph:
Combining Social Media Information and Music Content

Jiajun Bu1, Shulong Tan1, Chun Chen1, Can Wang1, Hao Wu1, Lijun Zhang1, Xiaofei He2

{bjj, laos1984, chenc, wcan, haowu, zljzju}@zju.edu.cn, xiaofeihe@cad.zju.edu.cn

1Zhejiang Key Laboratory of Service Robot 2State Key Laboratory of CAD&CG
College of Computer Science, Zhejiang University College of Computer Science, Zhejiang University

Hangzhou, China, 310027 Hangzhou, China, 310027

ABSTRACT
Acoustic-based music recommender systems have received
increasing interest in recent years. Due to the semantic gap
between low level acoustic features and high level music con-
cepts, many researchers have explored collaborative filtering
techniques in music recommender systems. Traditional col-
laborative filtering music recommendation methods only fo-
cus on user rating information. However, there are various
kinds of social media information, including different types
of objects and relations among these objects, in music social
communities such as Last.fm and Pandora. This informa-
tion is valuable for music recommendation. However, there
are two challenges to exploit this rich social media infor-
mation: (a) There are many different types of objects and
relations in music social communities, which makes it diffi-
cult to develop a unified framework taking into account all
objects and relations. (b) In these communities, some re-
lations are much more sophisticated than pairwise relation,
and thus cannot be simply modeled by a graph. In this pa-
per, we propose a novel music recommendation algorithm
by using both multiple kinds of social media information
and music acoustic-based content. Instead of graph, we use
hypergraph to model the various objects and relations, and
consider music recommendation as a ranking problem on this
hypergraph. While an edge of an ordinary graph connects
only two objects, a hyperedge represents a set of objects. In
this way, hypergraph can be naturally used to model high-
order relations. Experiments on a data set collected from
the music social community Last.fm have demonstrated the
effectiveness of our proposed algorithm.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering ; H.5.5 [Infor-
mation Interfaces and Presentation]: Sound and Music
Computing—methodologies and techniques
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1. INTRODUCTION
As the World Wide Web becomes the source and distri-

bution channels of diverse digital music, a large amount of
music tracks are accessible to people. Since it is usually diffi-
cult and time consuming for a user to find and choose his/her
desired music, the music recommender system becomes an
indispensable tool [26]. Music recommendation is valuable
in many real world applications, such as social music com-
munities, online music stores, and some music devices (e.g.
PCs and MP3 players) where music recommendation can be
used to generate music playlists.

For the tasks of music recommendation, the most common
approach is to analyze the audio signal directly. These meth-
ods are called acoustic-based music recommendation [22, 9,
8, 30]. Due to the semantic gap between low level acoustic
features and high level music concepts [10], the results of
acoustic-based music recommendation are not satisfactory.
It is necessary to consider more information in the recom-
mender systems [11]. Some researchers try to utilize the user
rating information by applying collaborative filtering meth-
ods [41, 20, 38, 40]. There is also work which exploits the
information in the meta data (e.g., genre) associated with
music tracks [4, 28, 27]. However, all these approaches only
utilize limited kinds of information, without considering rich
social media information.

In typical music social communities, such as Last.fm1 and
Pandora2, there is rich social media information including
various types of objects and relations among these objects.
Fig. 1 shows an example of Last.fm. In Last.fm, each user
can make friends with other users, join groups, listen to mu-
sic tracks, and use tags to bookmark resources like music
tracks, albums and artists. There are also some relations
among resources, such as inclusion relations between tracks
and albums. Additionally, similarity relations between mu-
sic tracks can be computed based on audio content.

The various social media information mentioned above is

1http://www.last.fm
2http://www.pandora.com
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Figure 1: Various types of objects and relations in
the social music community Last.fm. The relations
include friendship relations, membership relations,
listening relations, tagging relations, inclusion rela-
tions among resources (e.g., tracks and albums) and
similarity relations between music tracks.

very useful for music recommendation. A key step in rec-
ommender systems is to build the users’ preference profiles
[42] which may be inferred from their multi-type actions on
resources, such as rating and tagging. Music similarity rela-
tions can be used in music recommendation by recommend-
ing similar music to each user. Moreover, a user’s interest
may be affected by his/her friends [19, 24].

However, there are two major challenges to exploit all this
information. First, there are many different types of objects
and relations in social media communities, which makes it
difficult to develop a unified framework taking into account
all objects and relations simultaneously. Second, in social
media communities, some relations are beyond pairwise. For
example, more than two users join in the same group, or a
user bookmarks a music track by a tag. We call this kind
of relation high-order relation. Traditional methods [45, 2]
which deal with pairwise relations cannot properly model
these high-order relations.

