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ABSTRACT

The pitch dependency of timbres has not been fully ex-
ploited in musical instrument identification. In this paper,
we present a method using an F0-dependent multivariate

normal distribution of which mean is represented by a func-
tion of fundamental frequency (F0). This F0-dependent
mean function represents the pitch dependency of each fea-
ture, while the F0-normalized covariance represents the
non-pitch dependency. Musical instrument sounds are first
analyzed by the F0-dependent multivariate normal distribu-
tion, and then identified by using the discriminant function
based on the Bayes decision rule. Experimental results of
identifying 6,247 solo tones of 19 musical instruments by
10-fold cross validation showed that the proposed method
improved the recognition rate at individual-instrument level
from 75.73% to 79.73%, and the recognition rate at category
level from 88.20% to 90.65%.

1. INTRODUCTION

Musical instrument identification is an important subtask
for many applications including auditory scene analysis and
multimedia retrieval as well as for reducing ambiguities in
automatic music transcription. The difficulties in musical
instrument identification reside in the fact that some fea-
tures depend on pitch and individual instruments. In partic-
ular, timbres of musical instruments are obviously affected
by the pitch due to their wide range of pitch. For example,
the pitch range of the piano covers over seven octaves.

To attain high performance of musical instrument iden-
tification, it is indispensable to cope with this pitch depen-

dency of timbre. Most studies on musical instrument iden-
tification, however, have not dealt with the pitch depen-
dency [1]–[6]. Martin used 31 features including spectral
and temporal features with hierarchical classification and
attained about 70% of identification by the benchmark of
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1,023 solo tones of 14 instruments. He pointed out the
importance of the pitch dependency, but left it as future
work [1]. Eronen et al. used spectral and temporal fea-
tures as well as cepstral coefficients used by Brown [2] and
attained about 80% of identification by the benchmark of
1,498 solo tones of 30 instruments [3]. They treated the
pitch as one element of feature vectors, but did not cope
with the pitch dependency. Kashino et al. also treated the
pitch similarly in their automatic music transcription sys-
tem [4]. They also coped with the difference of individual
instruments, but did not deal with the pitch dependency [5].

In this paper, to take into consideration the pitch de-
pendency of timbre in musical instrument identification,
each feature or basic vector of features is represented by
an F0-dependent multivariate normal distribution of which
mean is represented by a function of fundamental frequency
(F0). This F0-dependent mean function represents the pitch
dependency of each feature, while the F0-normalized co-

variance represents the non-pitch dependency. Musical
instrument identification is performed both at individual-
instrument level and at non-tree category level by a discrim-
inant function based on the Bayes decision rule.

The rest of this paper is organized as follows: Section 2
proposes the F0-dependent multivariate normal distribution,
and Section 3 describes the features and the discriminant
function used in this paper. Sections 4 and 5 report the ex-
perimental results, and finally Section 6 concludes this pa-
per.

2. F0-DEPENDENT MULTIVARIATE NORMAL

DISTRIBUTION

The distribution of tone features in the feature space is rep-
resented by an F0-dependent multivariate normal distribu-

tion with two parameters: the F0-dependent mean function

and F0-normalized covariance. The reason why the mean
of the distribution is approximated as a function of F0, that
is an F0-dependent mean function, is that tone features at
different pitches have different positions (means) of distri-
butions in the feature space. In this paper, the F0-dependent
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(a) Piano’s 4th basic vector of features.
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(b) Cello’s first basic vector of features.

Fig. 1. Examples of F0-dependent mean functions.

mean function for each musical instrument �i, �i�f�, is ap-
proximated as a cubic polynomial by using the least squares
method. For example, piano’s fourth basic vector of fea-
tures and cello’s first basic vector are depicted in Fig. 1 (a)
and (b), respectively.

On the other hand, the non-pitch dependency of each
feature is represented by the F0-normalized covariance.
Since the F0-dependent mean function represents the mean
of features, the covariance obtained by subtracting the mean
from each feature eliminates the pitch dependency of fea-
tures. For each musical instrument �i, the F0-normalized
covariance �i is defined as follows:

�i �
�

ni

X
x��i

�x� �i�fx���x� �i�fx��
��

where � is the transposition operator, �i and ni are the set of
the training data of the instrument �i and its total number,
respectively. fx denotes the F0 of the data x.

