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ABSTRACT

Repetition is a fundamental element in generating and per-

ceiving structure in music. Recent work has applied this

principle to separate the musical background from the vo-

cal foreground in a mixture, by simply extracting the un-

derlying repeating structure. While existing methods are

effective, they depend on an assumption of periodically re-

peating patterns. In this work, we generalize the repetition-

based source separation approach to handle cases where

repetitions also happen intermittently or without a fixed

period, thus allowing the processing of music pieces with

fast-varying repeating structures and isolated repeating el-

ements. Instead of looking for periodicities, the proposed

method uses a similarity matrix to identify the repeating

elements. It then calculates a repeating spectrogram model

using the median and extracts the repeating patterns using

a time-frequency masking. Evaluation on a data set of 14

full-track real-world pop songs showed that use of a simi-

larity matrix can overall improve on the separation perfor-

mance compared with a previous repetition-based source

separation method, and a recent competitive music/voice

separation method, while still being computationally effi-

cient.

1. INTRODUCTION

A system that can efficiently separate a song into fore-

ground (e.g. the soloist or voice) and background (the mu-

sical accompaniment) components would be of great inter-

est for a wide range of applications. These applications in-

clude instrument/vocalist identification, music/voice tran-

scription, melody extraction, audio remixing, and karaoke.

While there are many approaches that have been applied

to this problem (see Section 2), one promising approach

is to use analysis of the repeating structure in the audio.

Many musical pieces are characterized by an underlying

repeating structure (e.g. drum loop or 4-measure vamp)

over which varying elements are superimposed. This is

especially true for pop songs where a singer often overlays
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varying vocals on a repeating accompaniment.

Recent work (see Section 2) has exploited repetition to

separate the repeating musical background from the non-

repeating vocal foreground. This work has relied on the

assumption that there is a global or a local period of repeti-

tion in the musical background. Should repeated elements

be present (e.g. reuse of the same chord voicing in the

piano) but performed in a way that is not obviously peri-

odic (e.g. occasional chordal piano “fills” at the appropri-

ate moments), existing repetition-based approaches fail.

In this work, we generalize the repetition-based source

separation approach to handle cases where repetitions also

happen intermittently or without a fixed period. Instead of

looking for periodicities, the proposed method identifies

repeating elements by looking for similarities, by means

of a similarity matrix. Once identified, median filtering

is then performed on the repeating elements to calculate a

repeating spectrogram model for the background. A time-

frequency mask can finally be derived to extract the repeat-

ing patterns (see Section 3). This allows the processing

of music pieces with fast-varying repeating structures and

isolated repeating elements, without the need to identify

periods of the repeating structure beforehand.

The rest of this paper is organized as follows. Section

2 describes the related work. Section 3 introduces the pro-

posed method. Section 4 presents an evaluation of the pro-

posed method on a data set of 14 full-track real-world pop

songs, against a previous repetition-based source separa-

tion method, and a recent competitive music/voice separa-

tion method. Section 5 concludes this article.

2. RELATED WORK

There have been a number of approaches applied to the

problem of separating the foreground (typically the voice)

from the background. In stereo recordings, panning infor-

mation (e.g. the vocalist is typically panned to the middle)

can be applied. Such approach fails when the vocalist is

not center-panned (e.g. many Beatles recordings). Cross-

channel timing and amplitude differences can be applied in

more complex frameworks, such as in the Degenerate Un-

mixing Estimation Technique (DUET) [8]. This approach

is difficult to apply to pop music, due to the reverberant

effects added, as well as the violation of the sparsity as-

sumption for music mixtures.

Other music/voice separation methods focus on mod-
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eling either the music signal, by generally training an ac-

companiment model from the non-vocal segments [6, 11],

or the vocal signal, by generally extracting the predomi-

nant pitch contour [7, 9], or both signals via hybrid mod-

els [1, 13]. Most of these methods require a training phase

on audio with labeled vocal/non-vocal segments.

Recently, a relatively simple approach has also been

proposed for music/voice separation. The method is based

on a median filtering of the mixture spectrogram at dif-

ferent frequency resolutions, in such a way that the har-

monic and percussive elements of the accompaniment can

be smoothed out, leaving out the vocals [3].

Another recent and promising approach is to apply anal-

ysis of the repeating structure in the audio to extract the re-

peating musical background from the non-repeating vocal

foreground. In this work, we focus on this approach.