Traditional recommendation algorithms, such as Collabo-
rative Filtering (CF ) [29, 16, 21], only consider the user-item
rating matrix and fail to take advantage of other kinds of
social media information. Recently, there has been consid-
erable interest in making use of social media information to
enhance the recommendation performance [39, 36, 19, 24,
33, 43]. For example, some previous works employed or-
dinary graphs to model tagging data for recommendation
problems [19, 43]. Fig. 2(a) shows a simple example of us-
ing ordinary graph to model the tagging relations. There
are three tagging relations: u1 bookmarks resources r1 and
r2 with tags t1 and t2, respectively, and u2 bookmarks re-
source r1 with tag t2. Fig. 2(b) shows our unified hyper-
graph approach for modeling the tagging relations. In our
unified hypergraph model, the high-order relations among
the three types of objects can be naturally represented as
triples: (u1, t1, r1), (u1, t2, r2), and (u2, t2, r1). Clearly, the
ordinary graph model fails to capture the tagging relations

u1

u2 t2

t1

r2

r1

u1

u2

t2

t1 r1

r2
e2

e3

e1
(a) (b)

Figure 2: Tagging relations represented in two mod-
els: (a) ordinary graph model, and (b) our uni-
fied hypergraph model. This hypergraph contains
six vertices and three hyperedges, i.e., (u1, t1, r1),
(u1, t2, r2), and (u2, t2, r1).

precisely. For example, from Fig. 2(a), it is unclear whether
u2 bookmarks r1, r2, or both.

In this paper, we use unified hypergraphs to model multi-
type objects and relations in music social communities. Sim-
ilarities between music tracks based on acoustic signals are
treated as one kind of relations. In this way, we combine
acoustic-based and collaborative filtering recommendation
in a unified framework. A hypergraph is a generalization of
the ordinary graph in which the edges, called hyperedges, are
arbitrary non-empty subsets of the vertex set [3]. Each ver-
tex of the hypergraph corresponds to an object of any type.
The hyperedges are used to model high-order relations, as
shown in Fig. 2(b). By using the unified hypergraph model,
we can accurately capture the high-order relations among
various types of objects without loss of any information. We
further consider music recommendation as a ranking prob-
lem on this hypergraph to find the music tracks that each
user desires.

The points below highlight the contributions of this paper:

1. Multi-source media fusion. We integrate multi-source
media information, including multiple kinds of social
media information and music acoustic signals, in music
recommendation to improve the performance.

2. We propose to model high-order relations in social me-
dia information by hypergraph instead of traditional
graph. In this way, there is no information loss in rep-
resenting various types of relations.

3. We empirically explore the contributions of different
types of social media information to recommendation
performance. Our results are helpful for practical mu-
sic recommender systems.

The rest of this paper is organized as follows. Section 2
reviews the related work. In Section 3, we introduce the for-
mal definition of the problem and describe how to perform
ranking on the hypergraph. In Section 4, we discuss how to
apply hypergraph ranking in music recommendation. Ex-
tensive experimental results are presented in Section 5. We
conclude our paper and provide suggestions for future work
in Section 6.

2. RELATED WORK
In this paper, we combine acoustic-based and collabora-

tive filtering music recommendation methods to exploit rich
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social media information and acoustic-based content infor-
mation using hypergraph based learning techniques. Our
work is related to hybrid music recommendation, recommen-
dation using social media information and graph/hypergraph-
based learning. In this section we provide a brief review of
these works.

2.1 Hybrid music recommendation
There are several hybrid approaches combining acoustic-

based and collaborative filtering music recommendation to
improve the overall accuracy of predictions [41, 20, 38, 14,
40]. Yoshii et al. [41, 40] integrate both rating and music
content information by using probabilistic models. Unob-
servable user preferences are directly represented by intro-
ducing latent variables. Li et al. [20] propose an item-based
probabilistic model utilizing audio features to capture accu-
rate similarities among items (i.e., music). Tiemann et al.
[38] investigate ensemble learning methods for hybrid music
recommendation. They apply ensemble learning methods
to combine outputs of item-based collaborative filtering and
acoustic-based recommendation. Donaldson [14] exploits
music co-occurring information in playlists and acoustic sig-
nals for a hybrid music recommender system by unifying
spectral graph and acoustic feature vectors. All the above
works use conventional collaborative filtering methods and
only utilize limited kinds of information, without consider-
ing more sophisticated social media information.

2.2 Recommendation Using Social Media In-
formation

It has been shown that social media information, such as
tagging relations and friendship relations, is valuable for rec-
ommendation. Tso-Sutter et al. [39] reduce three types of
objects in tagging relations (users, resources and tags) to two
types by treating tags as either users or resources, and then
apply traditional item-based or user-based collaborative fil-
tering algorithms [1], respectively. Diederich et al. [13] in-
troduce TF-IDF tag profiles for the users and use these pro-
file vectors to measure user-user similarities in the use-based
CF algorithm. Zhang et al. [43] propose a recommendation
algorithm by integrating diffusion on user-tag-item tripar-
tite graphs . Ma et al. [24] propose a probabilistic factor
analysis framework which naturally fuses the users’ tastes
and their trusted friends’ favors together. To utilize both
friendship and tagging relations, Konstas et al. [19] create a
collaborative recommender system which constructs a social
graph over users, tags and resources. Sen et al. [33] address
resource recommendation by inferring users’ tag preferences
firstly and then compute resource item preferences based on
tag preferences. They propose some heuristic methods to
make use of various social media information, such as click-
through and search information, in the step of tag prefer-
ences generation. Knees et al. [18] utilize web-based musical
artist similarity information to reduce the number of neces-
sary acoustic-based music similarity calculations and then
use music similarity in the task of music playlist generation.

