
MUSICAL INSTRUMENT TIMBRES CLASSIFICATION

WITH SPECTRAL FEATURES ∗

G. Agostini M. Longari E. Pollastri

Dipartimento di Scienze dell’Informazione

Universit̀a Statale degli Studi di Milano

Via Comelico 39, 20135 Milano - Italy

giulio.agostini @libero.it , {longari , pollastri }@dsi.unimi.it

Abstract - In this work, a set of features is evaluated for recognition of musical instru-

ments out of monophonic musical signals. Aiming to achieve a compact representation, the

adopted features regard only spectral characteristics of sound and are limited in number. On

top of these descriptors, various classification methods are implemented and tested. Over a

dataset of 1007 tones from 27 musical instruments, Support Vector Machines and Quadratic

Discriminant Analysis show comparable results with success rates close to 70% of successful

classifications. Canonical Discriminant Analysis never had momentous results, while Nearest

Neighbours performed on average among the employed classifiers. Strings have been the most

misclassified instrument family, while very satisfactory results have been obtained with brass

and woodwinds. The most relevant features are demonstrated to be the inharmonicity, the

spectral centroid and the energy contained in the first partial.
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INTRODUCTION

This paper addresses the problem of musical instrument classification from audio sources.

The need for this application strongly arises in the context of multimedia content descrip-

tion. A great number of commercial applications will be available soon, especially in the

field of multimedia databases, such as automatic indexing tools, intelligent browsers and

search engines with querying by content capabilities.

The goal of automatic music content understanding and description is not new and it

is traditionally divided into two sub-tasks: pitch-detection, or the extraction of score-like

attributes from an audio signal (i.e. notes and durations), and sound-source recognition, or

the description of sounds involved in an excerpt of music [16]. The former has received a lot

of attention and some recent experiments are described in [31, 32]; the latter has not been

studied so much because of the lack of knowledge about human perception and cognition

of sounds. This work belongs to the second area and it is devoted to a more modest goal,

but important nevertheless: automatic timbre classification of audio sources containing no

more than one instrument at a time (source must be monotimbral and monophonic).

Focussing on this area, the forthcoming MPEG-7 standard should provide a list of meta-

data for multimedia content [23], nevertheless two important aspects still need to be ex-

plored further. First, the best features for a particular task must be identified. Then, once

obtained a set of descriptors, some classification algorithms should be employed to organize

metadata in meaningful categories. All these facets will be considered by the present work

with the objective of automatic timbres classification for sound databases.

This paper is organized as follows: first we give some background information on the

notion of timbre and previous related works; then, some details about feature properties

and calculation are presented. A brief description of various classification techniques is

followed by the experiments. Finally, results are presented and compared to previous studies

on the same topic. Discussion and further work close the paper.



BACKGROUND

Timbre differs from the other sound attributes, namely pitch, loudness, and duration,

because it is ill-defined; in fact, it cannot be directly associated to a particular physical

quantity. The American National Standards Institute (ANSI) defines timbre as “that at-

tribute of auditory sensation in terms of which a listener can judge that two sounds similarly

presented and having the same loudness and pitch are dissimilar” [1]. The uncertainty

about the notion of timbre is reflected by the huge amount of studies that have tackled

this problem. Since the first studies by Grey [13], it was clear that we are dealing with a

multi-dimensional attribute, which includes spectral and temporal features. Therefore, early

works on timbre recognition focussed on the exploration of possible relationships between

the perceptual and the acoustic domain. The first experiments on sound classification are

illustrated in [4, 9, 19] where a limited number of musical instruments (eight instruments or

less) has been recognized implementing a basic set of features. Other works explored issues

about the relationship between acoustic features and sound properties [7, 26], justifying

their choice in terms of musical relevance, brightness, spectral synchronicities, harmonic-

ity, and so forth. Recently, the diffusion of multimedia databases has brought to the fore the

problem of musical instrument identification out of a fragment of audio signal. In this con-

text, deep investigations on sound classification as a pattern recognition problem began to

appear in the last few years [2, 8, 15, 20, 21, 33]. These works emphasized the importance

of testing different classifiers and set of features with datasets of dimension comparable to

real world applications. Further works related to timbre classification have dealt with the

more general problem of audio segmentation [11, 25], especially with the purpose of au-

tomatic (video) scene segmentation [34]. Finally, the introduction of content management

applications like the ones envisioned by MPEG-7 boosted the interest on the topic [3, 23].