The first method to explicitly use repetition to sepa-

rate the musical background from the vocal foreground

is the REpeating Pattern Extraction Technique (REPET)

[12]. The method seeks to identify a global period for the

repeating structure, so that it can build a model of the re-

peating background. This model is then used to construct

a time-frequency mask to separate the repeating musical

background from the non-repeating vocal foreground.

The original REPET method can be successfully ap-

plied for music/voice separation on short excerpts (e.g. 10

second verse) [12]. For complete music pieces, the repeat-

ing background is likely to vary over time (e.g. verse fol-

lowed by chorus). An extended version of REPET was

therefore later introduced to handle variations in the repeat-

ing structure [10]. Rather than finding a global period, the

method tracks local periods of the repeating structure. In

both cases, the algorithm needs to identify periods of the

repeating structure, as both methods assume periodically

repeating patterns.

In this work, we propose to generalize the repetition-

based source separation approach to handle cases where

repetitions also happen intermittently or without a fixed pe-

riod, by using a similarity matrix.

3. PROPOSED METHOD

3.1 Similarity Matrix

The similarity matrix is a two-dimensional representation

where each point (a, b) measures the (dis)similarity be-

tween any two elements a and b of a given sequence. Since

repetition/similarity is what makes the structure in music, a

similarity matrix calculated from an audio signal can help

to reveal the musical structure that underlies it [4].

Given a single-channel mixture signal x, we first cal-

culate its Short-Time Fourier Transform (STFT) X , using

half-overlapping Hamming windows of N samples length.

We then derive the magnitude spectrogram V by taking

the absolute value of the elements of X , after discarding

the symmetric part, while keeping the DC component.

We then define the similarity matrix S as the matrix

multiplication between transposed V and V , after normal-

ization of the columns of V by their Euclidean norm. In

other words, each point (ja, jb) in S measures the cosine

similarity between the time frames ja and jb of the mixture

spectrogram V . The calculation of the similarity matrix S
is shown in Equation 1.

S(ja, jb) =

∑n

i=1 V (i, ja)V (i, jb)
√

∑n

i=1 V (i, ja)2
√

∑n

i=1 V (i, jb)2

where n = N/2 + 1 = # frequency channels

∀ja, jb ∈ [1,m] where m = # time frames

(1)

3.2 Repeating Elements

Once the similarity matrix S is calculated, we use it to

identify the repeating elements in the mixture spectrogram

V . For all the frames j in V , we look for the frames that

are the most similar to the given frame j and save them in

a vector of indices Jj . Assuming that the non-repeating

foreground (≈ voice) is sparse and varied compared to the

repeating background (≈ music) - a reasonable assumption

for voice in music, the repeating elements revealed by the

similarity matrix should be those that form the underlying

repeating structure (≈ music). The use of a similarity ma-

trix actually allows us to identify repeating elements that

do not necessarily happen in a periodic fashion.

We add the following constraint parameters to the algo-

rithm. To limit the number of repeating frames considered

similar to the given frame j, we define k, the maximum

allowed number of repeating frames. We define t, the min-

imum allowed threshold for the similarity between a re-

peating frame and the given frame (t ∈ [0, 1]). Consecu-

tive frames can exhibit high similarity without representing

new instances of the same structural element, since frame

duration is unrelated to the duration of musical elements.

We therefore define d, the minimum allowed (time) dis-

tance between two consecutive repeating frames deemed

to be similar enough to indicate a repeating element.

3.3 Repeating Model

Once the repeating elements have been identified for all the

frames j in the mixture spectrogram V through their cor-

responding vectors of indices Jj , we use them to derive a

repeating spectrogram model W for the background. For

all the frames j in V , we derive the corresponding frame

j in W by taking the median of the corresponding repeat-

ing frames whose indices are given by vector Jj , for every

frequency channel. The calculation of the repeating spec-

trogram model W is shown in Equation 2.

W (i, j) = median
l∈[1,k]

{

V (i, Jj(l)
}

where Jj = [j1 . . . jk] = indices of repeating frames

where k = maximum number of repeating frames

∀i ∈ [1, n] = frequency channel index

∀j ∈ [1,m] = time frame index

(2)

The rationale is that, assuming that the non-repeating

foreground (≈ voice) has a sparse time-frequency repre-

sentation compare to the time-frequency representation of

the repeating background (≈ music), time-frequency bins
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Figure 1. Derivation of the repeating spectrogram model

W : (1) compute the similarity matrix S from the mixture

spectrogram V using the cosine similarity measure; (2) for

all frames j in V , identify the k frames j1 . . . jk that are

the most similar to frame j using S; (3) derive frame j of

the repeating spectrogram model W by taking the median

of the k frames j1 . . . jk of V , for every frequency channel.

with little deviations between repeating frames would con-

stitute a repeating pattern and would be captured by the

median. Accordingly, time-frequency bins with large de-

viations between repeating frames would constitute a non-

repeating pattern and would be removed by the median.