Although the above approaches have achieved great suc-
cess in resource recommendation applications, they fail to
make full use of the high-order relations in the social me-
dia communities. In this work, we propose to use hyper-
graph, rather than the ordinary graph, to precisely capture
the high-order relations and hence enhance the recommen-
dation performance.

2.3 Graph-based Ranking and Hypergraph
Our work is also related to graph-based ranking and hy-

pergraph learning [45, 2, 3, 44, 12, 35, 7].
Zhou et al. propose a manifold ranking algorithm which

ranks data objects with respect to the intrinsic geometrical
structure in the data [45]. They first construct a weighted
graph and set the query point, then let all data points spread
their ranking scores to their nearby neighbors via the weighted
graph. The spread process is repeated until a global sta-
ble state is achieved. Agarwal [2] proposes to model the
data objects as a weighted graph, and incorporate this graph
structure into the ranking function as a regularizer. In this
way, the obtained ranking function varies smoothly over the
graph. To generate personalized tag recommendation, Guan
et al. propose a graph-based ranking algorithm for interre-
lated multi-type objects [15].

Recently, there has been a lot of interest in learning with
hypergraph [3, 44, 12, 35, 7]. Bulò et al. introduce a hy-
pergraph clustering algorithm to extract maximally coher-
ent groups from a set of objects using high-order (rather
than pairwise) similarities [7]. Zhou et al. develop a general
framework which is applicable to classification, clustering
and embedding on hypergraph data [44]. These studies only
focus on classification, clustering and embedding on hyper-
graphs. However, by modeling the multiple types of social
media objects and their relations as a unified hypergraph,
we consider music recommendation as a ranking problem on
unified hypergraph.

3. RANKING ON UNIFIED HYPERGRAPH
In this section we discuss how to model various types of

objects and their relations in a unified hypergraph model
and how to perform ranking on unified hypergraph. We
begin with the description of the problem and the notations.

3.1 Notation and Problem Definition
Let G(V, E, w) denote a hypergraph where V is the set

of vertices, E is the set of hyperedges, and w is a weight
function defined as w : E → R. Each hyperedge e ∈ E is a
subset of V . The degree of a hyperedge e is defined by δ(e) =
|e|, that is, the cardinality of e. If every hyperedge has a
degree of 2, the hypergraph reduces to an ordinary graph.
The degree d(v) of a vertex v is d(v) =

∑
e∈E|v∈e w(e). We

say that there is a hyperpath between vertices v1 and vk

if there is an alternative sequence of distinct vertices and
hyperedges v1, e1, v2, e2, ..., ek−1, vk, such that {vi, vi+1} ⊆
ei for 1 ≤ i ≤ k − 1. A hypergraph is connected if there
is a hyperpath for every pair of vertices [44]. We define

a vertex-hyperedge incidence matrix H ∈ R
|V |×|E| whose

entry h(v, e) is 1 if v ∈ e and 0 otherwise. Then we have:

d(v) =
∑
e∈E

w(e)h(v, e), (1)

δ(e) =
∑
v∈V

h(v, e). (2)

Let De and Dv be two diagonal matrices consisting of hyper-
edge and vertex degrees, respectively. Let W be a |E| × |E|
diagonal matrix containing hyperedge weights.

In the following, we define unified hypergraph which will
be used to model the high-order relations among different
types of objects. A unified hypergraph is a hypergraph that
has multi-type vertices and hyperedges. Suppose a unified
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hypergraph has m types of vertices and n types of hyper-
edges. The vertex set of the i-th type is denoted by V (i)

and the hyperedge set of the j-th type is denoted by E(j).
We define V =

⋃m
i=1 V (i) and E =

⋃n
j=1 E(j). In social

music communities, different kinds of objects, such as users,
tags, resources and groups, can be viewed as different types
of vertices in a unified hypergraph, and different types of
relations among objects can be viewed as different types of
hyperedges. A hyperedge in unified hypergraph can be a
set of vertices with either the same type or different types.
The former kind of hyperedge captures the relations among
the same type of objects, while the latter one captures the
relations across different types of objects.

The problem of ranking on unified hypergraph is addressed
in a “query and ranking” manner as follows. Given some
query vertices from V , rank the other vertices on the uni-
fied hypergraph according to their relevance to the queries.
Let y = [y1, y2, · · · , y|V |]T denote the query vector and yi,
i = 1, · · · , |V |, denote the initial score of the i-th vertex.
We will discuss how to set the query vector in detail in Sec-
tion 4.4. Similarly, let f = [f1, f2, · · · , f|V |]

T be the vector
of ranking scores.

3.2 Regularization Framework for Ranking on
Unified Hypergraph

There are many existing algorithms for learning on hy-
pergraph [3, 44, 12, 35, 7]. However, most of them focus on
classification, clustering, and Euclidean embedding. In this
subsection, we discuss how to perform ranking on unified
hypergraph by using similar idea of [44].