FEATURE EXTRACTION

A considerable number of features is currently available in the literature, each one de-

scribing some aspects of audio content [18, 28]. In the digital domain, features are usually

calculated from a window of samples, which is normally very short compared to the total

duration of a tone. Thus, we must face the problem of summarizing their temporal evolu-

tion into a small set of values. Mean, standard deviation, skewness and auto-correlation

have been the preferred strategies for their simplicity, but more advanced methods like

Hidden Markov Models could be employed, as illustrated in [3, 18]. By combining these

time-spanning statistics with the known features, an impressive number of variables can be

extracted from each sound. The researcher, though, has to carefully select them, in order

to both keep the time required for the extraction to a minimum, and, more importantly, to

prevent from incurring into the so-called curse of dimensionality. This fanciful term refers

to a well-known result of classification theory [6], which states: as the number of variables

grows, in order to maintain the same error rate, the classifier has to be trained with an ex-

ponentially growing training set. The process of feature extraction is crucial; it should per-

form efficient data reduction while preserving the appropriate amount of information. Thus,

sound analysis techniques must be tailored to the temporal and spectral evolution of musical

signals. As it will be demonstrated in the results section, a set of features related mainly

to the harmonic properties of sounds allows a simplified representation of data. However,

lacking features for the discrimination between sustained sounds and percussive sounds, a

classification solely based on spectral properties has some drawbacks (see the discussion

section for details).

The extraction of descriptors relies on a number of preliminary steps: temporal seg-

mentation of the signal, detection of the fundamental frequency and the estimation of the

harmonic structure (Figure1).
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Figure 1:Description of the feature extraction process (see text for details).

Audio Segmentation

The aim of the first stage is twofold. First of all, the audio signal must be segmented

into a sequence of meaningful events. We do not make any assumptions about the content of

each event, which corresponds to an isolated tone in the ideal case. Subsequently, a decision

based on the pitch estimation is taken for a fine adjustment of event boundaries. The output

of this stage is a list of non-silent events (starting and ending points) and estimated pitch

values.

In the experiment reported in this paper, we assume to deal with audio signals character-

ized by a low level of noise and a good dynamic range. Therefore, a simple procedure based

on energy evaluation is expected to perform satisfactorily in the segmentation task. The sig-

nal is first processed with a band-pass Chebyshev filter of order five; cut-off frequencies are

set to 80 Hz to filter out noise due to unwanted vibrations (for instance, oscillation of the

microphone stand) and 5000 Hz, corresponding to E8 in a tempered musical scale. After

windowing the signal (46 ms Hamming), a RMS-energy curve is computed with the same

frame size. By comparing the energy to an absolute threshold empyrically set to -50 dB

(0 dB being the full scale reference value), we find out a rough estimate of the boundaries

of the events. A finer analysis is then conducted with a 5 ms frame to determine actual

on/off-sets; in particular we look for a 6 dB step around every rough estimate. Through

pitch detection we achieve a refinement of signal segmentation, identifying notes that are

not well defined by the energy curve or that are possibly played legato. Pitch is also input

to the calculation of some spectral features. The pitch-tracking algorithm employed follows

the one presented in [14], so it will not be described here. The output of the pitch tracker is



the average value (in hertz) of each note hypothesis, a frame by frame value of pitch and a

confidence value that measures the uncertainty of the estimate.