The derivation of the repeating spectrogram model W from

the mixture spectrogram V using the similarity matrix S is

illustrated in Figure 1.

3.4 Time-frequency Mask

Once the repeating spectrogram model W is calculated,

we use it to derive a time-frequency mask M . But first,

we need to create a refined repeating spectrogram model

W ′ for the background, by taking the minimum between

W and V , for every time-frequency bin. Indeed, as noted

in [10], if we assume that the non-negative mixture spec-

trogram V is the sum of a non-negative repeating spec-

trogram W and a non-negative non-repeating spectrogram

V − W , then time-frequency bins in W can at most have

the same value as the corresponding time-frequency bins

in V . In other words, we want W ≤ V , for every time-

frequency bin; hence the use of the minimum function.

We then derive a time-frequency mask M by normaliz-

ing W ′ by V , for every time-frequency bin. The rationale

is that time-frequency bins that are likely to constitute a

repeating pattern in V will have values near 1 in M and

will be weighted toward the repeating background (≈ mu-

sic). Accordingly, time-frequency bins that are unlikely to

constitute a repeating pattern in V will have values near 0

in M and will be weighted toward the non-repeating fore-

ground (≈ voice). The calculation of the time-frequency

mask M is shown in Equation 3.

W ′(i, j) = min
(

W (i, j), V (i, j)
)

M(i, j) =
W ′(i, j)

V (i, j)
with M(i, j) ∈ [0, 1]

∀i ∈ [1, n] = frequency channel index

∀j ∈ [1,m] = time frame index

(3)

The time-frequency mask M is then symmetrized and

applied to the STFT X of the mixture signal x. The es-

timated music signal is finally obtained by inverting the

resulting STFT into the time domain. The estimated voice

signal is obtained by simply subtracting the music signal

from the mixture signal.

4. EVALUATION

4.1 Competitive Methods & Data Set

We label the proposed method, based on the use of a sim-

ilarity matrix, Proposed. We compare separation perfor-

mance of Proposed with two competitive music/voice sep-

aration methods on a data set of 14 full-track pop songs.

The first competitive method is an extension of the orig-

inal REPET algorithm to handle variations in the underly-

ing repeating structure [10]. We refer to this method as

REPET+. The method first tracks local periods of the un-

derlying repeating structure using a beat spectrogram, then

models local estimates of the repeating background using

the median, and finally extracts the repeating patterns from

the mixture using a time-frequency mask. For the com-

parison, we used the separation results of REPET+ with

soft time-frequency masking and high-pass filtering with a

cutoff frequency of 100 Hz on the voice estimates, as pub-

lished in [10].

The second competitive method is the Multipass Me-

dian Filtering-based Separation (MMFS), another recently

proposed simple and novel approach for music/voice sepa-

ration [3]. The method is based on a median filtering of the

mixture spectrogram at different frequency resolutions, in

such a way that the harmonic and percussive elements of

the accompaniment can be smoothed out, leaving out the

vocals. For the comparison, we used the separation results

of the best version of MMFS out of the four proposed ver-

sions, with high-pass filtering with a cutoff frequency of

100 Hz on the voice estimates, as published in [3].

The data set consists of 14 full-track real-world pop

songs, in the form of split stereo WAVE files sampled at

44.1 kHz, with the accompaniment and vocals on the left

and right channels, respectively. These 14 stereo sources

were created from recordings released by the band The

Beach Boys, where some of the accompaniments and vo-

cals were made available as split stereo tracks 1 and sepa-

rated tracks 2 . This data set was used in [10] for the evalu-

1 Good Vibrations: Thirty Years of The Beach Boys, 1993
2 The Pet Sounds Sessions, 1997
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ation of REPET+ against the best version of MMFS.

Following the framework adopted in [3] and [10], we

then used those 14 stereo sources to create three data sets

of 14 mono mixtures, by mixing the channels at three dif-

ferent voice-to-music ratios: -6 dB (music is louder), 0 dB

(same original level), and 6 dB (voice is louder). Note that

we are using the exact same data set as in [10], however

it is not the exact same data set that was used in [3]. The

authors of [3] did not mention which tracks they used for

their experiments and also unlike them, but as in [10], we

process the full tracks without segmenting them before-

hand, since Proposed can handle long recordings, and this

without memory or computational constraints.