3. FEATURES AND A DISCRIMINANT FUNCTION

3.1. Features for Musical Instrument Identification

We used spectral, temporal, and modulation features as well
as non-harmonic component features resulting in 129 fea-
tures in total listed in Table 1. The features except the non-
harmonic component features are determined by consulting
the literatures [1, 3, 4]. The non-harmonic component fea-
tures are original and have not been used in the literature.
We incorporated features as many as possible, since the fea-
ture space is transformed to a lower-dimensional space.

Each musical instrument sound sampled by 44.1 kHz
with 16 bits are first analyzed by STFT (short time Fourier
transform) with Hanning windows (4096 points) for every
10 ms, and spectral peaks are extracted from the power
spectrum. Then, the F0 and the harmonic structure is ob-
tained from these peaks.

The number of dimensions of the feature space is re-
duced by principal component analysis (PCA): the 129-
dimensional space is reduced to a 79-dimensional space
with the proportion value of 99%. It is further reduced to the
minimum dimension by linear discriminant analysis (LDA).

Table 1. Overview of 129 features.

(1) Spectral features (40 features)

e.g., Spectral centroid, Relative power of the fundamental

component, Relative power in odd and even components

(2) Temporal features (35 features)

e.g., Gradient of a straight line approximating power enve-

lope, Average differential of power envelope during onset

(3) Modulation features (32 features)

e.g., Amplitude and frequency of AM, FM, modulation of

spectral centroid and modulation of MFCC

(4) Non-harmonic component features (22 features)

e.g., Temporal mean of kurtosis of spectral peaks of

each harmonic component (Their values become lower as

sounds contain more non-harmonic components.)

In this paper, the space is reduced to an 18-dimensional
space, since we deal with 19 instruments.

3.2. A Discriminant Function for the F0-dependent

Multivariate Normal Distribution

Once parameters of the F0-dependent multivariate normal
distribution are estimated, the Bayes decision rule is ap-
plied to identify the musical instrument or category of in-
struments. The discriminant function gi�x� f� for the musi-
cal instrument �i is defined by

gi�x� f� � log p�xj�i� f� � log p��i� f�� (1)

where x is an input data, p�xj�i� f� is a probability density
function (PDF) of this distribution and p��i� f� is a priori
probability of the instrument �i.

The PDF of this distribution is defined by

p�xj�i� f� �
�

����d��j�ij���
exp

�
�
�

�
D��x��i�f��

�
�

(2)
where d is the number of dimensions of the feature space
and D� is the squared Mahalanobis distance defined by

D��x��i�f�� � �x� �i�f��
����

i �x� �i�f���

Substituting equation (2) into equation (1), thus, generates
the discriminant function gi�x� f� as follows:

gi�x� f� � �
�

�
D��x��i�f���

�

�
log j�ij

�
d

�
log �� � log p��i� f��

The name of the instrument that maximizes this function,
that is �k satisfying k � argmaxi gi�x� f�, is determined
as the result of musical instrument identification.

The a priori probability p��i� f� represents whether the
pitch range of the instrument �i includes f , that is,

p��i� f� �

�
��c �if f � Ri�
� �if f �� Ri�

where Ri is the pitch range of the instrument �i, and c is
the normalizing factor to satisfy

P
i p��i� f� � �.

V - 422

➡ ➡



Table 2. Contents of the database used in this paper.

Instrument Piano (PF), Classical Guitar (CG),

names Ukulele (UK), Acoustic Guitar (AG),

Violin (VN)!$ Viola (VL), Cello (VC),

Trumpet (TR), Trombone (TB),

Soprano Sax (SS), Alto Sax (AS),

Tenor Sax (TS), Baritone Sax (BS)!$

Oboe (OB), Fagotto (FG), Clarinet (CL),

Piccolo (PC), Flute (FL), Recorder (RC)

Individuals 3 individuals except TR, OB, FL.

TR, OB, FL: 2 individuals.

Intensity Forte, normal, piano.

Articulation Normal articulation style only.

Number of PF: 508, CG: 696, UK: 295, AG: 666, VN: 528,

tones VC: 558, TR: 151, TB: 262, SS: 169, AS: 282,

TS: 153, BS: 215, OB: 151, FG: 312, CL: 263,

PC: 245, FL: 134, RC: 160.

Table 3. Categorization of 19 instruments.