Spectral Features

We collect a total of 18 descriptors for each tone isolated through the procedure just

described. More precisely, we compute mean and standard deviation of 9 features over the

length of each tone. The Zero Crossing Rate is measured directly from the waveform as the

number of sign inversions within a 46 msec window. Then, the harmonic structure of the

signal is evaluated through Short-Time Fourier Analysis with half-overlapping windows.

The size of the analysis window is variable in order to have a frequency resolution of at

least1/24th of octave, even for the lowest tones (1024 ÷ 8192 samples, for tones sampled

at 44100 Hz). The signal is first analyzed at a low frequency resolution; the analysis is

repeated with finer resolutions untill a sufficient number of harmonics is estimated. This

process is controlled by the pitch-tracking algorithm [14]. From the harmonic analysis we

calculate spectral centroid and bandwidth according to the following equations:

Centroid=

∑fmax
f=fmin

f · E(f)
∑fmax

f=fmin
E(f)

(1)

Bandwidth=

∑fmax
f=fmin

|centroid− f | · E(f)
∑fmax

f=fmin
E(f)

(2)

wherefmin = 80 Hz andfmax = 5000 Hz, E(f) is the energy of the spectral component at

frequencyf .

Since several sounds slighlty deviate from the harmonic rule, a feature called inhar-

monicity is measured as cumulative distance between the first four estimated partials (pi)

and their theoretical values (i · f0, wheref0 is the fundamental frequency of the sound):

Inharmonicity=
4∑

i=1

|pi − i · f0|
i · f0

(3)
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Figure 2: Inharmonicity, Harmonic Energy Skewness, Zero Crossing Rate, Centroid and
Bandwidth calculated for three notes of different instruments (cello, violin and piano).

The percentage of energy contained in each one of the first four partials is calculated for

bins 1/12 oct wide, providing four different features.

Finally, we introduce a feature obtained by combining the energy confined in each par-

tial and its respective inharmoncity:

Harmonic Energy Skewness=
4∑

i=1

|pi − i · f0|
i · f0

· Epi (4)

whereEpi is the percentage of energy contained in the respective partial.

Figure2 illustrates the temporal evolution of some of the features explained so far for

three notes taken respectively from cello, violin and piano.

CLASSIFICATION TECHNIQUES

In this section, we provide a brief survey on the most popular classification techniques,

comparing different approaches. As an abstract task, pattern recognition aims to associate a



vectory in ap-dimensional space (the feature space) to a class, given a dataset (or training

set) ofN vectorsdi. Since each of these observations belong to a known class, among the

c available, this is said to be a supervised classification. In our instance of the problem, the

features extracted are the dimensions, or variables, and the instrument labels are the classes.

The vectory represents the tone played by an unknown musical instrument.

Discriminant Analysis

The multivariate statistical approach to the question [10] has a long tradition of research.

Consideringy anddi as realizations of random vectors, the probability of a misclassifica-

tion of a classifierg can be expressed as a function of the Probability Density Functions

fi(·) of each class

γg = 1−
c∑

i=1

(
πi

∫

Rp

fi(y) dy
)

, (5)

whereπi is thea priori probability that an observation belongs to thei-th class. It can also

be proven that the optimal classifier, which is the classifier that minimizes the error rate, is

the one that associates to thei-th class every vectory for which

πifi(y) > πjfj(y) ∀i 6= j. (6)

Unfortunately, PDFsfi(·) are generally unknown. Nonetheless, one can make assumptions

about the distributions of the classes, and estimate the necessary parameters to obtain a good

guess of those functions.

Quadratic Discriminant Analysis

This technique starts from the working hypothesis that classes have multivariate normal

PDFs. The only parameters characterising those distributions are the mean vectorsµi and

the covariance matricesΣi. We can easily estimate them computing the traditional sample



statistics

mi =
1
Ni

Ni∑

j=1

dij and Si =
1

Ni − 1

Ni∑

j=1

(dij −mi)(dij −mi)′, (7)

using theNi observationsdij available for thei-th class from the training sequence. It

can be shown that, in this case, the hypersurfaces delimiting the regions of classification—

in which the associated class is the same—are quadratic forms, hence the name of the

classifier.