4.2 Algorithm Parameters & Separation Measures

We calculated the STFT of each mixture for each of the

three mixture sets (-6, 0, and 6 dB) using half-overlapping

Hamming windows of N = 2048 samples length, corre-

sponding to a duration of 46.4 milliseconds at a sampling

frequency of 44.1 kHz. We then processed each mixture

using Proposed. The parameters were fixed as follows:

maximum number of repeating frames k = 100, minimum

threshold for the similarity between a repeating frame and

the given frame t = 0, and minimum distance between two

consecutive repeating frames d = 1 second. Pilot experi-

ments showed that those parameters lead to overall good

separation results. For the comparison, we also applied a

high-pass filtering with a cutoff frequency of 100 Hz on

the voice estimates. This means that all the energy un-

der 100 Hz in the voice estimates is transferred to the cor-

responding music estimates. The rational is that singing

voice rarely happen below 100 Hz.

We measured separation performance by employing the

BSS EVAL toolbox [2]. The toolbox proposes a set of now

widely adopted measures that intend to quantify the quality

of the separation between a source and its corresponding

estimate: Source-to-Distortion Ratio (SDR), Sources-to-

Interferences Ratio (SIR), and Sources-to-Artifacts Ratio

(SAR). Following the framework adopted in [3] and [10],

we measured SDR, SIR, and SAR on segments of 45 sec-

ond length from the music and voice estimates. Higher val-

ues of SDR, SIR, and SAR suggest better separation per-

formance. We chose to use those measures because they

are widely known and used, and also because they have

been shown to be well correlated with human assessments

of signal quality [5].

4.3 Comparative Results & Statistical Analysis

Figures 2, 3, and 4 show the separation performance using

the SDR, SIR, and SAR, respectively, in dB, for the mu-

sic component (top row) and the voice component (bottom

row), at voice-to-music mixing ratio of -6 dB (left column),

0 dB (middle column), and 6 dB (right column). In each

column, from left to right, the first results correspond to

the best version of MMFS (MMFS), where the means of

the distributions are represented as crosses (the standard

deviations were not reported in [3]). The second results

correspond to the extension of REPET for varying repeat-

ing structures (REPET+), where the means and standard

deviations of the distributions are represented as error bars.

The third results correspond to the proposed method with

similarity matrix (Proposed), where the means and stan-

dard deviations of the distributions are represented as error

bars. The mean values are displayed. Higher values are

better.

Figure 2. Separation performance using the SDR in dB,

for the music component (top row) and the voice com-

ponent (bottom row), at voice-to-music mixing ratio of

-6 dB (left column), 0 dB (middle column), and 6 dB

(right column), using the best version of MMFS (MMFS)

(means represented as crosses), the extension of REPET

for varying repeating structures (REPET+), and the pro-

posed method with similarity matrix (Proposed) (means

and standard deviations represented as error bars). Mean

values are displayed. Higher values are better.

We compared the three different methods including a

high-pass filtering with a cutoff frequency of 100 Hz on the

voice estimates, because such post-processing of the esti-

mates typically helps to produce better separation results.

For our proposed method, the high-pass filtering increased

SDR and SIR, for both the music and voice estimates. SAR

however increased only for the music estimates. This is

probably due to the fact that, although improving the sep-

aration performance overall, using a high-pass filtering on

the voice estimates creates “holes” in their time-frequency

representation, which tend to increase the separation arti-

facts, hence the decrease of SAR for the voice estimates.

As we can see in Figures 2, 3, and 4, as the voice-

to-music ratio gets larger, SDR, SAR, and SIR get lower

for the music estimates and larger for the voice estimates,

and vice versa. This is an intuitive result also observed

for MMFS and REPET+. Indeed, as the voice compo-

nent gets louder compared to the music component, it then
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Figure 3. Separation performance using the SIR in dB.

becomes easier to extract the voice component, and ac-

cordingly harder to extract the music component, and vice

versa. A multiple comparison test showed that those re-

sults were statistically significant in each case. We used an

Analysis of Variance (ANOVA) when the compared distri-

butions were all normal, and a Kruskal-Wallis test when

at least one of the compared distributions was not normal.

We used a Jarque-Bera normality test to determine if a dis-

tribution was normal or not.

