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Abstract 

In this article we present a new methodology for replicating and predicting subjective feelings of 

emotion in response to music. We argue that music evokes emotion by creating dynamic 

temporal patterns to which our evolved socio-emotional brain is particularly sensitive, and we 

will show that the ways composers organize the acoustic building blocks of music, induce 

similar psycho-physiological responses in listeners. These claims will be supported by novel 

methodological investigations based on a combination of computational models and empirical 

psycho-physiological studies. We present evidence that the music psychoacoustic structure can 

account for a large proportion of the emotion reported by human listeners, by showing that a 

significant part of the listeners' affective response can be predicted from a set of six low level 

features of music: loudness, pitch level, pitch contour, tempo, texture and sharpness. We will 

also analyze how peripheral feedback in music can account for the predicted emotional 

responses, i.e., the role of physiological arousal in determining the intensity and valence of 

musical emotions. The work presented here provides a new methodology to the field of music 

and emotion research based on combinations of computational and experimental work, which aid 

the analysis of emotional responses to music, while offering a platform for the abstract 

representation of those complex relationships.  Future developments may conduct to fundamental 

advances in different areas of research since they may provide coherent descriptions of the 

emotional effects of specific music stimuli, which can aid specific areas, such as, psychology and 

music therapy. 

Key words: Emotion, Arousal and Valence, Physiology, Psychoacoustics, Neural Networks 
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Musical emotions: predicting second-by-second subjective feelings of emotion from psycho-

physiological measurements 

For thousands of years, the affective concomitants of the musical experience, and 

especially its conspicuous capacity to elicit powerful emotions, have challenged philosophical 

thought. Yet, many of its aspects remain a mystery and, perhaps unsurprisingly, unveiling the 

underlying mechanisms supporting musical experience continues to be one of the great 

challenges of scientific research. To date, a complex (and confusing) mesh of ideas and 

arguments still dominates contemporary literature.  

Even though in the last few decades important advances in several disciplines have 

provided fundamental insights and experimental evidence that allowed for an enhanced 

understanding of different aspects related to the experience of emotion with music (see Juslin & 

Sloboda, 2010, for an up-to-date compilation of perspectives and approaches to studies on music 

and emotion), the way music interacts with the human emotional systems, and especially the 

nature of the emotions it induces, also referred to as “musical emotions” (MEs), has been at the 

very centre of a long-standing controversial discussion: can music induce emotions; are MEs just 

like other (“real”) emotions? While some claim that music cannot induce any emotions at all 

since it does not appear to have any goal implications (a idiosyncrasy attributed to emotions) 

(e.g., Konečni, 2003), others suggest that music induces a particular set of affective states 

specific to music through distinct mechanisms than the one associated with other emotions (e.g. 

Scherer & Zentner, 2001). Moreover, other researchers support the hypothesis that MEs are just 

like other emotions (e.g. Juslin & Västfjäll, 2008). This paper follows this last position, although 

it additionally proposes that indeed music can convey a much wider range of affective qualities 

than the ones comprised by discrete lists of emotions (e.g, basic emotions). The paper also 
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sustains that MEs are routed in the same mechanisms that support these and other emotional 

reactions. As it is out of the scope of this paper to discuss in detail such ideas, we refer the reader 

to a comprehensive discussion on these and other topics related to MEs by Juslin and Västfjäll 

(2008). These authors compile evidence showing that music can evoke the various 

subcomponents related to emotional reactions (cognitive appraisal, subjective feelings, 

physiological arousal, expression, action tendency and regulation), thus forcefully suggesting 

that music evoke “real” emotions (or at least can elicit reactions in the same mechanisms 

associated with them).  

For the remaining of this article we will focus on the subjective feeling and physiological 

arousal components of MEs, and their relation to music composed structure, i.e., the ways 

composers organize the acoustic building blocks of music in “emotionally-meaningful” ways. 

We will suggest that music can induce similar psycho-physiological responses in listeners by 

engaging with our brain systems in very particular ways. As others (e.g., Dissanayake, 2008; 

Clynes, 1977), we argue that music evokes emotion by creating dynamic temporal patterns to 

which our evolved socio-emotional brain is particularly sensitive, and we will show that a great 

part of the emotional responses of a group of listeners can be predicted from the perceived 

spatio-temporal characteristics of the acoustic signal organized through music. We will also 

analyze how peripheral feedback in music (Dibben, 2004) can account for the predicted 

emotional responses, i.e., the role of physiological arousal in determining the intensity and 

valence of MEs. All these claim will be supported by novel methodological investigations based 

on a combination of computational models and empirical psycho-physiological studies. 
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Emotional expression in music: the role of the composed structure 

We have discussed elsewhere (Coutinho & Cangelosi, 2009; Coutinho, 2009) that 

modern research has emphasized the individual and culture-dependent aspects of the musical 

experience, even though a considerable corpus of psycho-musicological literature has 

consistently reported that listeners often agree rather strongly about what type of emotion is 

expressed in a particular piece or even in particular moments or sections. Naturally this leads to a 

focused investigation of the factors in musical structure which contribute to the perceived 

emotional expression. Such observations already have a long history (at least back to our ancient 

Greek ancestors Socrates, Plato, and Aristotle), but they gained particular attention after 

Hevner’s studies during the 1930’s (Hevner, 1936, 1937). Hevner was one of the first to 

systematically analyze which musical parameters (e.g. major versus minor modes, firm versus 

flowing rhythm, direction of melodic contour) are related to the reported emotion (e.g., happy, 

sad, dreamy, exciting). The isolation of the perceptible factors in music which may be 

responsible for the many observed effects has been a core interest amongst music psychologists 

until our days.  

The basic perceptual attributes involved in music perception are loudness, pitch, contour, 

rhythm, tempo, timbre, spatial location and reverberation (Levitin, 2006). While listening to 

music, our brains continuously organize these dimensions according to diverse gestalt and 

psychological schemas. Some of these schemas involve further neural computations on extracted 

features which give rise to higher order musical dimensions (e.g., meter, key, melody, harmony), 

reflecting (contextual) hierarchies, intervals and regularities between the different music 

elements. Others involve continuous predictions about what will come next in the music as a 

means of tracking structure and conveying meaning (Meyer, 1956). In this sense, the aesthetic 
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object is also a function of its objective design properties, i.e., the way musical features are 

combined by the composer, and so the subjective experience should be, at least partially, 

dependent on those features.  