Although this is the optimal classifier for normal mixtures, it could lead to sub-optimal

error rates in practical cases, for two reasons. First, classes may depart sensibly from the

assumption of normality. A more subtle source of errors is the fact that with this method

the actual distributions remain unknown, since we only have their best estimates of them,

based on a finite training set.

Canonical Discriminant Analysis

The Canonical Discriminant Analysis (CDA) is a generalization of the Linear Discrim-

inant Analysis, which separates two classes (c = 2) in a plane (p = 2) by means of a line.

This line is found by maximising the separation of the two one-dimensional distributions

that result from the projection of the two bivariate distributions on the direction normal to

the line of separation sought.

In a p-dimensional space, using a similar criterion, we can separatec ≥ 2 classes with

hyperplanes, by maximising with respect to a generic vectora the figure of merit

D(a) =
a′SBa
a′SWa

, (8)

where

SB =
1
N

c∑

j=1

Nj(mj −m)(mj −m)′ (9)



is the between-class scatter matrix, and

SW =
1
N

c∑

i=1

Ni∑

j=1

(dij −mi)(dij −mi)′ (10)

is the within-class scatter matrix,m being the sample mean of all the observations andN

the total number of observations. Equivalent to QDA from the point of view of computa-

tional complexity, CDA has proven to perform better when there are few samples available,

because it is less sensitive to overfitting. CDA and QDA are identical (i.e. optimal) rules

under homoscedasticity conditions. Thus, if the underlying covariance matrices are “very

different”, QDA has lower error rates. QDA is also to be preferred in presence of long tails

and pronounced kurtosis, whereas a moderate skewness suggests to use CDA.

k-Nearest Neighbours

This is one of the most popular non-parametric techniques in pattern recognition. It

does not require any knowledge about the distribution of the samples and it is quite easy to

implement. In fact, this method classifiesy as belonging to the class which is most frequent

among itsk nearest observations. Thus, only two parameters are needed: a distance metric

and the number of nearest samples considered (k). An important drawback is its poor ability

to generalize from data, since only local information is taken into account.

Support Vector Machines

The Support Vector Machines (SVM) are a recently developed approach to the learning

problem [5]. The aim is to find the hyperplane that best separates observations belonging

to different classes. This is done by satisfying a generalization bound which maximizes the

geometric margin between the sample data and the hyperplane, as briefly detailed below.

Suppose we have a set of linearly separable training samplesd1, . . . ,dN , with di ∈ Rp.

We refer to the simplified binary classification problem (two classes,c = 2), in which a

label li ∈ {−1, 1} is assigned to thei-th sample, indicating the class they belong to. The



hyperplanef(y) = (w · y) + b that separates the data can be found by minimizing the

2-norm of the weight vectorw:

min
w,b

〈w ·w〉 (11)

subject to the following class separation constraints:

li(〈w · di〉+ b) ≥ 1 1 ≤ i ≤ N (12)

This approach is called Maximal Margin Classifier. The optimal solution can be viewed

in a dual form by applying the Lagrange Theory and imposing the conditions of stationar-

iness. The objective and decision functions can thus be written in terms of the Lagrange

multipliersαi as

L(w, b, α) =
N∑

i=1

αi − 1
2

N∑

i,j=1

liljαiαj 〈di · dj〉 (13)

f(y) =
N∑

i=1

liαi 〈di · y〉+ b (14)

The Support Vectors are defined as the input samplesdi for which the respective Lagrange

multiplier αi is non-zero, so they contain all the information needed to reconstruct the hy-

perplane. Geometrically, they are the closest samples to the hyperplane to lie on the border

of the geometric margin.