Figure 4. Separation performance using the SAR in dB.

As we can see in Figures 2, 3, and 4, compared with

MMFS, Proposed gave overall better SDR for both the mu-

sic and voice estimates, better SIR for the music estimates,

and better SAR for the voice estimates, and this for all the

three voice-to-music ratios. A one-sample t-test comparing

the means of the distributions of Proposed with the means

of MMFS (since the only values provided in [3] were the

means) showed that those results were statistically signif-

icant in each case, except for the SDR at voice-to-music

ratio of -6 dB, where the improvement of Proposed com-

pared with MMFS was not significant for the music esti-

mates, and a decrease, although not significant, was ob-

served for the voice estimates. This suggest that, compared

with MMFS, Proposed has globally better separation per-

formance, particularly it is better at removing the “vocal”

interferences from the accompaniment, and at limiting the

separation artifacts in the voice estimates.

As we can also see in Figures 2, 3, and 4, for the music

estimates, compared with REPET+, Proposed gave over-

all better SDR and SAR for all the three voice-to-music

ratios, and better SIR at voice-to-music ratio of 6 dB. A

multiple comparison test showed that those results were

statistically significant in each case, except for the SDR

at voice-to-music ratio of -6 dB where the improvement of

Proposed compared with REPET+ was not significant. For

the voice estimates, compared with REPET+, Proposed

gave overall better SAR for all the three voice-to-music

ratios, and better SDR and SIR at voice-to-music ratio of -

6 dB. A multiple comparison test showed that those results

were statistically significant in each case, except for the

SAR where the improvement of Proposed compared with

REPET+ was only significant at voice-to-music ratio of -

6 dB. We used ANOVA when the compared distributions

were all normal, and a Kruskal-Wallis test when at least

one of the compared distributions was not normal. This

suggest that, compared with REPET+, Proposed has glob-

ally better separation performance for a component (mu-

sic or voice), as the given component becomes softer com-

pared with the other one.

The average computation time of Proposed over all the

mixtures and all of the three mixture sets (-6, 0, and 6 dB)

was 0.563 second for 1 second of mixture, when imple-

mented in Matlab on a PC with Intel(R) Core(TM)2 Quad

CPU of 2.66 GHz and 6 GB of RAM. In other words,

Proposed can perform music/voice separation of a mix-

ture audio in half the time of the playback of the audio,

for recordings of the length of a typical pop song. This is

encouraging, since Proposed builds a similarity matrix that

is O(n2), where n is the length of the audio file. As a point

of comparison, the average computation time for REPET+

for the exact same data set was 1.1830 second for 1 second

of mixture [10].

5. CONCLUSION

In this work, we have proposed a generalization of the RE-

peating Pattern Extraction Technique (REPET) method for

the task of music/voice separation, based on the calculation

of a similarity matrix. The REPET approach is based on

the separation of a musical background from a vocal fore-

ground, by extraction of the underlying repeating structure.

The basic idea is to identify elements that exhibit similar-
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ity, and compare them to repeating models derived from

them to extract the repeating patterns.

Unlike the previous REPET methods that assume peri-

odically repeating patterns, the proposed method with sim-

ilarity matrix generalizes to repeating structures where rep-

etitions can also happen intermittently or without a fixed

period, therefore allowing the processing of music pieces

with fast-varying repeating structures and isolated repeat-

ing elements, without the need to identify periods of the

underlying repeating structure beforehand.

Evaluation on a data set of 14 full-track real-world pop

songs showed that the proposed generalization of REPET

with similarity matrix can overall improve on the separa-

tion performance compared with the extension of REPET

for varying repeating structures, and another recent com-

petitive music/voice separation method based on median

filtering, while still being computationally efficient. Given

the SDR, which can be understood as a measure of the

overall quality of the separation, our evaluation showed

that when the results between the proposed method and the

competitive methods were statistically significant, the pro-

posed method gave higher results, and this compared with

both the competitive methods.

The proposed generalization of REPET is only based on

a similarity matrix. In other words, it does not depend on

particular features, does not rely on complex frameworks,

and does not need prior training. Because it is only based

on self-similarity, it has the advantage of being simple, fast,

blind, and therefore completely and easily automatable.
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Badeau, Gaël Richard, and their colleagues from Telecom

ParisTech for the fruitful discussions. This work was sup-

ported by NSF grant number IIS-0812314.

7. REFERENCES

[1] Jean-Louis Durrieu, Bertrand David, and Gaël
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