The cost function of f is defined as follows:

Q(f) =
1

2

|V |∑
i,j=1

∑
e∈E

1

δ(e)

∑
{vi,vj}⊆e

w(e)

∥∥∥∥∥ fi√
d(vi)

− fj√
d(vj)

∥∥∥∥∥
2

+μ

|V |∑
i=1

‖fi − yi‖2, (3)

where μ > 0 is the regularization parameter. The optimal
ranking result is achieved when Q(f) is minimized:

f∗ = arg min
f

Q(f). (4)

The first term of the right-hand side in Eq.(3) is the
smoothness constraint. Minimizing it means that vertices
should have similar ranking scores if they are contained in
many common hyperedges. For instance, if two music tracks
are listened by many common users, they will probably have
similar ranking scores. Another example is the ranking of
the users. If two users join in many common interest groups
(or if they listen to many common music tracks, etc.), they
will probably have similar ranking scores. The second term
measures the difference between the obtained ranking scores
and the pre-given scores. The parameter μ controls the rel-
ative importance of these two terms. Note that each hyper-
edge is normalized by its degree δ(e), that is, the number
of vertices contained in this hyperedge. In this way, the
hyperedges with different sizes will be equally treated.

The first term of the right-hand side in the cost function

(3) can be rewritten as follows:

1

2

|V |∑
i,j=1

∑
e∈E

1

δ(e)

∑
{vi,vj}⊆e

w(e)

∥∥∥∥∥ fi√
d(vi)

− fj√
d(vj)

∥∥∥∥∥
2

=
1

2

|V |∑
i,j=1

∑
e∈E

w(e)h(vi, e)h(vj , e)

δ(e)

∥∥∥∥∥ fi√
d(vi)

− fj√
d(vj)

∥∥∥∥∥
2

=

|V |∑
i,j=1

∑
e∈E

w(e)h(vi, e)h(vj , e)

δ(e)

(
f2

i

d(vi)
− fifj√

d(vi)d(vj)

)

=

|V |∑
i=1

f2
i

∑
e∈E

w(e)h(vi, e)

d(vi)

|V |∑
j=1

h(vj , e)

δ(e)

−
|V |∑

i,j=1

∑
e∈E

fiw(e)h(vi, e)h(vj , e)fj√
d(vi)d(vj)δ(e)

=

|V |∑
i=1

f2
i −

|V |∑
i,j=1

∑
e∈E

fiw(e)h(vi, e)h(vj , e)fj√
d(vi)d(vj)δ(e)

= fT f − fT D−1/2
v HWD−1

e HT D−1/2
v f. (5)

We define a matrix

A = D−1/2
v HWD−1

e HT D−1/2
v . (6)

Then we can rewrite the cost function (3) in the matrix-
vector form:

Q(f) = fT (I− A)f + μ(f − y)T (f − y).

Requiring that the gradient of Q(f) vanish gives the following
equation:

∂Q

∂f
|f=f∗ = (I− A)f∗ + μ(f∗ − y) = 0 .

Following some simple algebraic steps, we have

f∗ =
μ

1 + μ

(
I− 1

1 + μ
A
)−1

y. (7)

We define α = 1/(1 + μ). Noticing that μ/(1 + μ) is a
constant and does not change the ranking results, we can
rewrite f∗ as follows:

f∗ =
(
I − αA

)−1
y. (8)

It can be shown that the matrix I − αA is invertible. The
proof is omitted due to space limitation. Note that, the
matrix I−αA is highly sparse. Therefore, the computation
can be very efficient.

4. MUSIC RECOMMENDATION ON HYPER-
GRAPH

In this section, we introduce our approach for Music Rec-
ommendation on Hypergraph (MRH).

4.1 Data Collection
To evaluate our algorithm, we have collected data from

Last.fm in December 2009. Firstly, we collected the top 340
most popular artists, as well as the users who are interested
in those artists. Adding all these users’ friends, we obtained
the candidate set of the users. Then we reduced the candi-
date set of users by restricting that each user has at least
one friend within the set. The final user set is denoted by
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Table 1: Objects in our data set.
Objects Notations Count
Users U 2596
Groups G 1124
Tags Ta 3255
Tracks Tr 16055
Albums Al 4694
Artists Ar 371

Table 2: Relations in our data set.
Relations Notations Count
Friendship relations R1 4503
Membership relations R2 1124
Listening relations R3 304860
Tagging relations on tracks R4 10936
Tagging relations on albums R5 730
Tagging relations on artists R6 36812
Track-album inclusion relations R7 4694
Album-artist inclusion relations R8 371
Similarities between tracks R9 -

U . We collected other objects and relations based on this
user set. We downloaded all the groups in which these users
join, and reduced the set of groups by ensuring that each
group has at least five members in the final user set. The
final group set is denoted by G. For resource objects and
relations, we crawled each user’s top 500 frequently played
music tracks to form the candidate set of tracks. In order to
get the inclusion relations among resources, we downloaded
all corresponding artists and albums of all tracks in the can-
didate track set, and removed those albums that contain less
than five tracks in the candidate track set. After that, we
obtained the final sets of resources, i.e., track set, album set
and artist set, denoted by Tr, Al, and Ar, respectively. We
collected the tagging relations which are essentially triples,
i.e., (user, tag, music track), (user, tag, music album) or
(user, tag, artist). For each user, we downloaded all his/her
tagging relations. We only kept those relations in which the
resource is in Tr, Al or Ar obtained previously. The final
set of tags is denoted by Ta. Finally, we downloaded the
music files (in mp3 or wma formats) from the Web. The ob-
jects and relations used in our experiments are summarized
in Table 1 and Table 2 respectively. Similarities between
music tracks are computed based on music content.

