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Musical Genre Classification Using Nonnegative
Matrix Factorization-Based Features

André Holzapfel and Yannis Stylianou

Abstract—Nonnegative matrix factorization (NMF) is used to de-
rive a novel description for the timbre of musical sounds. Using
NMF, a spectrogram is factorized providing a characteristic spec-
tral basis. Assuming a set of spectrograms given a musical genre,
the space spanned by the vectors of the obtained spectral bases is
modeled statistically using mixtures of Gaussians, resulting in a de-
scription of the spectral base for this musical genre. This descrip-
tion is shown to improve classification results by up to 23.3% com-
pared to MFCC-based models, while the compression performed
by the factorization decreases training time significantly. Using a
distance-based stability measure this compression is shown to re-
duce the noise present in the data set resulting in more stable classi-
fication models. In addition, we compare the mean squared errors
of the approximation to a spectrogram using independent compo-
nent analysis and nonnegative matrix factorization, showing the
superiority of the latter approach.

Index Terms—Audio classification, audio feature extraction,
music information retrieval, nonnegative matrix factorization.

I. INTRODUCTION

I N THE 1960s, in one of his last interviews, the brilliant sax-
ophone player Eric Dolphy uttered the phrase: “When you

hear music, after it’s over, it’s gone in the air; you can never re-
capture it again.” Luckily he was wrong. Nowadays almost all
music recordings are available in digital format, we can listen
to them on our computers, we can buy them from the internet.
This way, each kind of music went out of its traditional place of
performance. We enjoy Mozart in the shopping mall and listen
to the latest performance of the Rolling Stones at our computer
at work. Every kind of music has gone to all the places. Musical
genres interact and new styles are created.

With the growing availability of music on the Internet, this
interaction grows even further. At the same time, there is an
amazing opportunity in this widespread distribution and diver-
sity of media. With the old distribution system of physical media
on disks, the main focus was always restricted to some artists
that were massively promoted, while much music was either
only published in a limited edition or even never produced by
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any company. Thus, availability of music was strongly limited.
However, throughout the recent years, many internet based dis-
tributors made recordings available for download.1 Nowadays,
every musician doing a recording is able to publish his/her work
on the Internet. Obviously, in order for the listener to have a
chance to find the music he likes, an automatic tool to retrieve
information about the content of music pieces is necessary. A
way to describe music by generating meta information in text
format would fail for a decentralized system, as noted by Huron
in [1], because of the strongly different ways members in a de-
centralized system describe their data. Again, according to [1],
among the most suitable characteristics to get a description for
musical data are style, instrumentation, tempo, and mood. The
research in the automatic detection of the mood of a piece of
music has first been approached systematically quite recently
by Li and Ogihara [2]. However, the way humans react emo-
tionally to specific pieces of music is still to be examined in a
large-scale study, while there are no available data that could
give a ground truth for evaluation.

The other mentioned characteristics are directly connected
with the structure of the musical piece. This structure can gener-
ally be assumed to have a horizontal and a vertical direction. The
horizontal direction contains information about onsets of the
different instruments, and thus tells us about tempo and rhythm.
Also, melody is partly described in the horizontal structure of
music as it develops over time as well. Ways to automatically
describe tempo and rhythm of musical pieces have been shown
in [3], and recently a system for the classification of dance music
based on the recognition of its rhythmic characteristics has been
presented [4].

The vertical structure of music contains information about
harmonic relations of the notes. The notes are reproduced by or-
gans with characteristic frequency structures, which is referred
to as the formant structure of an instrument [5]. These sounds
have all been processed individually and/or together in a studio
environment, thus changing their spectral characteristics. As
such, we find information about instrumentation and production
in the vertical structure; in music information retrieval (MIR),
this is often referred to as the timbre of music. Moreover, ex-
perimental results lead to the conclusion that musical style is a
characteristic found in the vertical structure as well. For example
in [6], listeners were able to assign a piece of music to a style
given an excerpt of duration less than one second. Recently, Li
and Ogihara [2] received improved results in a genre classifica-
tion task by using only spectral descriptors and neglecting tem-
poral information. This can be interpreted as a supporting result
for [6], since a musical genre is defined as a category of pieces

1www.magnatune.com, www.freemusicdownload.com
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that share a certain style [33]. Therefore, a system to automat-
ically retrieve information about the vertical structure of music
will be capable of describing style, genre, timbre, and harmonic
concept of the composition.

In many publications, the vertical dimension of music has
been described by using a feature set consisting of Mel fre-
quency cepstral coefficients (MFCCs). These features have been
successfully applied to the task of speech recognition [34]. They
have also found wide application in the classification of music
into genres or in developing measures for the similarity of mu-
sical pieces as reviewed in [8]. In [8], it has been shown that
systems following the general model of using MFCC-based fea-
tures are upper bounded in their recognition performance.