Categories Instruments

Piano Piano

Guitars Classical Guitar, Ukulele, Acoustic Guitar

Strings Violin, Viola, Cello

Brasses Trumpet, Trombone

Saxophones Soprano Sax, Alto Sax, Tenor Sax,

Baritone Sax

Double Reeds Oboe, Faggoto

Clarinet Clarinet

Air Reeds Piccolo, Flute, Recorder

4. EXPERIMENTS AND RESULTS

4.1. Experimental Conditions

Musical instrument identification is performed not only at
individual-instrument level but also at category level to eval-
uate the improvement of recognition rates by the proposed
method based on the F0-dependent multivariate normal dis-
tribution. The recognition rate was obtained by 10-fold
cross validation. We compared the results by the method us-
ing usual multivariate normal distribution (called baseline)
with those by the method using the proposed F0-dependent
multivariate normal distribution (called proposed).

The benchmark used for evaluation is a subset of the
large musical instrument sound database RWC-MDB-I-2001

developed by Goto et al. [7, 8]. This subset summarized in
Table 2 was selected by the quality of recorded sounds and
consists of 6,247 solo tones of 19 orchestral instruments.
All data are sampled by 44.1 kHz with 16 bits.

The categories of musical instruments summarized in
Table 3 are determined based on the sounding mechanism
of instruments and existing studies [1, 3]. The category of
instruments is useful for some applications including music
retrieval. For example, when a user wants to find a piece

of piano solo on a music retrieval system, the system can
reject pieces containing instruments of different categories,
which can be judged without identifying individual instru-
ment names.

4.2. Results of Musical Instrument Identification

Table 4 summarizes the recognition rates by both the base-

line and proposed methods. The proposed F0-dependent
method improved the recognition rate at individual-
instrument level from 75.73% to 79.73% and reduced
recognition errors by 16.48% in average. At category
level, the proposed method improved the recognition rate
from 88.20% to 90.65% and reduced recognition errors by
20.67%. The observation of these experimental results is
summarized below:

Improvement by the pitch dependency

The recognition rates of six instruments (PF, TR, TB, SS,

BS, and FG) were improved by more than 7%. In particular,
the recognition rate for pianos was improved by 9.06%, and
its recognition errors were reduced by 35.13%. This big
improvement was attained, since their pitch dependency is
salient due to their wide range of pitch.

Difference between accuracy at two levels

The recognition rates of the four types of saxophones at
individual-instrument level (47–73%) were lower than those
at category level (77–92%). This is because sounds of those
saxophones were quite similar. In fact, Martin reported that
sounds of various saxophones are very difficult for the hu-
man to discriminate [1].

Instrument-dependent difficulty of identification

Since we adopt the flat (non-hierarchical) categoriza-
tion, the recognition rates at category level depend on the
category. The recognition rates of guitars and strings at cat-
egory level were more than 94%, while those of brasses,
saxophones, double reeds, clarinet and air reeds were about
70–90%. This is because instruments of these categories
have similar sounding mechanism: these categories are sub-
categories of “wind instruments” in conventional hierarchi-
cal categorization.

5. EVALUATION OF THE BAYES DECISION RULE

The effect of the Bayes decision rule in musical instru-
ment identification was evaluated by comparing with the 3-
NN rule (3-nearest neighbor rule) with/without LDA. Three
variations of the dimension reduction are examined:

(a) reduction to 79 dimension by PCA,
(b) reduction to 18 dimension by PCA, and
(c) reduction to 18 dimension by PCA and LDA.

The last one is adopted in the proposed method.
The experimental results listed in Table 5 showed that

the Bayes decision rule performed better in average than the
3-NN rule. Some observation are as follows:
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Table 4. Accuracy by usual distribution (baseline) and F0-

dependent distribution (proposed).

Individual-instrument level Category level

Usual F0-dpt diff. Usual F0-dpt diff.