There is now strong evidence that certain music dimensions and qualities communicate 

similar affective experiences to listeners. Gabrielsson and Lindström’s (2010) reviewi of more 

than one hundred studies indicates that the most unambiguous effects regard the link between 

tempo, loudness and timbre (particularly the first two) with arousal, such that an increase in these 

features leads to a higher activation, whilst the opposite leads to a lower activation. These 

authors also note that the results regarding pitch tend to be less clear than those on loudness or 

tempo (e.g., both high and low pitch levels may be associated with high and low activation). 

Additionally, the associations found seem to be more consistent for the arousal dimension than 

for the valence one. It is important to highlight that the clearest relationships relate to 

fundamental features of sound perception, rather than more complex musical variables (e.g., key 

or mode), which seem to be more context dependent. For instance, the so often reported assumed 

link between major/minor mode with happy/sad judgments, which does not emerge until the age 

of six to eight years, may be modulated by tempo and pitch level.  

Insights into the universal aspects of music expression of emotion 

Another important finding to consider is that the perception of emotion in music appears 

to be marginally affected by factors such as age, gender or musical training (e.g. Robazza, 

Macaluso, & D’Urso, 1994; Bigand, Vieillard, Madurell, Marozeau & Dacquet, 2005; see 

Gabrielsson & Lindström, 2010 for further references). The fact that musical training is not 

necessary for listeners to experience emotion in music suggests that a general mechanism that 

processes emotional stimuli is involved. This idea is supported by the finding that the ability to 
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recognize discrete emotions is correlated with measures of “Emotional Intelligence” (Resnicow, 

Salovey & Repp, 2004). Peretz, Gagnon, and Bouchard (1998). Even more compelling evidence 

shows that the immediate emotional judgments determined by musical structure (mode and 

tempo on the reported study) can resist brain damage affecting the perceptual analysis of the 

music input, i.e., separate pathways may be involving in processing emotional and cognitive 

information. Such finding was later supported by the discovery that music may recruit 

subcortical emotional circuits (Blood & Zatorre, 2001; Blood, Zatorre, Bermudez, & Evans, 

1999), which are also associated with the generation of human affective experiences (e.g., 

Damasio, 2000; Panksepp, 1998), and can operate outside an individual’s awareness.  

In this line of reasoning, it is important to provide evidence from cross-cultural research, 

since the absence of cultural (learned) associations between emotion and music supports the 

argument that listeners rely on psychoacoustic features. For instance, Balkwill and Thompson 

(1999) reported that Western listeners, who had no familiarity with North Indian music, and who 

listened to Hindustani music (North Indian classical music style), were able to identify emotions 

of joy, sadness, and peace as also identified by listeners experienced in Hindustani music. Most 

importantly, the authors have shown that the associations between psychoacoustic properties of 

music and emotion are compatible with results from intracultural studies. Later, Balkwill, 

Thompson and Matsunaga (2004) have also shown that Japanese listeners are sensitive to anger, 

joy and peace in Western, Japanese and Hindustani music, and that, for the music of all three 

cultures, judgments of emotions were associated with loudness, tempo, timbre as well as melodic 

complexity. More recently, Fritz, Jentschk, Gosselin, Sammler, Peretz, Turner, Friederici & 

Koelsch (2009) conducted a comparative study with participants from a native African 

population (Mafa) and Western participants (both groups being naive to the music of the other 
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respective culture). Results show that the Mafas recognize happy, sad, and scared/fearful from 

Western music excerpts. The authors suggest that the expression of three basic emotions (happy, 

sad, scared/fearful) can be recognized universally in Western music and that consonance and 

permanent sensory dissonance are also universal determinants of the perceived pleasantness of 

music. 

Overview of the Present Study 

We believe that the music psychoacoustic structure can account for a large proportion of 

the emotion reported by human listeners. Unquestionably, one cannot ignore the fact that most 

listeners appreciate music through a diverse range of cortico-cognitive processes, which rely 

upon the creation of mental and psychological schemas derived from the exposition to the music 

in a given culture (e.g. Meyer, 1956). However, cumulative evidence suggests that the same 

music stimulus induces similar affective experiences in listeners, somehow independently of 

acculturation, context, individual features or personal preferences.  

In our previous work, we have shown evidence supporting such claim in two computer 

modeling experiments: one considers classical music (Coutinho & Cangelosi, 2009) and another 

considering multiple genres (baroque, classical vocal, dance music, death metal, film music, pop 

and rock; see Coutinho, in press). We proposed that the fundamental information about listeners’ 

affective responses to music could be conveyed from nonlinear spatio-temporal patterns among 

the psychoacoustic features of sound organized through music. In order to test this hypothesis, 

we created a computational model (spatio-temporal connectionist network) sensitive to the 

temporal structure of psychoacoustic features that could predict the subjective feelings of 

emotion of human subjects while listening to music. Analyses of the computational model 

performance have shown that a significant part of the listeners' affective response can be 
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predicted from a set of six low level features of music: loudness, pitch level, pitch variation 

(contour), tempo, texture and sharpness. 

In this article we extend that work further. Firstly, we will describe an empirical 

experiment (“Experimental Study”), in which participants are asked to report their subjective 

feelings while listening to full pieces music. Simultaneously, their heart rate and skin 

conductance response are also recorded. The data collected is then used in a second study 

(“Computational Study”) in which we use recurrent neural network models to mimic and predict 

participants’ subjective feelings of emotion from the spatiotemporal properties of a set of 

psychoacoustic music features of sound, and assess the relevance of physiological activation for 

the subjective feeling responses. The dynamics of emotional responses to music are then 

investigated as computational representations of perceptual processes (psychoacoustic features) 

and self-perception of physiological activation (peripheral feedback).  

Experimental Study 

In this study the continuous response methodology was used to obtain listeners' affective 

experience with music on the basis of experimenter selected music. This methodology involves 

participants giving real-time responses to the music stimuli using a computer-interfaced device, 

and it has been frequently used in music psychology studies (e.g., Grewe, Nagel, Kopiez, & 

Altenmüller, 2007a, 2007b; Schubert, 2004; Krumhansl, 1997). The music pieces were chosen to 

induce differentiated subjective feelings of emotion in the listeners. Emotion was measured 

continuously in time by tracking two dimensions simultaneously - arousal and valence – 

following Russell’s (1980) cognitive dimensions of affect. A major difference from our previous 

experiments regards the type of report asked to participants. The perception of emotional 

expression in music must be distinguished from one’s emotional experience with it, an aspect 
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which is not always clearly defined, and that should be addressed since it may conduct to 

different results (see Kallinen & Ravaja, 2006; Evans & Schubert, 2008; Gabrielsson, 2002). As 

we are interested is relating physiological arousal with the motional response to music, 

participants were asked to report the emotion “felt” while listening to the music (rather than the 

emotion “thought” to be expressed by the music). We monitored participants’ autonomic 

responses through their heart rate (measured in bpm) and skin conductance responses (measured 

in µS).  