An aspect that has not been considered in the development
of the previously reported representation approaches is the fact
that the characteristic timbre of the recordings is usually cre-
ated by mixing several instruments into a single signal. Thus,
an approach to derive descriptions of these components from the
mixture signal could provide a more versatile feature set for the
genre classification task. In [9], a method for the classification of
sounds has been presented, where the spectral space of a signal
is described using techniques based on independent component
analysis (ICA) [16] applied to the spectrogram of the signal.
Considering musical signals, methods based on a nonnegative
matrix factorization (NMF) [10] have recently shown success
in separating instruments from a mixture [12], [11]. NMF has
been used as well for the classification of sounds in [13]–[15].
The classification approaches based on these techniques follow
a deterministic path by first defining a set of spectral bases for
the sounds and then projecting new sounds into these spaces.

In this paper, we first evaluate the factorization of spectro-
grams by using ICA- and NMF-related techniques. As NMF
is shown to yield a compact representation and, compared to
ICA, superior results in a mean squared error sense, we de-
scribe a signal spectrogram with the spectral space spanned by
the vectors computed by this factorization approach. For a given
musical genre, a Gaussian mixture model (GMM) is built on
all the spectral base vectors that have been computed for the
spectrograms of the training data for a particular class. In this
way, we get a description for the spectral base of the partic-
ular genre. The classification is based on the maximum-like-
lihood (ML) considering all the spectral base vectors from a
test signal. Extended classification tests were conducted on two
widely used datasets for music classification (Tzanetakis et al.
[21] and from the ISMIR 2004 contest2) comparing the perfor-
mance of the proposed NMF-based features and that of MFCCs.
The proposed NMF-based features constantly outperformed the
MFCCs in terms of classification score. The proposed classifica-
tion system was also compared to reference systems [21], [23],
[25] for the task of music genres classification. The proposed
classification system achieved higher classification score com-
pared to these systems, in most of the conducted experiments,
although [21] employs features that model both the vertical and
horizontal structure of music.

The paper is structured as follows. Section II reviews and
compares the approaches of ICA and NMF for the factoriza-

2http://ismir2004.ismir.net/ISMIR_Contest.html

tion of a music spectrogram providing evidence for choices like
the number of components used in these types of factorization
and the length of the input spectrogram. Section III presents the
computation of the proposed NMF-based features along with
the classification system based on these features. In Section IV,
a baseline system using MFCC is presented, and a stability mea-
sure for GMM-based classifiers is developed. The conducted ex-
periments are described in detail in Section V, while conclusions
and discussions for future work are provided in Section VI.

II. MATRIX FACTORIZATION

Our goal is to describe the vertical dimension of music in a
compact and salient way. Optimally, this description should give
us information about the components that have been mixed to-
gether in the musical sound. We suggest to obtain these descrip-
tors from a temporal/spectral description of the sound using a
matrix factorization. For this, the optimum approach to use has
to be determined.

Let us assume a real signal to be stationary within a tem-
poral window of length (sec). After sampling the windowed
signal at a frequency , its discrete Fourier transform (DFT)
will provide coefficients if no zero padding is
used. Let be an dimensional column vector containing the
magnitudes of the Fourier transform of the signal for frequen-
cies up to the Nyquist frequency, where . As-
suming that has been produced by linearly combined compo-
nents as

(1)

with being an matrix containing the description of
the spectral content of the mixture components in its columns

, and being a dimensional weighting vector. Then, the
problem of finding these components can be described in a blind
source separation [30] context. We consider the value of in
the present problem to be smaller than the number of the fre-
quency bins as we want to get a compact representation of
the signal. Taking observation vectors ( ) a matrix

, containing the observations in its columns, may be
constructed. This matrix is usually referred to as spectrogram,
and it describes the spectral content of the signal in a temporal
range denoted by in this paper.3 Setting the number of
mixture components to a value we will usually not
achieve equality as in (1) because of the time-varying spectral
content of the initial components throughout the spectrogram.
From a mathematical point of view, every column of would
have to be representable as a linear combination of the columns
of , which is unlikely to happen for a nonartificial signal and

. Thus, (1) in matrix notation becomes

(2)

with the matrix containing the weighting vectors for
time instances in its columns. We can pursue this ap-
proximation task with a number of error functions and assump-
tions on the variables.

3The term timbre is used here since within this window the description of the
spectral space of the signal will be derived



IE
EE

Pr
oo

f

HOLZAPFEL AND STYLIANOU: MUSICAL GENRE CLASSIFICATION USING 3

One approach is to choose a statistical framework. In this
framework, contains random variables (in ) in its columns
that are statistically independent. Then, given , we have to
search for a matrix that minimizes the mutual information
between these independent components. This approach is based
on independent component analysis and has been presented as
independent subspace analysis (ISA) in [9]. A necessary condi-
tion in this framework is that the distributions of the sources
that are to be estimated remain stationary throughout the length

of the spectrogram under consideration. It is worth to
note that the values for range from 0.25 s up to 10 s,
according to [9]. However, experiments to determine the influ-
ence of and , when constrained to , on the
mean squared error (mse)

mse (3)

of the approximation in (2) have not been conducted yet.
Without considering a statistical framework the NMF mini-

mizes an error function like

(4)
and constrains all the values in , , and to be nonnegative
[10]. Also for the NMF approach, experiments considering the
influence of the length of the input spectrogram on the mse are
not known to the authors. Nevertheless, it can be assumed that
constraining the number of observations is likely to cause
to span a vector subspace of that can be spanned by a small
number of columns of . In terms of musical content, due to
a shorter duration less different instrumental sounds will
be present in the spectrogram, which causes its columns to span
a more compact subspace.