In case the classes are not linearly separable, the samples are projected through a non

linear functionΦ(·) from the input spaceY in a higher-dimensional space (with possi-

bly infinite dimensions) that we shall call the transformed space1 T . The transformation

Φ(y) : Y → T has to be a non-linear function so that the transformed samples can be

linearly separable. Since the high number of dimensions increases the computational effort,

it is possible to introduce thekernel functionsK(y, z) = 〈Φ(y) · Φ(z)〉, which implicitly

define the transformationΦ(·) and allow to find the solution in the transformed spaceT

1For the sake of clarity, we shall avoid the traditional name “feature space”.



Kernel Name Formula

Dot Kernel K(y, z) = 〈y · z〉

Radial Basis Function K(y, z) = exp
(−d|y − z|2)

Regularized Fourier

K(y, z) =
∏p

i=1 Ki(yi, zi), where

Ki(yi, zi) = π
2γ

cosh
π−|yi−zi|

γ

sinh π
γ

with 0 ≤ |yi − zi| ≤ 2π

Linear Spline
Ki(yi, zi) = 1 + yizi + yizi min{yi, zi}+

−yi+zi

2 min2{yi, zi}+ min3{yi,zi}
3

Figure 3:Most commonly used kernel functions.d andγ are user-defined parameters.

by making simpler calculations in the input spaceY . The theory does not grant that the

best linear hyperplane can always be found, but, in practice, a solution can be heuristically

obtained. Thus, the problem is now to find a kernel function that well separates the obser-

vations. Not just any function is a kernel function; it must be symmetric, it must satisfy the

Cauchy-Schwartz inequality, and must satisfy the condition imposed in Mercer’s Theorem.

The simplest example of a kernel function is the dot kernel, which maps the input space

directly into the transformed space. Radial Basis Functions (RBF) and polynomial kernels

are widely used in image recognition, speech recognition, hand-written digit recognition,

and protein homology detection problems.



EXPERIMENT

The dataset adopted has been extracted by the MUMS (McGill University Master Sam-

ples) CDs [24], which is a library of isolated sample tones from a wide number of musical

instruments, played with several articulation styles and covering the entire pitch range. We

considered 30 musical instruments ranging from orchestral sounds (strings, woodwinds,

brass) to pop/electronic instruments (bass, electric and distorted guitar). An extended col-

lection of musical instrument tones is essential for training and testing classifiers for two

distinct reasons. First, methods that require an estimate of the covariance matrices, namely

QDA and CDA, must compute it with at leastp + 1 linearly independent observations for

each class,p being the number of features extracted, so that they are definite positive. In

addition, we need to avoid the curse of dimensionality discussed at page4, therefore a rich

collection of samples brings the expected error rate down. It follows from the first obser-

vation that we could not include musical instruments with less than 19 tones in the training

set. This is why we collapsed the family of saxophones (alto, soprano, tenor, baritone) to a

single instrument class2. Having said that, the total number of musical instruments consid-

ered was 27, but the classification results reported in the next section can be claimed to hold

for a set of 30 instruments (Figure4).

The audio files have been analysed by the feature extraction algorithms. If the accu-

racy of a pitch estimate is below a pre-defined threshold, the corresponding tone is rejected

from the training set. Following this procedure, the number of tones accepted for train-

ing/testing is 1007 in total. Various classification techniques have been implemented and

tested: Canonical Discriminant Analysis (CDA), Quadratic Discriminant Analysis (QDA),

Nearest Neighbours (k-NN) and Support Vector Machines (SVM).k-NN has been tested

with k = 1, 3, 5, 7 and with 3 different distance metrics (1-norm, 2-norm, 3-norm). In one

experiment, we modified the input space through a kernel function. For SVM, we adopted a

software tool developed at the Royal Holloway University of London [27]. A number of ker-

2We observe that the recognition of the single instrument within the sax class can be easily accomplished
by inspecting the pitch, since the ranges do not overlap.
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Figure 4:Taxonomy of the instruments employed in the experiments.

nel functions has been considered (dot product, simple polynomial, Radial Basis Functions,

linear splines, regularized Fourier). Input values have been normalized independently and

we chose a multi-class classification method that trainsc(c− 1)/2 binary classifiers, where

c is the number of instruments. Therefore, recognition rates in the classification of instru-

ment families have been calculated by grouping results from the recognition of individual

instruments. All error rates estimates reported in the next section have been computed using

a leave-one-out procedure.