Method 

Participants 

Forty-five volunteers participated in the experiment. Due to failures in the recording of 

the self-report framework and physiological measurements, six listeners were removed from the 

analysis. The final list of valid data includes 39 participants (mean age: 34, std: 8, range: 20-53 

years, 19 females and 20 males, 33 right handed and 6 left handed). The participant set includes 

listeners with heterogeneous backgrounds and musical education/practice (15 participants with 

less than one year or none; 14 participants with five years or more). The population includes 

listeners from 15 different countries and with 12 different mother tongues (all speak English). 

All participants in this experiment, with the exception of one, reported to be at least 

“occasionally” exposed to Western art (classical) music. Participants also reported a high level of 

enjoyment of this music style (the mean rating was 4.2 out of 5). 

Music Materials 

The stimulus materials consisted of nine music pieces, chosen by two professional 

musicians (one composer and one performer, other than the authors), attempting to illustrate the 

widest range of emotional responses possible distributed throughout a two-dimensional 
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emotional space (2DES) formed by arousal and valence (equivalent to Russell’s (1980) model of 

affective space, which combines arousal and valence qualities to describe affective experiences). 

The pieces were chosen so as to be from the same musical genre, classical music (a style familiar 

to participants), and to be diverse within the style chosen in terms of instrumentation and texture.  

The music pieces used are shown in Table 1, and the emotions they are expected to elicit 

in the listeners are described in the following paragraphs. The expected emotion produced by 

each piece is indicated by the labels which represent four main area of resultant from diving the 

2DES arousal/valence diagram into quadrants: Quadrant 1 (Q1) – positive arousal and positive 

valence, Quadrant 2 (Q2) – positive arousal and negative valence, Quadrant 3 (Q3) – negative 

arousal and negative valence, and Quadrant 4 (Q4) – negative arousal and positive valence. 

-- Insert Table 1 here -- 

Albinoni’s “Adagio” (Piece 1) is a piece for strings and organii, in the key of G minor, 

which is solemn in mood, with occasional outbursts of melancholy (and tragedy). This piece is 

expected to belong to quadrant three (low arousal, negative valence).   

Grieg’s “Peer Gynt Suite No. 1” fourth movement (Piece 2) begins slowly and quietly 

evolving through low registers, with careful and quiet movements. Then, the theme is slightly 

modified, the tempo gradually speeds up and the music becomes increasingly louder. This piece 

is expected to elicit responses within the first quadrant of the 2DES (positive arousal and positive 

valence). 

Piece 3 is a prelude in G-major from the 1st book of Bach's “Well-Tempered Clavier”.  

This short piece evolves at a fast tempo, slowing down towards the end. This piece should also 

elicit responses in the first quadrant of the 2DES, with higher arousal during the second part. 



PREPRINT - Coutinho E, Cangelosi A. (2011). Musical emotions: predicting second-by-second 
subjective feelings of emotion from psycho-physiological measurements. Emotion, 11(4), 921-937        
12 

Beethoven's “Romance No. 2” (Piece 4) is a music piece notated as an “adagio cantabile” 

and called romance for its light, sweet tone. This piece is expected to induce low to high levels of 

arousal and positive valence (quadrants one and four).  

Chopin's “Nocturne no 2” (Piece 5) is a piece with a romantic character, and with an 

expressive and dream-like melody. This piece is expected to elicit low arousal and positive 

valence (quadrant four).  

The second movement of Mozart's “Divertimento”' (Piece 6) has some dance-like 

rhythms and simple harmonies. The “happy” character of this piece is expected to elicit in 

listeners emotional states of positive valence and moderate to high arousal (quadrant one).  

Piece 7 (“Jeux de Vagues” or “Frolics of waves”) suggests a lively motion (a metaphor 

for the waves movements and games), conveying sensations of both bizarre and a dreamy 

atmospheres (the mysteriousness of the sea). It is a piece of variety and “color” expected to elicit 

a variety of sensations in listeners of both positive and negative valence, and low to high arousal 

(quadrants 1, 2 and 4; only low arousal and negative valence is not expected). 

 “Liebesträume No. 3” (Piece 8) is the last of three solo piano works published by Liszt in 

1850, composed to describe mature love. This piece is expected to elicit responses of low arousal 

(quadrants three and four).  

The “Ciaccona” (“Chaconne”, Piece 9) is the concluding movement of Bach's “Partita no. 

2” that lasts some 13 to 15 minutes. The excerpt used here (from a transcription for piano by 

Ferruccio Busoni and performed by Mikhail Pletnev) are expected to elicit responses in all four 

quadrants. 
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Procedure 

Each participant sat comfortably in a chair inside a quiet room. The goal of the 

experiment was explained through written instructions to explain the quantification of emotion 

and the self-report framework to be used during the listening task. The physiological measures 

were obtained using a WaveRider biofeedback system (MindPeak, USA). Leads were attached to 

the participant’s chest and left hand (for right-handed participants; right hand otherwise) index 

and middle fingers respectively for measuring the heart rate and skin conductance responses. 

Participants reported their emotional state by using the EMuJoy software (Nagel, Kopiez, Grewe, 

& Altenmüller, 2007), which consist of a computer representation of a two-dimensional 

emotional space (2DES). The self-report data was later synchronized with physiological data. 

In the initial part of the experiment, each participant was given the opportunity to practice 

with the self-report framework (EMuJoy). A set of 10 pictures taken from the International 

Affective Picture System manual (Lang, Bradley & Cuthbert, 2005) was selected, in order to 

represent emotions covering all the four quadrants of the 2DES (two per quadrant), as well as the 

neutral affective state (centre of the axis). The pictures were shown in a nonrandomized order, in 

order to avoid starting or finishing the picture slideshow with a scene of violence. Each picture 

was shown for 30 seconds, with a ten seconds delay in-between presentations. The only aim of 

this exercise was to familiarize participants with the use of the self-report framework. 

After the practice period, participants were asked about their understanding of the 

experiment, and whether they felt comfortable in reporting the intended affective states with the 

software provided. Participants were then reminded to rate the emotions “felt” and not the ones 

thought to be expressed by the music (for a discussion of emotion felt versus perceived see 

Kallinen & Ravaja, 2006 and Evans & Schubert, 2008). When the participant was ready, the 
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main experiment started and the first piece was played. The pieces were presented in a 

randomized order, with a small break of 15 seconds between each piece (unless the participant 

needed more time). Each experimental session lasted for about 60 minutes, including debrief, 

preparation and training periods. Before any physiological data was recorded, participants had 15 

to 20 minutes (debrief, preparation and training period) to acclimatize and settle into the location. 