We evaluated both ISA and NMF on a set of music samples
taken from a database used in [21]. The set consisted of 20 mu-
sical pieces of 30-s length each, two pieces randomly chosen
from each of the ten classes contained in the data set. The soft-
ware for evaluation was taken from the MPEG-7 reference soft-
ware [17] as implemented by Casey. This includes the fastICA
algorithm [26] for the calculation of ICA. The reference soft-
ware was expanded by including an implementation of NMF
without sparseness constraint as implemented in [18], that min-
imizes the cost function shown in (4). The choice of this cost
function has been motivated by [19], where it was found to be
subjectively superior to a squared error function in measuring
spectral distances. This is assigned to the property of (4) to em-
phasize differences in regions with high energy, representing
therefore a weighted contrast function. The block diagram of
the evaluation algorithm is shown in Fig. 1. The power spec-
trum is estimated through the DFT of the signal, computed on
a 40-ms Hamming window with 50% overlap. The next step
is a conversion from the linear frequency abscissa to a loga-
rithmic axis. Using eight bands per octave ranging from 65.5
Hz to 8 kHz results in coefficients for each DFT
window. This conversion is following the AudioSpectrumEn-
velope descriptor (ASE) of the MPEG-7 standard. It enables a

Fig. 1. Computation of spectral bases in the MPEG-7 reference.

more compact description of the signal, i.e., it reduces dimen-
sionality from the number of coefficients on linear scale to

. The choice of eight bands per octave has been moti-
vated by the equal tempered musical system of western music,
in which the most common tonal scales contain seven steps from
the fundamental tone until its octave. Having computed the ASE
vectors for a whole sample, a spectrogram representation is then
obtained. This is segmented into smaller nonoverlapping sub-
spectrograms that represent ASE descriptors, a step denoted
as timbre windowing in Fig. 1. Note that the number of observa-
tion vectors defines the length of the timbre window ( ).
Varying the length of the timbre window as well as the
number of components , while fixing the number of bands,

, we may determine the mse of the factorizations
produced by ISA and NMF. The samples of 30-s length were
split into segments of equal
size. Spectrograms computed from these partitions were factor-
ized with components. For example, for

segments, each segment is 7.5 s long (segments were obtained
without overlap), resulting in ms ms ,
where a frame rate of 20 ms is assumed. For a given choice of
splitting (i.e., ) the corresponding mse was computed
as the sum of mse from all segments. The number of compo-
nents as well as the length of the input spectrogram influences
the quality of the approximation provided by the two considered
factorization methods (NMF and ISA). Increasing the number of
components improved the approximation in both methods. This
is because, with increasing, the columns of are more likely
to construct a basis for the subspace of spanned by the
columns of . Two example error functions averaged over the
parameter are depicted in Fig. 2, showing that NMF is superior
to ISA in the mean squared error sense for all numbers of parti-
tions. This was consistently the case for all the songs in the set
of music samples. Additionally, it can be seen that for shorter
spectrograms (i.e., more partitions), the error gets smaller for
NMF while it increases for ISA. Indeed, for shorter timbre win-
dows, the value of gets closer to and in the extreme case
of , NMF will reach a perfect result by setting
while being the identity matrix. On the other hand,
the updates in fastICA use sample means in order to estimate
expectation values, and because of this a short timbre window
leads to worse approximations (see [26] for a description of the
algorithm).

We conclude that computing NMF on short spectrograms
leads to more adequate spectral representations for the sig-
nals under consideration. The optimal length and number of
components in the classification task will be determined in
Section V-B.
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Fig. 2. Example of error curves of NMF and ISA for two pieces of music.
Approximation by NMF has generally a smaller error than approximation by
ISA.

Fig. 3. Calculation of the features used for the statistical model of musical
genres.