4.2 Acoustic-Based Music Similarity
Acoustic measures of music similarity have been exten-

sively studied in recent years [23, 37, 5, 25]. These algo-
rithms mainly focus on several central problems: 1) what
representative features to extract; 2) how to model the fea-
ture distributions of music; 3) how to measure the similarity
between distribution models.

To compactly represent the music content, in this paper
we derive features from Mel-frequency cepstral coefficients
(MFCCs) [5]. MFCCs are prevalent in audio classification.
A given music track is segmented into short frames and the
MFCC is computed for each frame. Similar to [23], we use
K-means to group all the frames of each track into several
clusters. For all the clusters, the means, covariances, and
weights are computed as the signature of the music track. To

compare the signatures for two different tracks, we employ
the Earth-Mover’s Distance (EMD) [31].

4.3 Unified Hypergraph Construction
We take into account six types of objects and nine types

of relations in the data set mentioned above. The objects
include users, groups, tags and three types of resources (i.e.,
tracks, albums and artists). The relations are divided into
four categories, social relations, actions on resources, inclu-
sion relations among resources, and acoustic-based music
similarity relations. Social relations include friendship re-
lations and membership relations (e.g., an interest group),
denoted by R1 and R2, respectively. Actions on resources
involve four types of relations, i.e., listening relations (R3),
and tagging relations on tracks, albums and artists (R4, R5

and R6). Inclusion relations among resources are the inclu-
sion relations between tracks and albums, albums and artists
(R7 and R8). Acoustic-based music similarity relations are
denoted by R9.

The six types of objects form the vertex set of the uni-
fied hypergraph. So V = U

⋃
G
⋃

Ta
⋃

Tr
⋃

Al
⋃

Ar. And
there are nine types of hyperedges in the unified hypergraph,
each corresponding to a certain type of relations, as listed in
Table 2. We denote the hyperedge sets as E(i) correspond-
ing to Ri, i = 1, · · · , 9. The construction of the nine types
of hyperedges is listed as follows:

• E(1): We build a hyperedge corresponding to each
pairwise friendship and set the hyperedge weight to
be 1.

• E(2): For each group, we build a hyperedge which con-
tains vertices corresponding to all the users in this
group, as well as the group itself. Note that, group
itself is also an object. We set the hyperedge weight
to be 1.

• E(3): For each user-track listening relation, we build
a hyperedge containing the user and the music track.

The weight w(e
(3)
ij ) (e

(3)
ij ∈ E(3)) is set to be the fre-

quency that the user ui listens to the track trj

w(e
(3)
ij ) = |{(ui, trj)|ui ∈ U and trj ∈ Tr}|,

where |Q| denotes the number of elements contained in
set Q. To eliminate the bias, we normalize the weight
as

w(e
(3)
ij )

′
=

w(e
(3)
ij )√∑|Tr|

k=1 w(e
(3)
ik )
√∑|U|

l=1 w(e
(3)
lj )

. (9)

Moreover, in order to treat different types of relations
(except similarity relations between tracks) equally,
the weight is further normalized as follows:

w(e
(3)
ij )∗ =

w(e
(3)
ij )

′

ave(w(e
(3)
i. )′)

, (10)

where ave(w(e
(3)
i. )

′
) is the average of normalized weights

for user ui.

• E(4)/E(5)/E(6): We build hyperedges for tagging rela-
tions on three types of resources as illustrated in Fig-
ure 2(b). Each hyperedge contains three vertices (cor-
responding to a user, a tag and a resource) and the
weight is set to be 1.
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Table 3: The incidence matrix H of the unified hypergraph and the sub-matrices.

E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(8) E(9)

U UE(1) UE(2) UE(3) UE(4) UE(5) UE(6) 0 0 0

G 0 GE(2) 0 0 0 0 0 0 0

Ta 0 0 0 TaE(4) TaE(5) TaE(6) 0 0 0

Tr 0 0 TrE(3) TrE(4) 0 0 TrE(7) 0 TrE(9)

Al 0 0 0 0 AlE(5) 0 AlE(7) AlE(8) 0

Ar 0 0 0 0 0 ArE(6) 0 ArE(8) 0

• E(7)/E(8): We build a hyperedge for each album which
contains all the tracks in this album and the album
itself. Similarly, the hyperedge for an artist contains
all the albums belonging to the artist and the artist
oneself. The weights of the hyperedges corresponding
to albums and artists are set to be 1.