A baseline recording of 30 seconds was obtained for each participant immediately before the 

experimented started. 

Data Processing 

Description of the psychoacoustic measures 

Our hypothesis to this experiment is that low level music structural features have causal 

relationships with the listeners’ reports of emotion. To extract such information from the music 

pieces we analyzed the perceptual experience using the same psychoacoustic variables used in 

our previous work (Coutinho & Cangelosi, 2009)iii, which consist of a set of six features: 

loudness, tempo, pitch level (power spectrum centroid) and contour, timbre (sharpness) and 

texture (multiplicity). A summary of these features, a brief description, and the aliases for use in 

this article is shown in Table 2.  

-- Insert Table 2 here -- 

Self-report variables. The arousal and valence reported by each participant was recorded 

from the mouse movements. These values were normalized to a continuous scale raging from -1 

to 1, with 0 as neutral. Then, the central tendency of the individual values of arousal and valence 

was estimated by calculating the arithmetic mean across all participants, on a second by second 

basis, for each music piece. 



PREPRINT - Coutinho E, Cangelosi A. (2011). Musical emotions: predicting second-by-second 
subjective feelings of emotion from psycho-physiological measurements. Emotion, 11(4), 921-937        
15 

Physiological responses. The physiological variables had to be processed to rule out the 

effects of individual differences on physiological levels. The first method was applied to both 

variables and consisted of dividing the individual heart rate and skin conductance response 

readings by the average of the 30 seconds individual baseline readings (obtained in a non-

stimulus condition before the experiment started). The output of this calculation consists of the 

relative deviations from participants’ individual baselines (represented as 1.0), allowing 

comparing between subjects without further calculations. These are the values for heart rate (HR) 

and skin conductance response (SCR) that we report in this article.  

Results 

Figure 1 shows these second-by-second values of the self-reported emotional arousal and 

valence averaged across all participants for each piece. Each pair of values is represented by their 

corresponding location in the 2DES (represented as small dots). The gray squares indicate the 

expected quadrants to contain participants’ responses ratings of emotion for each piece. 

-- Insert Figure 1 here -- 

Overall, the classes of affective states expected to be induced by the chosen pieces 

correspond to the subjective feelings of emotion reported by participants. Indeed, most of the 

pieces (except piece 8) elicited responses in the predicted quadrants (see description in page 10). 

It is noteworthy that within each piece there is a wide variability of responses, with most of the 

pieces containing sections that cover very different locations on the 2DES (see for instance 

pieces 7, 8 and 9, which overlap different quadrants).  

It is also evident that the pieces used did not elicit responses in the whole range of the 

2DES, particularly in areas of negative valence (quadrants 2 and 3). Moreover, there seems to be 



PREPRINT - Coutinho E, Cangelosi A. (2011). Musical emotions: predicting second-by-second 
subjective feelings of emotion from psycho-physiological measurements. Emotion, 11(4), 921-937        
16 
a strong tendency for pieces to be rated within quadrant 1. A possible explanation of this might 

be that the chosen pieces elicit responses with positive valence and arousal, and that they lack 

stimuli with negative valence. We believe that this is not a likely possibility given that, at least 

piece 1 has been used in other experiments and received high ratings of sadness (see for instance 

Krumhansl, 1997), i.e., low arousal and negative valence. Moreover, the fact that the data 

appears to be compressed is due to the fact that it was averaged across participants. The 

observations of individual time series clearly shows that individually the pieces elicited more 

extreme values, including responses with negative valenceiv.  

Another possible cause of this apparent compression may be a positive effect of music on 

mood perhaps derived from the pleasantness of listening to the pieces, which is consistent with 

the fact that participants reported emotions felt and with the fact that most ratings belong to 

quadrant 1 (pleasant emotions). As a matter of fact, some of the participants (mostly expert 

musicians) reported difficulties using the left side of the valence scale justifying that with the 

experience of positive sensations with all pieces. To check for a possible influence of musical 

training on the average ratings of valence, we analyzed the mean values for each piece diving the 

participants into two extreme groups: those with five or more years of musical training/practice, 

and those with less than one. We observed that the average reported valence for seven of the nine 

pieces (except pieces 2 and 9) was higher among musicians groupv. Future experiments should 

look in more detail to possible factors influencing the self-report of emotion, not only regarding 

musical training effects, but also other aspects that may influence participants reports of emotion 

(e.g. personality traits and emotional intelligence). 
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Music segments analysis  

The fact that five of the nine pieces in the experiment elicited responses in more than one 

quadrant of the 2DES indicates the variety of affective responses that can occur within a single 

piece. In order to analyze intra-piece variability in more detail, a professional composer and two 

professional musicians were asked to divide each piece into different segments by focusing on 

criteria related to its form and perceived affective value. The segmentation points were chosen 

based on the common selections provided by all three professionals. The total number of 

segments was 27 (see Table 3).  

-- Insert Table 3 here -- 

Two separate tests were conducted on the segments mean data in order to observing how 

the emotion dimensions reported relate to the acoustic composition of each segment and also to 

the physiological arousal levels (peripheral feedback). The results of both are shown in Table 4. 

-- Insert Table 4 here -- 

Regarding the first test, we found significant linear correlations between arousal and the 

following sound features: loudness (r = .60, p < .001), tempo (r = .67, p < .001), pitch level (r = 

.52, p < .001) and sharpness (r = .63, p < .001). All have positive relationships with the level of 

arousal in the segments, i.e., arousal is higher in the segments with higher loudness, faster tempi, 

higher pitch and sharper sounds. Valence correlated with tempo (r =.54, p <.001) and pitch level 

(r = .41, p <.05).  
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Overall, these results are coherent with Gabrielsson and Lindström (2010) meta-analysis 

of the associations between music composed features and emotion found in most studies up to 

this date. The most persistent associations reported, that suggests a positive relationship between 

loudness, tempo, timbre, and arousal, are corroborated here. Additionally, we also found that the 

pitch level relates positively with both arousal and valence, suggesting more complex 

associations with emotion. For instance, pitch may affect arousal and valence together or perhaps 

only one (or none) at a time, depending on the musical context.  That could explain why some 

studies report low pitch to be related with both pleasantness and boredom (see Gabrielsson & 

Lindström, 2010 for further details). Tempo is another feature which also relates to the valence 

ratings as well as with arousal ones. Such a result is also congruent with previous studies (and 

suggests also complex relationships with emotion), as for example those which report its 

associations with ratings of sadness/happiness (and other emotional states which vary in both 

arousal and valence). Lastly, all the correlations highlighted are also concordant with our 

previous work (Coutinho & Cangelosi, 2009). 