III. SYSTEM DESCRIPTION

A. Feature Calculation

The features describing the spectral space are calculated as
shown in Fig. 3. The preprocessing steps avoid the influence
of recording conditions which are not significant for classifica-
tion. They include removal of mean values and normalization
to an average sound pressure level of dB. The next
step is the computation of the ASE descriptors, as described
in Section II. Then, the timbre window is applied to segment
the spectrogram of the audio signal into nonoverlapping sub-
spectrograms of size , with and
represents the number of descriptors per subspectrogram. Each
subspectrogram is then factorized using NMF providing a spec-
tral base consisting of vectors in the columns of matrix
in (2), with . The next step transforms the energy values
of the spectral bases into decibel scale, which has been shown
to be crucial for an audio description task in [35]. The final
step of the feature calculation is a Discrete Cosine Transform
(DCT) on the dB-scale spectral base vectors; the size of the
used DCT matrix is 20 56, containing the first 20 cosine bases

, , ,
in its rows. This helps to reduce the dimensionality of the space
from 56 to 20. The resulting 20–dimensional vectors
represent the features of the presented system, and describe the
spectral base of a subspectrogram in a compact way. The spec-
tral space of the audio signal is described by the feature vectors
computed from all its subspectrograms. Since the length of the
timbre window is fixed, the number of subspectrograms com-
puted from every song depends on its duration.

1) Psychoacoustic Model: Instead of using a logarithmic fre-
quency axis in the axis box of Fig. 1, the introduction of a
psychoacoustic model was evaluated as well. It consists of three
elements:

Outer Ear Model: At each time instance a weighting is ap-
plied to the spectrum that adapts the calculated coefficients to
the actually perceived loudness of the signal. The function pre-
sented by Terhardt [27] has been used

dB (5)

where represents the sound pressure level at hearing
threshold and denotes frequencies in kilohertz. It has the
effect of emphasizing frequencies around 3 kHz and damping
low frequencies.

Bark Scale: The linear frequency scale is converted to the
Bark scale or critical band rate scale. This scale describes best
the critical bandwidths of the human ear that lead to spectral
masking when two frequencies are close enough to stimulate
the same region of the basilar membrane. For an exact defini-
tion of this terminology, see [28]. The critical bandwidths re-
main constant for frequencies below 500 Hz and grow then in a
nonlinear fashion, thus being different from the logarithmic fre-
quency axis used in the experimental setups above. This leads
to a conversion from frequencies in kilohertz to Bark which can
be calculated as

Bark
(6)

Using (6), the lower and upper frequency limits of critical bands
smaller half the sampling frequency have been calculated. Be-
cause the sampling frequency of all used data is 16 kHz, the
number of critical bands to be considered is 22. The values of
the power spectrum within the frequency limits of the th critical
band, , have been summed up for all bands to get the repre-
sentation on the Bark scale.

Inner Ear Model: The model estimates the spread of masking
between the critical bands caused by the structure of the ear’s
basilar membrane. The basilar membrane spreading function
used to model the influence of the th critical band on the th
band was derived by Schroeder in [29]

dB (7)

A function for a specific Bark band is steeper to the side of
low frequencies which indicates that spectral masking is more
present towards higher frequencies. For each of the 56 bands, a
function was computed using (7), resulting in a 22 22 matrix
that was multiplied with the power spectrum on Bark scale. For
all steps of the psychoacoustic model, the implementation of
[25] has been used.

If the features used in this paper have some connection to the
characteristics that are used by humans to categorize sounds,
a further improvement by this alternative preprocessing proce-
dure may be expected.



IE
EE

Pr
oo

f

HOLZAPFEL AND STYLIANOU: MUSICAL GENRE CLASSIFICATION USING 5

Fig. 4. Model estimation and classification of data.

B. Statistical Model and Classification

In order to construct the models for the musical genres we
calculate the features for all audio signals of the database, i.e.,
the features are computed for each subspectrogram,
and then the features are stored for each class separately regard-
less of their temporal order in the samples. This is referred to as
a bag of frames model in [7]. Then, a GMM for each genre
is built (i.e., with , where denotes the number of
genres), using a standard expectation-maximization (EM) algo-
rithm [32]. The EM algorithm is initialized by a deterministic
procedure based on the Gaussian means algorithm presented
in [20]. A new song is classified into a genre by applying a
maximum-likelihood criterion: For this, for all feature vectors

collected from the subspectrograms of a test song,
the likelihoods , with and ,
are computed. Summing up the log-likelihood values for each
class, the song is assigned to the genre that has the maximum
score

(8)

The principle of the model training and classification is depicted
in Fig. 4. Our classification method differs from [7] as we do not
build a statistical model for the song to classify. In this way, de-
tailed information contained in the features is preserved. Design
parameters of the GMM are provided in Section V.

IV. PERFORMANCE EVALUATION

In this paper, the performance of the presented system is eval-
uated in two different ways. At first, we compare its classifi-
cation accuracy with the accuracy achieved by two alternative
features sets, one using MFCC, and the other using randomly
chosen spectral bases. Furthermore, a stability measure is sug-
gested based on the distances between the statistical models
built on the datasets used for the evaluation.

A. Two Alternative Feature Sets

In order to evaluate the performance of our classification ap-
proach based on NMF, it is necessary to compare with some
kind of standard procedures used in many recent publications.
For this purpose, a baseline system was implemented that is as

close as possible to our classification system except for the fea-
ture calculation approach. The form of the baseline system was
motivated by [8] which presents a frequently applied system
for capturing the vertical structure of music. The model estima-
tion and classification follow exactly the procedure depicted in
Fig. 4. However, in the baseline system, 20 MFCCs are used in-
stead of the NMF-based features. Note that in contrast to [7] and
[8], no model is constructed for a song to be classified. Every
feature vector is considered in the same ML-classification ap-
proach as described for NMF in Section III-B.