• E(9): We build a k nearest neighbor (knn) graph based
on acoustic-based music similarities and build hyper-
edges for our unified hypergraph corresponding to the

edges of the knn graph. The weight w(e
(9)
ij ) is the sim-

ilarity of tracks tri and trj computed in Section 4.2.
To eliminate the bias, we normalize the weight as

w(e
(9)
ij )

′
=

w(e
(9)
ij )

max(w(e(9)))
. (11)

where max(w(e(9))) is the maximum of all music sim-
ilarities. We introduce a parameter c to control the
relative importance between acoustic content of music
tracks and other social media information. Finally, the
weight is

w(e
(9)
ij )∗ = c ∗ w(e

(9)
ij )

′
. (12)

Finally, we get the vertex-hyperedge incidence matrix H, as
shown in Table 3, and the weight matrix W.

4.4 Methodology
Our music recommendation algorithm MRH has two phases,

offline training and online recommendation. In the offline
training phase, we first construct the unified hypergraph
as described above and get the vertex-hyperedge incidence
matrix H and the weight matrix W. Then the vertex de-
gree matrix Dv and the hyperedge degree matrix De are
computed based on H and W. Finally, we calculate (I −
αD

−1/2
v HWD−1

e HT D
−1/2
v )−1, denoted as (I−αA)−1, with

α properly set. In the online recommendation phase, we
need to build the query vector y first. Then the ranking
results f∗ can be computed.

Our approach can also be applied to other applications
by choosing different vertices as queries and considering the
ranking results of different vertex types. For example, if
we choose a user as the query, the ranking results of music
tracks can be used for music track recommendation (i.e., the
primary focus of this paper), the ranking results of the users
can be used for friend recommendation, and the ranking
results of groups can be used for interest group recommen-
dation. For the tag recommendation problem [34, 15], we

should set the target user and the target resource as queries
and consider the ranking results of tags.

There are three methods to set the query vector y for
music track recommendation: (1) Set the entry of y corre-
sponding to the target user u to be 1 and all others to be 0.
(2) Set the entries of y corresponding to the target user u,
as well as all the other objects connected to u by some hy-
peredge, to be 1. (3) Set the entry of y corresponding to the
target user u to be 1. Also, if u is connected to an object v,
then set the entry of y corresponding to v to be Au,v. Note
that, Au,v is a measure of the relatedness between u and
v. The first method fails to consider the closely related ob-
jects which may also reflect the user’s interest. The second
method may not be a good choice, since intuitively differ-
ent objects reflect the user’s interest with different degrees.
Therefore, in our experiments we adopt the third method.
After setting the query vector, the ranking results f∗ can be
computed. For the music track recommendation problem,
we only consider the ranking results of music tracks as men-
tioned above. Finally, we can recommend to the user the
top ranked tracks which he/she has not listened to before.

5. EXPERIMENTS
In this section, we investigate the use of our proposed

approach for music track recommendation.

5.1 Compared Algorithms
We compare our MRH algorithm with five recommenda-

tion algorithms. The first one is an user-based Collaborative
Filtering (CF) method [29, 19] which only uses listening re-
lations. We choose user-based CF algorithm because, unlike
traditional data sets for CF, our data set has much more
music tracks than users. Given a target user ui, let rui,trp

be a predicted ranking score of user ui for music track trp,
which is given by [19]

rui,trp = w(e
(3)
i. )∗ +

∑k
j=1(w(e

(3)
jp )∗−w(e

(3)
j. )∗)sui,uj∑k

j=1 sui,uj

, (13)

where

w(e
(3)
i. )∗ =

∑ |T r|
p=1 w(e

(3)
ip )∗

|{trp|trp∈Tr and w(e
(3)
ip )∗ �=0}|

(14)

and sui,uj is the similarity weight between users ui and uj .
k is the number of nearest neighbors of user ui. We employ
the cosine-based approach [6, 32] to compute the similarities
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(a) (b)
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Figure 3: Inclusion relations represented in two
models: (a) our unified hypergraph model, and (b)
ordinary graph model.

between users:

sui,uj =

∑|Tr|
p=1 w(e

(3)
ip )∗w(e

(3)
jp )∗√∑|Tr|

p=1

(
w(e

(3)
ip )∗

)2
√∑|Tr|

p=1

(
w(e

(3)
jp )∗

)2
. (15)

Based on the obtained similarities, we use the significance
weighting method proposed in [17] to improve the recom-
mendation performance. Specifically, if the number of co-
listened music tracks between two users, denoted by n, is
less than a threshold number N , then we multiply their sim-
ilarity by n/N . In our experiment, we empirically set the
value of N to be 20, and the number of nearest neighbors k
to be 5, to achieve the best performance.

The second compared algorithm is a acoustic-based music
recommendation method [38] which uses listening relations
and music similarity relations. It is denoted by AB.

The third compared algorithm uses all the information in
our downloaded data set. Unlike MRH, we use the ordinary
graph to model social media information. Specifically, we
model the tagging relations by graph structure as shown in
Fig. 2(a), and model the membership and inclusion relations
by tree structure as shown in Fig. 3. The graph ranking
algorithm described in [45] is applied to compute the optimal
ranking scores. We call this algorithm Recommendation on
Unified Graph (RUG).

The fourth compared algorithm is our MRH method but
only using listening relations and music similarity relations
(i.e., R3 and R9). This method is denoted by MRH-hybrid.

The fifth compared algorithm is our MRH method but not
using music similarity relations. It uses all the other eight
types of relations. This method is denoted by MRH-social.