The test of the relationships between physiological features and emotion has yielded only 

one significant correlation, implying that increased HR relates with reports of higher arousal (r = 

.46, p < .05). This result is coherent Krumhansl’s (1997), who has shown that increased heart 

rate levels related to fear and happy excerpts in comparison to sad ones (i.e., segments with 

higher arousal), Witvliet and Vrana’s (1995), and Iwanaga and Moroky (1999), whose results 

showed increased heart rate levels for excitative music (correlated with subjective arousal).  

We also verified that the changes in heart rate has clear associations with sound features, 

and we found that the hear rate had a propensity to be higher during louder segments (r = .51, p < 
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.01). This liaison is coherent with the fact higher loudness relates with higher subjective arousal, 

and suggests that the heart rate may to some extent mediate this interaction. 

No significant correlations were found relating the skin conductance response with either 

the emotion dimensions.  

Music segments: classification analysis 

Before introducing the computational study, we conducted another examination on the 

experimental data with the purpose of searching for the combinations of sound features and 

physiological variables that best categorize each segment into the 2DES quadrants. The intention 

was to detect the contribution of physiological features to the discrimination of the affective 

value of each segment in order to evaluate its contribution to the subjective feeling response. To 

do so, we recurred to a Linear Discriminant Analysis (LDA) (Mclachlan, 1992), a classical 

method of classification using categorical target variables (features that somehow relate to or 

describe objects). The categories chosen for our analysis were the locations of the mean arousal 

and valence values of each segment in the 2DES, i.e., the emotional quadrants (one to four, 

rotating anti-clockwise, starting at positive arousal and positive valence).  We then tested two 

conditions: 1) To discriminate the affective values of each segment using only the mean levels of 

all sound features; 2) To discriminate the affective values of each segment using both sound and 

physiological features sets. By choosing these test cases we are assessing the discriminatory 

power of the mean levels of sound features alone (which we expect to be elevated due to the high 

correlation found with arousal and valence), and also the additional contribution of the 

physiological cues (expected to have at least some contribution due to the association between 

heart rate and arousal) to that differentiation. Our intention is to estimate the relevance of 

physiological cues to the determination of the core affect categories for each segment.  
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The first analysis shows that the mean levels of the sound features allow for a 

classification of the segments in 85% of the cases, with a cross validation of rate of 70%. The 

second test yields a success rate of 89% with a cross validation of 78%.  These results indicate 

that the inclusion of the physiological variables conducted to an improvement in the emotional 

classification of the music segments (in this analysis, by increasing the separability of the groups 

– the mean distance between group centroids increased from 2.4 to 3.5). This effect is 

nevertheless small (8% increase in the cross-validation results), and sound features hold clearly 

the strongest discriminatory power. 

Computational Study 

In this computational experiment we follow up and extend our previous model (Coutinho 

& Cangelosi, 2009) based on the use of nonlinear models, such as spatiotemporal artificial  

(connectionist) neural networks, capable of dealing with the spatiotemporal patterns of 

psychoacoustic features derived from music (thus capturing static and dynamic aspects). Apart 

from applying the model to a new data set, we report on a novel experiment which extends the 

feature space used for the prediction of subjective feelings of emotion from human participants 

to physiological cues - heart rate and skin conductance response. Therefore, in this article, we 

test the reliability of our model and also the possible accommodation of physiological features 

and their impact on its performance. We are motivated by the idea that musical emotions may 

exhibit time-locking variations with psychological and physiological processes.  

Framework: Artificial Neural Networks 

Artificial Neural Networks (ANNs) were at first developed as mathematical models of 

the information processing capabilities of biological brains (McCulloch & Pitts, 1943; 

Rosenblatt, 1963; Rumelhart, Hinton & William, 1986). Despite the fact that they bear little 
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resemblance to real neural networks, ANNs have conquered great popularity, especially as 

patterns classifiers.  

This type of model paradigm is very flexible in terms of application because it offers a 

highly personalized definition of the model characteristics. The typical structure of an ANN 

consists of a set of basic informational processing units (representing biological neurons), 

interconnected through weighted connections (representing the weight of the synapses between 

neurons). The network receives information through a set of inputs (which can be one or more of 

the networks’ processing units), activity that is then spread throughout the network according to 

the structure defined by the weighted connections. While in biological networks neurons 

activations consists of a series of pulses of very short duration, ANN were created to model the 

average firing rate of these spikes. 

ANN topologies define the pattern of connections between the processing units, i.e. the 

arrangement of the different processing units (also called artificial neurons) and their 

interconnectivity that defines the flow of information within the model. Many topologies have 

been proposed over the years, aiming at tackling different problems, but there are two meta-

classes that deserve to be distinguished: those purely acyclic and those comprising cyclical 

connections. The former are also called Feed-forward Neural Networks (FNNs), while the later 

are referred to as Recurrent Neural Networks (RNNs). For the interests of this article we will 

focus on the later. 

Recurrent neural networks involve some form of recurrence (feedback connections). 

Although in some cases the topological differences between FNNs and RNNs may be trivial, the 

implications for information processing are significantly different: while the FNN topologies 

only map inputs to outputs, RNN’s can (ideally) map from the entire history of past inputs to the 
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output. In point of fact, it has been shown that a RNN can approximate any measurable 

sequence-to-sequence mapping to arbitrary accuracy (Hammer, 2000). This is a striking property 

of RNNs: a kind of implicit memory of the past inputs is allowed to persist in future 

computational cycles, influencing the network output. As a consequence, RNNs have been 

extensively used in tasks where the network is presented with a time series of inputs, and are 

required to produce an output based on this series.  

Due to their adaptability to deal with patterns distributed across space (relationships 

among simultaneous features) and time (memory of the past states of the features), RNNs were 

used in our previous work on music and emotion (Coutinho & Cangelosi 2009). These RNN 

models are also known as spatio-temporal connectionist models. Specifically in this article we 

will use a type of RNN called Elman Neural Network (ENN) (Elman, 1990). This model consists 

of the traditional feed-forward multilayered perceptron (MLP) (Rumelhart et al., 1986) with 

added recurrent connections on the hidden layer that endow the network with a dynamic 

memory. While the basic feedforward network can be thought of as a function that maps from 

input to output vectors, parameterized by the connections weights, and capable of instantiating 

many different functions, the ENN can map from the history of previous inputs to predict future 

states in the output later. The key point is that the recurrent connections allow the sequence of 

internal states of an ENN to hold not only information about the prior event but also relevant 

aspects of the representation that was constructed in predicting the prior event from its 

predecessor. If the process being learned requires that the current output depends somehow on 

prior inputs, then the network will need to “learn” to develop internal representations which are 

sensitive to the temporal structure of the inputs.  
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Procedure 

The model and the optimization of its parameters are overall similar to that in Coutinho 

& Cangelosi (2009). Here we used the same modeling paradigm, which consists of the basic 

Elman network, and we maintain its architecture: five hidden (and memory) units, and two 

outputs (one for arousal and another for valence). The number of inputs will vary according to 

the two simulation experiments presented below: a first one that includes six sound features (and 

thus six inputs), and a second one which aims at testing the effect of the additional physiological 

inputs (with a total of 8 inputs). The model is illustrated in Figure 2.  