The second system to compare with differs from the NMF
system only in the choice of spectral bases. These are simply

randomly chosen columns from each subspectrogram, which
contains columns as described in Section III-A. Comparing
accuracies between this system, that will be referred to as a
random base system, and a NMF-based system should clarify
the impact of the matrix factorization in the whole classification
concept.

B. Measure of Stability

In addition to comparing the performance of the proposed
classification system with those of baseline and random base
system, we suggest a method to quantify the quality of the clas-
sifiers based on a measure that estimates their sensitivity (or sta-
bility).

In order to judge the stability of the trained GMM, a
method based on Kullback–Leibler divergence (KLD) was
implemented. The Kullback–Leibler divergence between two
distributions and is given by

(9)

Since there is no closed-form expression for KLD in a GMM
context, a possible way to get a distance measure in this case
is by generating samples from and then
approximate KLD, by [7]

(10)

Based on (10), a symmetric distance measure is constructed as

(11)

Let us assume that our dataset consists of classes. Performing
an -fold cross validation, we will get a set of GMMs de-
scribed by their parameters , , and .
For convenience, this set is shown as an matrix in Fig. 5.
We can now determine the distances between the GMMs of dif-
ferent classes using (11) for each of the cross validation runs
separately. For example, for the first run we would consider the
mixture models marked by the horizontal ellipse. The minimum
of these values throughout the cross validation runs gives us the
least distance between two different classes. Then, the
distances within the classes throughout the different cross vali-
dation runs are computed, for example for the first class the mix-
ture models marked by the vertical ellipse would be considered.
The biggest value along all classes gives us a measure
of how much the model differs throughout the cross validation
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Fig. 5. Resulting GMMs from an n-fold cross validation.

due to diversity of the data set. We can now define a condition
measure for a specific feature set, computed by

(12)

Obviously, values for smaller than 1 for a specific feature
set imply that a classification with this feature set might be unre-
liable. This is because there is a high variability between models
built from a different set of data for a specific class, while at
the same time there is a relatively small distance between the
models for different classes. Note that using minimum and max-
imum values for and is a rather pessimistic ap-
proach. It penalizes a single outlier in the distances. For the intra
class distance, this outlier could be the result of a single song
that differed from the others in the training set and caused the
model to vary strongly once it was moved from the training to
the test set.

V. EXPERIMENTS

A. Databases

For the experiments, two different data sets have been used.
All the audio files of the databases have been converted to
monaural wave files at a sampling frequency of 16 000 Hz
quantized with 16 bits. The first database (D1) consists of ten

Fig. 6. Classification accuracies for varying timbre window length and value
of �.

classes,4 each containing 100 subsections of musical pieces
of 30-s length. The database was collected by Tzanetakis [21]
and has been used for performance evaluation also by other
researchers [23]. The second database (D2) was downloaded
from the website of the ISMIR contest in 2004,5 where it
served as training set for the genre classification contest. The
songs had been selected from the magnatune6 collection. D2
consists of six classes.7 It contains 729 songs that are not
equally distributed among the classes as they are in D1. Also,
the pieces are full musical pieces and not snapshots as in D1;
therefore, the lengths of the pieces in D2 differ. As proposed
for the MIREX 2005 evaluation,8 a fivefold cross validation has
been used. The whole data set has been used, while stratified
cross validation has not been applied. All the classification
accuracies shown in this paper are results of cross validations.

B. System Parameters

For classification purposes, the optimum values for the tem-
poral length of the timbre window and the number of
spectral base vectors to compute, should be defined. Values for

from 0.25 to 3 s have been tested. A value for is com-
puted by varying the values of ratio defined as

(13)

from 0.9 to 0.6, where denotes the th singular value of the
singular value decomposition (SVD) of the spectrogram to be
factorized. Therefore, provides an estimation of the minimum
number of components necessary for preserving the amount of
variance in the spectral basis as defined by .

4Blues, Classical, Country, Disco, Hip Hop, Jazz, Metal, Pop, Reggae, Rock.
5http://ismir2004.ismir.net/genre_contest/index.htm.
6www.magnatune.com.
7Classical, Electronic, Jazz, Metal/Punk, Rock/Pop, World.
8http://www.music-ir.org/mirex2005/index.php/Audio_Genre_Classifica-

tion.
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TABLE I
MEAN VALUES FOR THE NUMBER OF SPECTRAL BASE VECTORS

These two system parameters have been defined using a
subset of four classes (classical, disco, metal, rock) from the
first database. A subset was chosen for computational efficiency
and in order to avoid overfitting the system parameters to the
whole data set. The subset contains two classes that revealed
to be easily classified in preliminary experiments (classic and
metal), as well as two problematic classes (rock and disco). A
mixture of Gaussians with five components using full covari-
ance matrices has been built for each genre (see Section III-B
for details). Fig. 6 depicts the accuracies depending on and