5.2 Evaluation
To evaluate the performance of our MRH algorithm and

the other compared algorithms, for each user, we randomly
select 20% listening relations as test data for evaluation pur-
pose. If the user has access to a certain track tr in the test
set, we require that he/she has no access to tr in the train-
ing set. To achieve this, we remove all the corresponding
tagging relations, leaving us with the final training set.

For evaluation metrics, we use Precision, Recall, F1, Mean
Average Precision (MAP) and Normalized Discount Cumu-
lative Gain (NDCG) to measure the performance of differ-
ent recommendation algorithms. Precision is defined as the
number of correctly recommended items divided by the to-
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Figure 4: Recall-Precision curves for all the six al-
gorithms.

tal number of recommended items. Recall is defined as the
number of correctly recommended items divided by the total
number of items which should be recommended (i.e., those
actually listened by the target user). F1 is the harmonic
mean of Precision and Recall. Average Precision (AP) is
the average of precisions computed at the point of each cor-
rectly recommended item in the recommendation list:

AP =

∑N
i Precision@i ∗ corri

Number of correctly recommended items
, (16)

where Precision@i is the precision at ranking position i, N is
the number of recommended items, and corri = 1 if the item
at position i is correctly recommended, otherwise corri = 0.
MAP is the mean of average precision scores over all users.
NDCG at position n is defined as:

NDCG@n =
1

IDCG
×

n∑
i=1

2ri − 1

log2(i + 1)
, (17)

where ri is the relevance rating of item at rank i. In our
case, ri is 1 if the user has listened to this recommended
music and 0 otherwise. IDCG is chosen so that the perfect
ranking has a NDCG value of 1.

5.3 Performance Comparison
We use all evaluation metrics mentioned in Section 5.2

to measure the performance of each recommendation algo-
rithm. Fig. 4 shows the recall-precision curves for all six
algorithms. We report the performance of all six algorithms
in terms of MAP, F1 and NDCG in Table 4 (MAP and F1)
and Table 5 (NDCG). It is evident that our proposed algo-
rithm significantly outperforms other recommendation algo-
rithms in most cases, especially at lower ranks. Note that,
our proposed MRH algorithm models the high-order rela-
tions by hyperedges, whereas RUG uses the ordinary graph
to approximate these high-order relations. The superiority
of MRH over RUG indicates that the hypergraph is indeed
a better choice for modeling complex relations in social me-
dia communities. Acoustic-based (AB) method works the
worst. This is because acoustic-based method incurs the se-
mantic gap and similarities based on acoustic content are
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Table 4: Comparison of recommendation algorithms in terms of MAP and F1. (Bold typeset indicates the
best performance. * indicates statistical significance at p < 0.001 compared to the second best.)

MAP F1@5 F1@10 F1@20 F1@30 F1@50 F1@70 F1@100 F1@200
CF 0.1632 0.0557 0.0929 0.1243 0.1329 0.1294 0.1197 0.1064 0.0765
AB 0.0762 0.0226 0.0303 0.0377 0.0403 0.0421 0.0415 0.0401 0.0334
RUG 0.2626 0.1729 0.2323 0.2587 0.2516 0.2237 0.1988 0.1701 0.1169
MRH-hybrid 0.2470 0.1653 0.2224 0.2451 0.2377 0.2099 0.1855 0.1581 0.1076
MRH-social 0.2755 0.1705 0.2311 0.2654 0.2660 0.2440 0.2202 0.1906 0.1318*
MRH 0.2948* 0.1855* 0.2510* 0.2839* 0.2799* 0.2509* 0.2227 0.1892 0.1270

Table 5: Comparison of recommendation algorithms in terms of NDCG. (Bold typeset indicates the best
performance. * indicates statistical significance at p < 0.001 compared to the second best.)

NDCG@5 NDCG@10 NDCG@30 NDCG@50 NDCG@70 NDCG@100 NDCG@200
CF 0.1522 0.1713 0.2519 0.2987 0.3278 0.3579 0.4120
AB 0.0733 0.0820 0.1241 0.1532 0.1749 0.2027 0.2556
RUG 0.4849 0.4318 0.3826 0.4109 0.4345 0.4587 0.5037
MRH-hybrid 0.4587 0.4091 0.3640 0.3911 0.4124 0.4346 0.4753
MRH-social 0.4759 0.4268 0.3866 0.4197 0.4480 0.4763 0.5264
MRH 0.5192* 0.4650* 0.4174* 0.4484* 0.4740* 0.4987* 0.5419*
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Figure 5: The parameter settings of k and c for mu-
sic similarity relations. Firstly, we fix c at 0.1 em-
pirically and let k vary. (a) shows the performance
measured by MAP. Then we fix k at 60 and let c vary.
(b) shows the performance measured by MAP.

not always consistent with human knowledge [10]. CF algo-
rithm does not work well too. This is probably because the
user-track matrix in our data set is highly sparse, with only
about 0.6% non-zero entries. MRH-hybrid only uses simi-
larity relations among music tracks and listening relations,
but it works much better than AB and CF.