-- Insert Figure 2 here -- 

In independent simulations, two different input sets were tested: (i) the six sound features 

alone and (ii) the six sound features plus two units to represent both physiological features. Each 

simulation consisted of a set of 15 trials in which the models are trained using different initial 

conditions (randomized weights distributed between -0.05 and 0.05, except for the connections 

from the hidden to the memory layer which are set constant to 1.0)vi. Each trial consists of 80000 

iterations of the learning algorithm, implemented using a standard back-propagation technique 

(Rumelhart et al., 1986). During training the same learning rate (0.075) and momentum (0.0) 

were used for each of the three connection matrices.  

The “training set” (collection of stimuli used to train the model) includes five of the 

pieces used in the experiment (pieces 1, 4, 5, 6 and 8; see Table 1). The “test set”’ (novel stimuli, 

unknown to the system during training, that test its generalization capabilities) includes the 

remaining four pieces (pieces 2, 3, 7 and 9). The pieces were distributed between both sets in 

order to cover the widest range of values of the emotional space. The rationale for this decision is 



PREPRINT - Coutinho E, Cangelosi A. (2011). Musical emotions: predicting second-by-second 
subjective feelings of emotion from psycho-physiological measurements. Emotion, 11(4), 921-937        
24 
that, for the model to be able to predict the emotional responses to novel pieces in an ideal 

scenario, it is necessary to have been exposed to the widest range of values attainable. Sets were 

defined so as to contain stimuli covering comparable areas of the 2DES, and to have extreme 

values in each variable (refer to Figure 1). 

The “teaching input”' (or target values) are the average A/V pairs obtained 

experimentally for the training pieces. The task at each training iteration (t) is to predict the next 

(t+1) values of arousal and valence, from the inputs to the model. The range of values for each 

variable (sound features, self report and physiological variables) was normalized to a range 

between 0 and 1 in order to be scaled to the model.  

Simulations Results 

The root mean square error (rmse) was used to quantify the deviation of the model 

outputs from the values observed experimentally. For each trial the training stop-point was 

estimated a posteriori by calculating the number of training iterations so as to minimize the 

model output error (i.e., the rmse) for both training and test sets, thus avoiding the over fitting of 

the training set. The motivation for this approach consists is the fact that if the model is able to 

respond with low error to novel stimuli, then the training algorithm was able to extract from the 

training set more general rules that relate music features to emotional ratings.  

Table 5 shows the mean rmse across all 15 trials for each of the two simulations 

condition. In addition, we also indicate the calculated the correlation between model outputs and 

experimental data, using the Pearson product-moment correlation using coefficient (r).  

-- Insert Table 5 here -- 
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Both statistics are very similar for all simulations, indicating that the additional 

physiological inputs have a small impact in the model performance. Nevertheless, the best 

performance was achieved using the model with the extra physiological inputs, suggesting that 

HR and SCR contain relevant information related to the self-report of emotion. This effect seems 

to be more evident for the arousal predictions, than for the valence ones. Overall, the model in 

simulation 2, which uses sound and physiological features as inputs, explains 78% of the total 

variance in arousal and 51% of the total variance in valence. For the remaining of this analysis 

we focus on this model. 

Figures 3 and 4 portray the model predictions together with the experimental data for 

three sample pieces of each set, training and test, respectively.  

-- Insert Figure 3 here -- 

-- Insert Figure 4 here -- 

Observing the figures it is possible to see that the model was able to capture the overall 

level and general fluctuations of the experimental data. It is especially remarkable the good 

performance for the pieces used to test the model predictions to the new set of unknown stimuli 

(“test set”). A good example of this is piece 2 (see top of Figure 4): the model predicts the 

emotional responses to this unknown piece (equivalent to an unheard piece to a subject) by 

explaining 94% (r = .97, p< .001) of the arousal and 86% (r = .93, p< .001) of the valence 

variance in the experimental data. 

So as to observe the similarity between the segments mean levels between model and 

experimental data we compared both data sets in terms of the strength of the correlations 
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between the mean levels of arousal and valence. Figure 5 shows the mean level of arousal (left) 

and valence (right) for the each segment (defined earlier; see Table 4), for both experimental data 

and model predictions. The mean values of arousal and valence predicted by the model correlate 

significantly with the experimental data (rA,A’ = .91, p < .001; rV,V’ = .82, p < .001), meaning that 

the affective character of the segments was correctly predicted most of the times. 

-- Insert Figure 5 here --  

In order to verify if the model predictions and experimental data share similar 

relationships to the sound and physiological features, the mean levels of the psychoacoustic and 

physiological features for each segment were also compared. The correlation analysis results are 

shown in Table 6.  

-- Insert Table 6 here -- 

As it can be seen in this table, the participants’ responses and model predictions exhibit 

similar relationships with sound features and physiological variables. Comparing the correlations 

between sound features and self-report dimensions in Tables 4 and 6, it can be seen that both the 

experimental data values (A/V) and the model outputs (A’/V’) have similar structural 

relationships. The correlation analysis yields positive relationships between the mean level of 

reported arousal in the segments and loudness, tempo, mean pitch and sharpness. The other 

emotion dimension, valence, correlates significantly with tempo and pitch level. The only 

noticeable difference relates to the correlation between valence and pitch contour:  the model 

predictions seem to be more dependent on this variable than the experimental data. Regarding 
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the correlations between physiological variables and emotional dimensions we also found similar 

relationships between the model and experimental data: only the heart rate had a significant 

correlation with arousal (rHR,A = .46 and rHR,A’ = .38; p < .05). 

Discussion and Conclusions 

We believe that one of the main factors that leads to divisive and confusing findings 

regarding the relationships between music structure and emotional response is related to the fact 

of placing the main focus of attention on high level features of music and on generalizing the 

stationary characteristics of the low level ones. Regarding the former, as we have mentioned 

earlier in this article, a review of more than one hundred studies has not revealed systematic 

associations between emotion and features such as key or mode. As for the later set of features 

(e.g., tempo, loudness, timbre, pitch), their relationships with emotional qualities seem to be 

more complex than it is often assumed. In this article we focused on the low level music features 

to predict emotional responses to music. 