. The optimum length of the timbre window is half a second
while the rising accuracy for reduced values of implies that
further decrease may provide even better results. However, this
often leads to a value for equal to one, especially when
takes a small values. Indeed, in this case one eigenvector of the
sample covariance matrix describes a sufficient amount
of the data variance [according to (13)]. Setting to 1 leads to
numerical problems in the EM algorithm because some covari-
ance matrices are close to be singular. From this we conclude
that we have to assure that , taking therefore into account
also directions of additional eigenvectors. We did experiments
on the same dataset fixing to 0.5 s and set .
We found that the classification accuracies were best for .
This result is supported by considering the values listed in
Table I, which are the mean values of determined using (13)
to achieve the results displayed in Fig. 6. In Table I, the value
of corresponding to the best classification accuracy score
( , s) in Fig. 6 is close to 3. Therefore,
in the following was set to 0.5 s, and was set to 3.
In this way, a meaningful representation of the signal space is
achieved while the stability of the EM algorithm is assured.

C. Classification Results

Table II shows the classification accuracies on the two
databases in per cent. The rows marked with NMF contain
results achieved with the system presented in Sections III-A and
III-B, while rows marked with MFCC contain results achieved
with the baseline system as outlined in Section IV-A. The
values in parentheses denote the number of Gaussians used.
Full covariance matrices have been used for all experiments.
We observed covariance matrices to have strong diagonals but
we estimate full matrices in order to model possible covariances
between the variables. For both feature sets (MFCC and NMF),
the number of Gaussians had been varied in steps of five from
5 to 40. In the following Tables results that do not provide
additional information have been left out to improve com-
prehensibility of the representation (i.e., for instance MFCC
with 15 Gaussian components). For the fields with missing
values for D1, training was not possible, because of the high
compression performed by NMF on the training dataset. Using

TABLE II
CLASSIFICATION ACCURACIES (%) AFTER FIVEFOLD CROSS VALIDATION

the bigger database D2, we were able to increase the number of
components without serious estimation problems. In this case,
the influence of the number of Gaussians on the classification
accuracy may be observed.

The results show that our system outperforms the baseline
system on both databases. On D1, the NMF-based system out-
performs the baseline system slightly, but only ten Gaussian
components are necessary to reach optimum performance for
the presented system, while the baseline performs best using
30 mixture components. For D2, the performance superiority
of the NMF system is more noticeable. Also here, the proposed
system achieves best results using ten components, while for
the baseline system (MFCC) this is achieved using 30 compo-
nents. The decline of the classification accuracy with the in-
creased number of Gaussians may be attributed to overfitting.
The dependency of the classification accuracy on the number
of Gaussians for MFCC agrees with the findings in [8]. There,
for 20 MFCC the best performance of the system was reached
with 50 components, with slightly decreasing results when ex-
ceeding this value. Probably the lower number of components
used in the baseline system for achieving the highest score can
be assigned to the usage of full covariance matrices that capture
correlations not extincted by the orthogonal basis of the DCT
matrix used in the MFCC calculation. For the NMF features,
the optimum number of Gaussians is 10. This shows that more
complex models do not capture significant structure in the data
anymore. Thus, the usage of NMF simplified the densities of
the data while keeping the significant differences between the
classes.

The accuracies of the random base system have been ex-
tremely low for all used number of Gaussians. When comparing
to the best performing systems, i.e., NMF(10), the random base
system with ten Gaussian components achieved accuracies of
20.2% (compared to 74.0%) and 22.8% (compared to 83.5%)
on D1 and D2, respectively. This proves the importance of using
of NMF in the computation of the spectral bases.

It is worth to note that the NMF system is trained very fast.
The data reduction performed by the matrix factorization re-
duces a spectrogram of half a second length (25 DFT-coef-
ficient vectors using a frame rate of 20 ms) to three spectral
base vectors. This yields a data compression of 88%. This is
advantageous regarding training times: training a 20-compo-
nent model on the first database took about 20 times longer
using the baseline system (MFCC) instead of the NMF-based
system. The computation of the features for NMF took longer
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than computing MFCC because of the rescaled gradient de-
scent algorithm used in NMF (about 2.3 times longer). How-
ever, summing up times for feature calculation and training,
the NMF-based system is still about six times faster than the
MFCC-based system. This difference in time grows nonlinearly
with the number of Gaussians.