RESULTS

The experiments illustrated have been evaluated by means of overall success rate and

confusion matrices. In the first case, results have been calculated as the ratio of estimated

and actual stimuli. Confusion matrices represent a valid method for inspecting perfor-

mances from a qualitative point of view. Although we put the emphasis at the instrument

level, we have also grouped instruments belonging to the same family (strings, brass, wood-

winds and the like), extending Sachs’ taxonomy [17] with the inclusion of “rock strings”

(deep bass, electric guitar, distorted guitar). Figure5 provides a graphical representation

of the best results both at instrument level (17, 20 and 27 instruments) and at family level

(pizzicato-sustained, instrument family).

SVM with Radial Basis Function kernel was the best classifier in the recognition of

individual instruments, with a success rate of 69.7%, 78.6% and 80.2% for respectively 27,

20 and 17 instruments. In comparison with the work by Marques and Cano [20], where
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8 instruments were recognized with an error rate of 30%, the SVM implemented in our

experiments had an error rate of 19.8% in the classification of 17 instruments. The second

best score was achieved by QDA, with success rates close to SVM’s performances. In the

case of instrument family recognition and sustain/pizzicato classification, QDA overcame

all other classifiers with a success rate of 81%. Success rates with SVM at the family

and pizzicato/sustained levels should be carefully evaluated, since we did not train a new

SVM for each family (i.e. grouping instruments by family or pizzicato/sustained). Thus, we

have to consider results for pizzicato/sustained discrimination for this classifier as merely

indicative, although success rates with all classifiers are comparable for this task.

CDA never obtained momentous results, ranging from 71.2% with 17 instruments to

60.3% with 27 instruments. In spite of their simplicity,k-NN performed quite close to

QDA. Among thek-NN classifiers, 1-NN with 1-norm distance metric obtained the best

performance. Since thek-NN was employed in a number of experiments, we observe that

our results are similar to those previously reported, for example in [12]. Using a kernel

function to modify the input space did not bring any advantage (71% with kernel and 74.5%

without kernel for 20 instruments).

A deeper analysis of the results achieved with SVM and QDA (see Figure6, 7, 8,

9) showed that strings have been the most misclassified family with 39.52% and 46.75%

of individual instruments identified correctly on average respectively for SVM and QDA.



Leaving out strings samples, the success rates for the remaining 19 instruments grows up

to some 80% for the classification of individual instruments. Since this behaviour has been

registered for both pizzicati and sustained strings, we should conclude that our features

are not suitable for describing such instruments. In particular, SVM classifiers seem to be

unable to recognize the doublebass and the pizzicato strings, for which results have been as

low as some 7% and 30%; instead, sustained strings have been identified correctly in the

64% of cases, conforming to the overall rate. QDA classifiers did not show a considerable

difference in performance between pizzicato and sustained strings. Moreover, most of the

misclassifications have been within the same family. This fact explains the slight advantage

of QDA in the classifications at the family level.

The recognition of woodwinds, brass and rock strings has been very successful (94%,

96%, 89% with QDA), without noticeable differences between QDA and SVM. Misclas-

sifications within these families reveal strong and well known subjective evidence. For

example, basoon has been estimated as tuba (21% with QDA), oboe as flute (11% with

QDA) and deep bass as deep bass slap (24% with QDA). The detection of stimuli from the

family of piano and other instruments is definitely more spread around the correct family,

with success rates for the detection of this family close to 70% with SVM and to 64% with

QDA.