We have started by suggesting that the common use of averaging methods to compare 

music structural features with emotional responses can obscure important information regarding 

its dynamics, especially because these can be intense and momentary (e.g. Dowling, 1986). As 

we have shown in this article, the average arousal and valence over full pieces masked important 

variations on the emotional character within the pieces. Our analysis of music segments has 

shown clear-cut associations between sound features and emotional dimensions that would be 

visible when looking at the full pieces: arousal systematically increased for segment with higher 

loudness, faster tempi, higher pitch levels and sharper timbres. Valence correlated positively 

with tempo and pitch level (r = .41, p < .05). 
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The fact that acoustic factors are often analyzed in terms of extreme levels (e.g., 

high/low, slow/fast) may conduct to a misleading assumption that their effects may be 

generalized to intermediate values. This is because extreme levels lead to the assumption that 

sound features do not interact, which is not the case, and especially that they show simple 

relationships with emotional states, which the fact that we still know little about those 

associations also suggests to be incorrect.  Moreover, the transient effects are barely investigated, 

despite the fact that they are a prominent component of music, and are overwhelmingly 

important for expressive purposes (Gabrielsson & Lindström, 2010). We need to look in more 

detail to the complexity of music features and emotion in order to better understand musical 

emotions. This is certainly not to say that those relationships utterly define the complexity of our 

emotional responses to music, but we think that an important component of the musical 

experience, and especially its affective concomitants (certainly they are not only emotional ones, 

since, for instance, music can also induce mood and motivational states), emerge from the 

dynamic qualities of the music stimulus. This idea is consistent with a number of studies that 

show temporal variations in affective responses (e.g., Goldstein, 1980; Nielsen, 1987; 

Krumhansl, 1997; Schubert, 2004, Korhonen, 2004, Grewe et al., 2007a, 2007b).  

We suggest that the complexity of experimental data on music and emotion studies 

requires adequate methods of analysis, which support the extraction of relevant information from 

experimental data. It seems that linear models do not suffice to predict emotional responses to 

music. Rather, non-linear models are needed that assess global sound characteristics as well as 

relationships between sound features to account for continuous changes in experienced emotions. 

In that direction, we have considered spatio-temporal connectionist models as a possible 

platform for the analysis of the interactions between sound features and the dynamics of 
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emotional ratings, since it supports the investigation of both temporal dimensions (the dynamics 

of musical sequences) and spatial components (the parallel contribution of various 

psychoacoustic factors).  

In this article, consistently with our previous modeling work, we identify a group of six 

variables – loudness, tempo, pitch level, pitch contour, texture and sharpness  - which represent 

low level psychoacoustic dimensions of music, and are fundamental for the predictions of 

emotional responses. We could not only train a model to reproduce experimental data, but also to 

predict the emotional responses from human listeners. The amount of data predicted and the fact 

that we have already applied our model to three sets of data (apart from the experimental data 

presented here we also successfully modeled other data sets; see Coutinho & Cangelosi, 2009 

and Coutinho, in press) are notable, especially due to the fact that the model extracts 

relationships between sound features and emotional responses coherent with most empirical 

studies. Overall, the model responses to novel data validate the model and support the hypothesis 

that sound features are good predictors of emotional experiences. Our model brings the 

prediction of emotional responses to an appropriately high level, including predictions of 

experienced emotional valence. 

By testing the inclusion of physiological cues, we tested the peripheral feedback 

hypothesis, and the influence of visceral input on the self-report of emotions experienced while 

listening to music. Although the improvement was rather small compared with the supremacy of 

sound features, we have shown that the model could perform better when adding the extra heart 

rate and skin conductance level inputs. These results support previous work on peripheral 

feedback in music (Dibben, 2004), and reveal that physiological cues may be an important path 

to explore in future studies. We suggest that the low increase in the model performance may be 
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due to the fact that physiological cues are themselves affected by the music, and so much of their 

information is redundant for the model. Even if it may be this the case for the model, it is 

important not to consider them in such way for other studies, since understanding their dynamics 

may be fundamental to convey important information regarding the impact that music has in 

listeners at different levels, especially considering peripheral routes that may exert important 

interferences with high level cognitive processing. 

The work presented here provides a new methodology to the field of music and emotion 

research based on combinations of computational and experimental work, which aid the analysis 

of emotional responses to music, while offering a platform for the abstract representation of 

those complex relationships.  Future developments may conduct to fundamental advances in 

different areas of research since they may provide coherent descriptions of the emotional effects 

of specific music stimuli, which can aid specific areas, such as, psychology and music therapy. 

Due to the fact that the sound features in use by the model constitute a basic set of 

psychoacoustic features not exclusive to music, but rather general to the auditory domain, we are 

investigating the possibility that the relationships extracted by the mode may also serve other 

channels conveying emotional information through sound, as is the case of speech prosody. This 

research will determine the acoustic similarity between affective speech prosody and music shed 

light on the extent to which they share mechanisms involved in evoking emotional response. The 

identification of shared characteristics of emotion expression in music and speech prosody may 

contribute to evolutionary perspectives on music and language.  
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Table 1 

Music pieces used for the experimental study. The pieces were numbered consecutively, so as to 

serve as aliases for reference in this article. For each piece we indicate the composer and title, 

their duration, and also the 2DES quadrant in which we expect that they will elicit emotional 

responses in listeners (which is on the basis of their selection). 

Piece 

ID 

Piece Details (Composer and Title) Duration 2DES 

Quadrant 

1 T. Albinoni – Adagio  (G minor) 200s Q3 

2 E. Grieg - Peer Gynt Suite No. 1 (Op. 46): 

IV. “In the Hall of the Mountain King” 

135s Q1 

3 J. S. Bach - Prelude and Fugue No. 15 (BWV 860): 

I. “Prelude”  (G major) 

43s Q1 

4 L. V. Beethoven - Romance No. 2 (Op. 50, F major) 123s Q1, Q4 

5 F. Chopin - Nocturne No. 2 (Op. 9, E flat major) 157s Q4 

6 W. A. Mozart – Divertimento (K. 137): 

“Allegro di molto” (B flat major) 

155s Q1 

7 C. Debussy - La Mer: II. “Jeux de vagues” 184s Q1, Q2, Q4 

8 F. Liszt - Liebestraum No.3 (S. 541, A flat) 183s Q3, Q4 

9 J. S. Bach - Partita No. 2 (BWV 1004): 

 “Chaconne” (D minor) 

240s Q1, Q2, Q3, 

Q4 

 



PREPRINT - Coutinho E, Cangelosi A. (2011). Musical emotions: predicting second-by-second 
subjective feelings of emotion from psycho-physiological measurements. Emotion, 11(4), 921-937        
38 
Table 2 

Psychoacoustic variables considered for this study and their description. All features, except 

tempo, which was estimated using BeatRoot (Dixon, 2006), and contour, estimated using 

Dittmar, Dressler & Rosenbauer’s (2007) tool, were obtained using PsySound 3 (Cabrera, 

Ferguson & Schubert, 2007). The time series obtained were down-sampled from the original 

sample rates (which vary from feature to feature) to 1Hz in order to obtain second by second 

values. For convenience the input variables are referred to with the aliases indicated in the table 

throughout this paper. 