Even though the system suggested in this paper captures only
information about the vertical characteristics of music, it also
performs well in comparison with approaches incorporating
more versatile feature sets that partly include both vertical and
horizontal directions. On D1, Li and Tzanetakis [21] report
an accuracy of 71% using a feature set containing MFCC and
FFT-derived characteristics as well as information about beat
and pitch, and linear discriminant analysis as classifier. The
first author of [21] presents a score of 79.5% using DWCH9

as best performing feature and SVM as a classifier, while
using GMM with three Gaussian components, an accuracy
of 63.5% is reported [22]. Lidy and colleagues [35] report an
accuracy of 74.9% on D1, using an SVM classifier on features
describing spectral and temporal structure of a song. Pampalk
and colleagues presented an accuracy on D2 of 81% using a
combination of spectral descriptors and a descriptor for modu-
lations present in the signal, which are referred to as fluctuation
patterns [24]. Using the training and development set of the
ISMIR 2004 Audio description contest as a data set, the system
presented in [35] was reported to achieve an accuracy of 80.3%.

For sound classification approaches that are based on spectral
projections and HMM, as for example [14] and [15], no results
on the presented databases are known to the authors. Neverthe-
less, the approach presented in [14] has been implemented by
the authors and tested on D1, resulting in an accuracy of 50%
in a fivefold cross validation. This indicates the superiority of
the approach presented in this paper to the mentioned projec-
tion-based approaches, at least in the context of musical genre
classification.

Another important conclusion can be drawn by comparing
the results of the baseline system on D2 with the results of [24],
where MFCC have been used as an alternative feature set as
well. The baseline system presented in this paper does not build
a statistical model of a song, but considers each MFCC vector
separately by calculating its likelihood given the class models.
In [24], songs have been modeled by Gaussians. This leads to
an improvement in the classification accuracy of about 17%
compared to our baseline system. Thus, it seems that by mod-
eling the feature distribution for a song using GMM, results are
improved, a finding confirmed in [7] in an artist identification
task. Based on the above observations it would be interesting to
check if such a modeling approach will be also beneficial for the
NMF-based system, although such an approach is computation-
ally quite expensive.

Confusion matrices using NMF-based features are provided
in Tables III and IV for D1 and D2, respectively, using ten
Gaussians [NMF(10)]. The columns contain the actual genres
of the test data and rows contain the predicted classification.
Apart from illustrating the above referred results and observa-
tions, Table IV can be contrasted with the matrices shown in

9Daubechies wavelet coefficient histogram.

TABLE III
CONFUSION MATRIX FOR DATABASE 1, USING

NMF-BASED FEATURES [NMF(10)]

TABLE IV
CONFUSION MATRIX FOR DATABASE 2, USING

NMF-BASED FEATURES [NMF(10)]

TABLE V
PERFORMANCE WITH AND WITHOUT A PSYCHOACOUSTIC

MODEL (%), NMF(10)

the ISMIR 2004 genre classification contest.10 In most cases,
misclassifications have musical sense. For example, the genre
Rock in D1 was confused most of the time with Country, while
a Disco track is quite possible to be classified as a Pop music
piece. In D2, the Rock/Pop genre was mostly misclassified as
Metal/Punk. Genres which are assumed to be very different,
like Metal and Classic, were never confused. The worst clas-
sification performance for the proposed system was: Rock in
D1 [57%, NMF(10)] and World in D2 [63.3%, NMF(10)]. It
is worth to note that this behavior in performance is similar to
other systems as well (see ISMIR genre contest results). The
low performance for these genres may be assigned to their large
intravariance of music style (at least for the analyzed data).

1) Psychoacoustic Model: The psychoacoustic processing
described in Section III-A was included into the feature calcu-
lation as depicted in Fig. 1 in the place of the simple log fre-
quency conversion rule. All the other components of the system
have been left as before, and the results of the classification have
been compared with the best performing systems on D1 and D2,
i.e., NMF(10) in both cases. Classification results are shown in
the first row of Table V. For convenience, the best scores from
Table II for log frequency rule are repeated in the third row.
The introduction of the psychoacoustic preprocessing deterio-
rated the performance of the system noticeably. Experiments
have been conducted in order to evaluate the influence of the
individual steps of the preprocessing, i.e., the outer ear model,

10http://ismir2004.ismir.net/genre_contest/results.htm.
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the Bark scale, and the inner ear model. On D1, using only Bark
scale without inner/outer ear models performed best. On D2,
Bark scale used together with the outer ear model slightly out-
performed the complete psychoacoustic model. The accuracies
of these two settings are denoted in the second row of Table V.
It can be resumed that neither a partial usage of the psychoa-
coustic preprocessing lead to improved performance. If the psy-
choacoustic model efficiently describes the perception system,
we would expect the classification results to be better than in the
case of using the simple log frequency conversion rule. There-
fore, either the model does not describe the perception process
efficiently, or the features as input to the system have nothing to
do with the cues used by humans for classifying a musical piece.
Note that in [35], the influence of the particular parts of psycha-
coustic preprocessing on the accuracy in a genre classification
task has been analyzed. The result is the outer ear model being
a crucial part of the preprocessing, which is contradictory to our
results. As the psychoacoustic model used in [35] is similar with
the one used in this paper, a reason for the bad performance of
the psychoacoustic model could be the combination of this spe-
cific preprocessing with NMF.