PF 74.21% 83.27% �9.06% 74.21% 83.27% �9.06%

CG 90.23% 90.23% �0.00% 97.27% 97.13% �0.14%

UK 97.97% 97.97% �0.00% 97.97% 98.31% �0.34%

AG 81.23% 83.93% �2.70% 94.89% 95.65% �0.76%

VN 69.70% 73.67% �3.97% 98.86% 99.05% �0.19%

VL 73.94% 76.27% �2.33% 93.22% 94.92% �1.70%

VC 73.48% 78.67% �5.19% 95.16% 96.24% �1.08%

TR 73.51% 82.12% �8.61% 76.82% 85.43% �8.61%

TB 76.72% 84.35% �7.63% 85.50% 89.69% �4.19%

SS 56.80% 65.89% �9.09% 73.96% 80.47% �6.51%

AS 41.49% 47.87% �6.38% 73.76% 77.66% �3.90%

TS 64.71% 66.01% �1.30% 90.20% 92.16% �1.96%

BS 66.05% 73.95% �7.90% 81.40% 86.05% �4.65%

OB 71.52% 72.19% �0.67% 75.50% 74.83% �0.67%

FG 59.61% 68.59% �8.98% 64.74% 71.15% �6.41%

CL 90.69% 92.07% �1.38% 90.69% 92.07% �1.38%

PC 77.56% 81.63% �4.07% 89.39% 90.20% �0.81%

FL 81.34% 85.07% �3.73% 82.09% 85.82% �3.73%

RC 91.88% 91.25% �0.63% 92.50% 91.25% �1.25%

Ave. 75.73% 79.73% �4.00% 88.20% 90.65% �2.45%

Usual: Usual (F0-independent) distribution (baseline)

F0-dpt: F0-dependent distribution (proposed)

(1) The Bayes decision rule with 79-dimension showed
poor performance for AG, TR, SS, TS, OB and FL, since
the number of their training data is not enough for estimat-
ing parameters of a 79-dimensional normal distribution. For
such small training sets with 79-dimension, 3-NN is supe-
rior to the Bayes decision rule.

(2) LDA with the Bayes decision rule improved the ac-
curacy of musical instrument identification from 66.50% to
79.73% in average. Although it seemed that PCA with 79-
dimension performed better than LDA for CG, VN and AS,
the cumulative performance of LDA for the categories of
strings and saxophones is better than that of PCA.

6. CONCLUSIONS

In this paper, we presented a method for musical instrument
identification using the F0-dependent multivariate normal

distribution which takes into consideration the pitch depen-
dency of timbre. The method improved the recognition rates
at individual-instrument level from 75.73% to 79.73%, and
at category level from 88.20% to 90.65% in average, respec-
tively. The Bayes decision rule with dimension reduction by
PCA and LDA also performed better than the 3-NN method.

Future works include evaluation of the method with
different styles of playing, evaluation of the robustness of
each feature against mixture of sounds, and automatic mu-
sic transcription.

Table 5. Accuracy by 3-NN rule and the Bayes decision rule.

3-NN rule Bayes decision rule

(a) (b) (c) (a) (b) (c)

PF 53.94% 46.46% 63.39% 55.91% 59.06% 83.27%

CG 79.74% 77.16% 75.72% 98.28% 97.27% 90.23%

UK 94.58% 92.54% 97.63% 67.12% 80.00% 97.97%

AG 95.05% 92.79% 97.00% 19.97% 44.14% 83.93%

VN 47.73% 46.02% 45.83% 89.58% 84.47% 73.67%

VL 55.93% 54.24% 61.86% 71.19% 79.24% 76.27%

VC 86.20% 85.84% 84.23% 45.16% 30.82% 78.67%

TR 36.42% 38.41% 47.02% 41.72% 72.85% 82.12%

TB 70.99% 54.58% 77.86% 75.19% 78.24% 84.35%

SS 23.08% 14.20% 24.85% 48.52% 66.86% 65.89%

AS 37.59% 29.79% 40.43% 72.70% 41.84% 47.84%

TS 62.09% 66.01% 68.63% 30.07% 61.44% 66.01%

BS 68.84% 67.91% 66.98% 55.35% 54.42% 73.95%

OB 47.68% 48.34% 49.01% 43.71% 81.46% 72.19%

FG 64.10% 65.06% 74.36% 40.38% 30.12% 68.59%

CL 93.45% 87.93% 93.10% 95.51% 93.45% 92.07%

PC 84.08% 84.90% 84.08% 63.27% 58.37% 81.63%

FL 88.06% 72.39% 94.03% 35.82% 84.33% 85.07%

RC 97.50% 93.75% 97.50% 85.00% 96.25% 91.25%

Ave. 70.27% 66.98% 72.53% 62.11% 66.50% 79.73%

(a) Dimensionality reduction to 79 dim. using PCA only

(b) Dimensionality reduction to 18 dim. using PCA only

(c) Dimensionality reduction to 18 dim. using both PCA and LDA
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