Psychoacoustic 

Group 

Feature and description Alias 

Loudness Dynamic Loudness (Glasberg & Moore, 2002): subjective impression 

of the intensity of a sound (measured in sones). 

L 

Pitch Level Power Spectrum Centroid: first moment of the power spectral 

density.  

P 

Pitch Contour Melody contour: calculated using a melodic pitch extractor adequate 

to be used with polyphonic sounds. 

C 

Timbre Sharpness (Zwicker and Fastl, 1990; usually considered a dimension 

of timbre): a measure of the weighted centroids of the specific 

loudness, which approximates the subjective experience of a sound 

on a scale from dull to sharp (measured in acum). 

S 

Tempo Number of beats per minute (bpm)  T 

Texture Multiplicity (Parncutt, 1989): estimates of the number of tones 

simultaneously noticed in a sound. 

Tx 
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Table 3 

Pieces segmentation details: each segment is identified by its piece number followed by a letter 

(only for pieces with more than one segment) indicating, in alphabetical order, the segment that 

they refer to (e.g. piece 1 - segment b alias is 1b).  

Piece Nr. 

Segments 

Segments 

a b c d e 

1 3 1-26 27-78 79-end - - 

2 2 1-79 80-end - - - 

3 1 1-end - - - - 

4 3 1-33 34-99 100-end - - 

5 2 1-62 62-end - - - 

6 4 1-42 43-85 86-110 111-end - 

7 3 1-52 53-126 127-end - - 

8 4 1-34 35-84 85-114 115-end - 

9 5 1-56 57-111 112-140 141-213 214-end 
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Table 4  

Correlation analysis on experimental data: psychoacoustic and physiological features were 

compared with the arousal and valence dimensions. The values under comparison are the mean 

levels for each segment of all pieces (*p < .01; ** p <  .05). 

 A V 

Loudness .60* - 

Tempo .67* .54* 

Pitch level .52* .41** 

Pitch contour - - 

Texture - - 

Sharpness .63* - 

SCR - - 

HR .46** - 
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Table 5  

Comparison between simulations 1 – using only sound features as inputs – and 2 – which uses 

the additional physiological inputs. The statistics shown quantify the deviation (rmse) and 

similarity (r) between the average outputs of the 15 trials ran for each simulation and the human 

participants responses. Each emotion dimension is shown separately in order to evaluate the 

arousal and valence predictions individually. 

Sim. ID Inputs rmse r 

A V A V 

1 L, T, P, C, Tx, S .074 .063 .871 .705 

2 L, T, P, C, Tx, S + HR, SCR .069 .063 .885 .714 
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Table 6  

Correlation analysis on the model predictions: psychoacoustic and physiological features were 

compared with the arousal and valence dimensions. The values under comparison are the mean 

levels for each segment of all pieces (*p < .01; ** p <  .05). 

 A’ V’ 

Loudness .53* - 

Tempo .86* .54* 

Pitch level .53* .50* 

Pitch contour - - 

Texture - - 

Sharpness .62* - 

SCR - - 

HR .38** - 
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Figures captions 

Figure 1. The figure shows the second by second values of Arousal and Valence, averaged 

across participants, for each piece used in the experiment. The grey rectangles indicate the areas 

of the 2DES, which correspond to the core affective states expected to be elicited in the listeners 

(see Table 1). 

Figure 2. Model architecture of the neural network used in the simulation experiments. Input 

units: sound features (T, Tx, L, P, S and C) and physiological variables (SCR and HR); Hidden 

units - H1 to H5; Memory (context) units - M1 to M5 ; Output units: arousal (A) and valence (V). 

Figure 3. Comparison between the model arousal and valence outputs and experimental data for 

three samples pieces from the training data set (from top to bottom): Piece 4 (Beethoven - 

Romance No. 2), Piece 5 (Chopin - Nocturne No. 2) and Piece 6 (Debussy - La Mer, “Jeux de 

vagues”). The arousal and valence values shown correspond to the values used with the model, 

and so they are normalized between 0 and 1 (corresponding to [-1, 1] scale in the original data), 

with 0.5 as the neutral state value. 

Figure 4. Comparison between the model arousal and valence outputs and experimental data for 

three samples pieces from the test data set: Piece 2 (Grieg - Peer Gynt Suite), Piece 3 (Bach - 

Prelude No. 15), and Piece 9 (Bach - Partita No. 2, “Chaconne”). The arousal and valence values 

shown correspond to the values used with the model, and so they are normalized between 0 and 1 

(corresponding to [-1, 1] scale in the original data), with 0.5 as the neutral state value. 

Figure 5. Comparison between experimental data and model predictions: average arousal (left) 

and valence (right) for each music segment as indicated in Table 3. 
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i Gabrielsson and Lindström’s (2010) review focuses on the properties of the composed 

structure, although the relationships between emotional expression and music also relate to 

performance features (see Juslin & Timmers, 2010). By using real music pieces the performance 

attributes are inevitably included, and they relate to the specific version used. In this article, we 

won’t make specific comparisons between different performances of the same pieces, and so our 

focus is also on the composed structure. 

ii This piece is attributed to Albinoni but composed by the also Italian Remo Giazotto, 

who came across a manuscript fragment which he later presumed had been composed by 

Albinoni. The piece is constructed as a single-movement work around the fragmentary theme. 

iii From the original set used in our previous work, the pitch contour algorithm was 

changed from the original approximated measure, which consisted of the euclidian norm of the 

difference between the magnitudes of the Short-Time Fourier Transform spectrum evaluated at 

two successive sound frames (Mean STFT Flux, Tzanetakis & Cook, 1999), to a new genuine 

measure of pitch contour (as described in Table 2). 

iv It is important to notice that by averaging across individual responses we focus on the 

common features of an “average” individual, i.e., the common trends in the responses of all 

individuals to the same stimuli. 

v The average responses of both groups are highly correlated, although more strongly for 

arousal (r = .97, p < .001) than for and valence (r = .85, p < .004). 

vi Each simulation is repeated 15 times in order to test the consistency of the results for 

each simulation. 