We have also calculated a list of the most relevant features through the forward selection

procedure detailed in [22]. The values reported are the normalized versions of the statistics

on which the procedure is based, and can be interpreted as the amount of the information

added by each feature. They can be not strictly decreasing, because a feature might bring

more information only jointly with other features. For 27 instruments, the most informative

feature has been the mean of the inharmonicity, followed by the mean and standard devi-

ation of the spectral centroid and the mean of the energy contained in the first partial (see

Figure10(a)). In Figure10(b), the dataset is projected in the first three canonical variates,

for a subset of 6 instruments.

In one of our experiments, we have also introduced a machine-built decisional tree. We
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Figure 6:Confusion matrix for the classification of individual instruments in the family of
pizzicati with QDA.
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Figure 7:Confusion matrix for the classification of individual instruments in the family of
sustained with QDA.
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Figure 8:Confusion matrix for the classification of individual instruments in the family of
pizzicati with SVM.
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Figure 9:Confusion matrix for the classification of individual instruments in the family of
sustained with SVM.



Feature Name Score

Inharmonicity mean 1.0
Centroid mean 0.202121
Centroid standard deviation 0.184183
Harmonic energy percentage
(partial 0) mean

0.144407

Zero crossing mean 0.130214
Bandwidth standard deviation 0.141585
Bandwidth mean 0.1388
Harmonic energy skewness stan-
dard deviation

0.130805

Harmonic energy percentage
(partial 2) stdandard deviation

0.116544

(a) (b)

Figure 10:Most discriminating features for 27 instruments (a) and dataset for 6 instruments
projected to the first three canonical variates (b).

used a hierarchical clustering algorithm [29] to build the structure. CDA or QDA methods

have been employed at each node of the hierarchy. Even with these techniques, though, we

could not improve the error rates, thus confirming previous findings [8].

DISCUSSION AND FURTHER WORK

A thorough evaluation of the resulting performances illustrated in the previous sec-

tion reveales the power of SVM in the task of timbre classification, thus confirming the

successful results in other fields (e.g. face detection, text classification). Furthermore, in

our experiments we employed widely used kernel functions, so there is room for improve-

ment adopting dedicated kernels. However, QDA performed similarly in the recognition of

individual instruments with errors closer to the way human classify sounds. It was high-

lighted that much of the QDA errors are within the correct family, while SVMs show errors

scattered throughout the confusion matrices. Since QDA is the optimal classifier under

multivariate normality hypotheses, we should conclude that the features we extracted from

isolated tones follow such distribution. To validate this hypothesis a series of statistical tests

are undergoing on the dataset.

As it was anticipated, sounds that exhibit a predominant percussive nature are not well



characterized by a set of features solely based on spectral properties, while sustained sounds

like brass are perfectly taylored. Our experiments have demonstrated that classifiers are not

able to overcome this difficulty. Moreover, the closeness of perfomances between KNN and

SVM indicates that the choice of features is more critical than the choice of a classification

method. However that may be, beside a set of spectral features it is important to introduce

temporal descriptors of sounds, like the log attack slope or similar.

The method employed in our experiments to extract features out of a tone (i.e. mean

and standard deviation) does not consider the time-varying nature of sounds known as ar-

ticulation. If the multivariate normality hypotheses were confirmed, a suitable model of

articulation is the continuous Hidden Markov Model, in which the PDFs of each state is

gaussian [3].

The experiments described so far has been conducted on real acoustic instruments with

relatively little influence of the reverberant field. A preliminary test with performances

of trumpet and trombone has shown that our features are quite robust against the effects

of room acoustics. The only weakness is their dependence from the pitch, which can be

reliably estimated out of monophonic sources only. We are planning to introduce novel

harmonic features that are independent from pitch estimation.

As a final remark, it is interesting to compare our results with human performances. In a

recent paper [30], 88 conservatory students were asked to recognize 27 musical instruments

out of a number of isolated tones randomly played by a CD player. An average of 55.7% of

tones has been correctly classified. Thus, timbre-recognition by computer model is able to

exceed human perfomance under the same conditions (isolated tones).
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