D. Stability Measures

As introduced in Section IV-B, the stability of a given
GMM-based classifier is estimated based on distances between
the models for the particular classes according to (12). Table VI
shows these condition numbers for all different configurations
that had been depicted in Table II. The condition numbers
are always bigger for the proposed NMF-based model than
for the MFCC-based model. Only for five components the
NMF-based features have a condition number less than 1.
This can be attributed to the existence of components with
large variance. Moreover, with more than ten components,
the condition numbers for the NMF features are consistently
bigger than one, while for the baseline system all the condi-
tion numbers are smaller than one. This indicates that for the
NMF-based features, the smallest inter class distance is always
bigger than the biggest intra class distance; this is not the case
for MFCC. This provides a further proof of the superiority of
the proposed feature set compared to MFCC. As an example,
we show a graphical representation of the inter class distances
for NMF(10) model on D1 in Fig. 7. The mean values of the
inter class distances from the fivefold cross validations have
been calculated; dark areas indicate a low distances and light
areas indicate higher distances. It is evident that there is a high
correlation between the confusion matrix in Table III and the
distances depicted in Fig. 7 [computed using (11)]. Note that
for the NMF-based features, there is also a high correlation
between the condition numbers in Table VI and the classifi-
cation accuracies in Table II: The condition numbers of the
NMF-based system rise until a certain number of Gaussians
that is bigger than the optimal in the classification accuracy
sense (15 instead of 10 for D1, 20 instead of 10 for D2, compare
with Table II). Beyond this maximum, the condition numbers
decrease. A similar pattern may be observed for the classifica-
tion score in Table II. However, this structure is not clear for
the MFCC based system.

Fig. 7. Inter class distance matrix for NMF(10) on D1.

TABLE VI
CONDITION NUMBERS

Fig. 8. Sorted intra class distances for D1, NMF: solid line, MFCC: dotted line.

Taking a detailed look at all the measured inter and intra class
distances reveals a more informative insight into the different
characteristics of the feature space modeling. Sorting all the
intra class distances in increasing order gives the plots shown
in Fig. 8 for D1 and in Fig. 9 for D2. The total number of com-
puted distances in Figs. 8 and 9 is given by ,
where is the number of cross validations, and is the
number of classes ( for D1 and for D2). As a
common difference between the two feature sets, we can rec-
ognize that the intra class distances between the NMF-based
models are more evenly distributed. This is indicated by a less
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Fig. 9. Sorted intra class distances for D2, NMF: solid line, MFCC: dotted line.

Fig. 10. Distribution of the intra class distances for NMF on D1 using 5, 10,
15, and 20 Gaussians (from top to bottom).

steep gradient of the corresponding curves in Figs. 8 and 9. In
these figures, we show the intra class distances for the number of
components that provided the best classification score for both
features; 30 for MFCC and 10 for NMF-based features. A sim-
ilar behavior for both features has been observed for other num-
bers of components. However, for five components in the case of
NMF-based features, the steepness of the corresponding curve
was high, which caused the condition number to be smaller than
one. The more evenly distribution of the intra class distances
can be also observed from their detailed illustration in Fig. 10.
Increasing the number of Gaussians results in more uniform dis-
tributed intra class distances (Fig. 10). This is not the case for
MFCC features (Fig. 11). Similar observations can be also made
for the inter class distances. The sorted inter class distances for
both features are depicted in Figs. 12 and 13 for D1 and D2, re-
spectively. The total number of computed distances in Figs. 12
and 13 is given by , where is again the
number of cross validations, and is the number of classes
( for D1 and for D2).

Fig. 11. Distribution of the intra class distances for MFCC on D1 using 5, 10,
20, and 40 Gaussians (from top to bottom).

Fig. 12. Sorted inter class distances on D1.

Fig. 13. Sorted inter class distances on D2.

VI. CONCLUSION

We suggest a new feature set based on NMF of the spectro-
gram of a music signal for the description of the vertical struc-



IE
EE

Pr
oo

f

HOLZAPFEL AND STYLIANOU: MUSICAL GENRE CLASSIFICATION USING 11

ture of music for the task of automatic musical genre classi-
fication. Extended experiments on two widely used databases
showed the superiority of the proposed features compared to
the standard feature set of MFCC. By using Kullback–Leibler-
based distance measures, we were able to connect the superi-
ority of the NMF-based features in the classification task with
more uniform, compared to the MFCC case, intra class dis-
tances. In addition, the proposed feature extraction algorithm
has the advantage of low training times of the mixture models
due to the data compression and the lower number of Gaussians
necessary to reach the optimum classification accuracy. Tests
with a psychoacoustic preprocessing did not improve the clas-
sification accuracy. As mentioned in the previous sections, the
feature set developed here is capable of describing the vertical
structure of music. The next step will be to derive descriptors for
the horizontal dimension. Therefore, future work includes the
modeling of rhythm and modulation characteristics for a piece
of music based on the NMF approach. A possible starting point
for this work is the use of the rows of matrix in (2).
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