Comparing to MRH-social, MRH uses similarity relations
among music tracks additionally. We find that using this
acoustic-based information can improve the recommenda-
tion result, especially when recall is small. This is because
acoustic-based information can alleviate some well-known
problems associated with data sparseness in collaborative
recommender systems, e.g., user bias, non-association and
cold-start problems [20].

5.4 Exploring Parameter Settings
There are three parameters in our algorithm, i.e., the num-

ber of nearest neighbors k mentioned in Section 4.3, c in Eq.
(12) and α in Eq. (8).

To explore the influence of the parameters k and c, we
use MAP as the evaluation metric. Fig. 5 shows the results.
Firstly, we fix c at 0.1 empirically and let k vary. Fig. 5(a)
shows the performance measured as a function of k. The
best result is obtained when k is around 60. Then we fix
k at 60 and let c vary. Fig. 5(b) shows the performance
measured as a function of c. The best result is obtained
when c = 0.1. As can be seen, our algorithm consistently
outperforms the other two compared algorithms in a wide
range of parameter variation. In our experiments, we set k
to be 60 and c to be 0.1 for MRH, MRH-hybrid and RUG.

α is a common parameter shared by our MRH algorithm
and RUG [45]. In our experiments, we set α to be 0.98 for
MRH, MRH-hybrid, MRH-social, and RUG empirically.

5.5 Social Information Contribution
To explore the contributions of different types of social me-

dia information to the recommendation performance, we in-
vestigate the performances of MRH on four different subsets
of social media information. The first subset only contains
listening relations (i.e., R3), which is considered as the base
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Table 6: Comparison of MRH on different subsets of social information in terms of MAP and F1. (Bold
typeset indicates that the performance is better than that of using the listening relations (R3) alone. *
indicates statistical significance at p < 0.001 compared to the algorithm by using listening relations alone.)

MAP F1@5 F1@10 F1@30 F1@40 F1@60 F1@70 F1@100 F1@200
MRH on R3 0.2303 0.1430 0.1996 0.2332 0.2143 0.1945 0.1772 0.1695 0.1184
MRH on R1, R2, R3 0.2308 0.1444 0.1998 0.2337 0.2146 0.1943 0.1772 0.1695 0.1181
MRH on R3, R4 0.2303 0.1432 0.1997 0.2332 0.2143 0.1945 0.1773 0.1695 0.1184
MRH on R3, R7, R8 0.2757* 0.1748* 0.2339* 0.2642* 0.2413* 0.2176* 0.1970* 0.1878* 0.1299*

relations. The second subset contains listening relations and
social relations (i.e., R1, R2). The third subset contains lis-
tening relations and tagging relations on tracks (i.e., R4).
The fourth subset contains listening relations and inclusion
relations (i.e., R7, R8). From Table 6, we can see that in-
clusion relations significantly improve the recommendation
performance. By using inclusion relations among resources,
we can recommend music tracks in the same or similar al-
bums, as well as the tracks performed by the same or similar
artists. As can be seen, there is slight improvement at low
recall region by using social relations. Intuitively, the users’
tastes may be inferred from friendship and membership re-
lations. Tagging relations do not improve the performance.
That is because people usually bookmark music tracks they
have already listened to. Therefore, there is strong correla-
tion between listening relations and tagging relations, and
thus the usage of tagging relations is limited.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we address the music recommendation prob-

lem in music social communities, and focus on combining
various types of social media information and music acous-
tic signals. We model the recommendation problem as a
ranking problem on a unified hypergraph and propose a
novel algorithm for music recommendation on hypergraph
(MRH). MRH constructs a hypergraph to model the multi-
type objects in a music social community as vertices, and the
relations among these objects as hyperedges. Similarities
among music tracks based on acoustic signals are treated as
one kind of relations. In this way, the high-order relations
in social information can be naturally captured. In addi-
tion, collaborative filtering and acoustic-based music rec-
ommendation is combined in a unified framework. Based
on the constructed hypergraph, we then use a regulariza-
tion framework to derive the ranking results for query ver-
tices. We treat a user as the query and recommend the
top ranked music tracks to the user. The experiments on a
data set collected from the music social community Last.fm
have demonstrated that our proposed algorithm significantly
outperforms traditional recommendation algorithms and the
rich social media information is very useful for music recom-
mendation.

MRH can also be used for recommender systems in other
kinds of social media communities, such as movies and pic-
tures. In this work, we treat all types of social relations (ex-
cept music similarity relations) equally. However, in prac-
tical applications, different types of relations may have dif-
ferent importance. For example, in some pure social net-
works such as Facebook3 and LinkedIn4, the tastes of the

3http://www.facebook.com
4http://www.linkedin.com

users can be affected by their friends significantly. In this
case, we should assign relatively higher weights to social re-
lations such as friendship and membership relations. On
the other hand, for special interest social media communi-
ties (e.g., Last.fm and YouTube5), the unified hypergraph
model should put more emphasis on the users’ actions on
resources (e.g., rating and tagging) and the relations among
resources (e.g., inclusion relations).

Moreover, as mentioned in Section 4.4, our approach is
not limited to music track recommendation. We can exploit
it in different applications, such as friend recommendation
and personalized tag recommendation. These problems are
left for our future work.
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