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Abstract

We study the task of image inpainting, where an
image with missing region is recovered with plau-
sible context. Recent approaches based on deep
neural networks have exhibited potential for pro-
ducing elegant detail and are able to take advan-
tage of background information, which gives tex-
ture information about missing region in the image.
These methods often perform pixel/patch level re-
placement on the deep feature maps of missing re-
gion and therefore enable the generated content to
have similar texture as background region. How-
ever, this kind of replacement is a local strategy and
often performs poorly when the background infor-
mation is misleading. To this end, in this study,
we propose to use a multi-scale image contextual
attention learning (MUSICAL) strategy that helps
to flexibly handle richer background information
while avoid to misuse of it. However, such strategy
may not promising in generating context of reason-
able style. To address this issue, both of the style
loss and the perceptual loss are introduced into the
proposed method to achieve the style consistency
of the generated image. Furthermore, we have also
noticed that replacing some of the down sampling
layers in the baseline network with the stride 1 di-
lated convolution layers is beneficial for producing
sharper and fine-detailed results. Experiments on
the Paris Street View, Places, and CelebA datasets
indicate the superior performance of our approach
compares to the state-of-the-arts.

1 Introduction

Image inpainting is a research hotspot in computer vision
and machine learning communities, it refers to restoring or
reconstructing images which have missing regions [Guille-
mot and Le Meur, 2014]. In practice, many inpainting ap-
proaches have been proposed in wide application ranges, e.g.,
the removal of unwanted objects, eye inpainting, identities
obfuscation, and shape inpainting [Criminisi et al., 2004;
Sun et al., 2018].
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In general, the current image inpainting methods are de-
signed based on the assumption that the missing area should
contains similar patterns of the background region. Prior to
the deep learning era, nearly all the methods employ the cer-
tain statistics of the remaining image to recover the corrupted
region [Levin et al., 2003; Criminisi et al., 2004]. In par-
ticular, as the one of the once state-of-the-art methods, the
PatchMatch [Barnes et al., 2009] matches and copies the
background patches into holes starting from low-resolution to
high-resolution or propagating from hole boundaries. While
this approach generally produces smooth results, especially
in background inpainting tasks, it is limited by the available
image statistics and not able to capture high-level semantics
or global structure of the image. Furthermore, as the tradi-
tional diffusion-based and patch-based methods assume miss-
ing patches can be found somewhere in the background re-
gions, they cannot produce novel image contents for complex
inpainting regions where involve intricate structures like faces
[Yu et al., 2018].

In the recent years, the deep learning based methods have
been reported to overcome the limitations above by the sup-
port of the large volume of training images [Gao and Grau-
man, 2017]. In particular, the deep convolutional neural net-
works (CNN) and generative adversarial networks (GAN)
have been introduced to solve the image inpainting task
[Iizuka et al., 2017; Yeh et al., 2017]. These deep learn-
ing based approaches can be simply divided into two cat-
egories including one-stage methods [Pathak et al., 2016;
Iizuka et al., 2017] and two-stage methods [Yang et al., 2017;
Yu et al., 2018]. Due to the difficulty of using one latent code
to represent high-dimensional distribution of the complex real
scene, two-stage methods are proposed to do content genera-
tion and texture refinement separately, but they are quite time
consuming [Xiao et al., 2019; Liu et al., 2017]. What’s more,
two-stage methods still generate some boundary artifacts, dis-
torted structures and blurred textures inconsistent with sur-
rounding areas like one-stage methods, since the neural patch
is a mixture of content and style, copying them from known
region into target region in later stage will introduce change
to the originally generated content. More detailed literature
review of the existing image inpainting methods can refer to
the next section.

In this paper, we propose a novel one-stage image inpaint-
ing model, i.e., the multi-scale image contextual attention
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learning (MUSICAL). Technically, our model adopts the U-
Net [Ronneberger et al., 2015] architecture as the baseline to
propagate the global and local style coherency and detailed
texture information to the missing region. In the MUSICAL
algorithm, we develop a special multi-scale attention mod-
ule by which the feature maps of each scale attention out-
put are merged by the structure of the Squeeze-and-excitation
net [Hu et al., 2018], in this way, we can better capture the
background information in multiple scales and produce con-
tent with elegant details. Then the output images are sent
into two networks, including (1) the VGG16 for calculat-
ing style loss and perceptual loss, and (2) the discrimina-
tor whose structure is the DenseNet [Huang et al., 2017;
Liu et al., 2019]. This will help to generate details in con-
sistent with the global style. Furthermore, we replace the
bottom layer of the U-Net with the stride 1 dilated convolu-
tion without downsampling to make our results sharper. Ex-
periments on three standard datasets (i.e., Paris Street View,
Places and CelebA) demonstrate that the proposed approach
generates higher quality results compare to the existing com-
petitors. The main contributions of this paper are summarized
as follows:

• We develop a novel multi-scale attention module into
the proposed MUSICAL architecture. By merging the
feature maps produced by attention module of differ-
ent matching patch sizes, we can capture information
in multiple scales and flexibly take advantage of back-
ground information to balance the needs of different
styles of images.

• We introduce the style loss, perceptual loss, and adver-
sarial loss to construct the proposed loss function, in
which the style loss and perceptual loss are conducive to
generating the consistent style, and the adversarial loss
can help the network to generate sharper results with bet-
ter details.

• Experiments on the Paris Street View, Places and
CelebA datasets demonstrate the superiority of our ap-
proach compares to the existing state-of-the-art ap-
proaches.

The rest of the paper is organized as follows: section 2 re-
views some related works, then section 3 introduces our pro-
posed MUSICAL algorithm in detail. After that, the experi-
mental results and analysis on three public available datasets
are reported and discussed in section 4, followed by the con-
clusions in section 5.

2 Related Works

2.1 Image Inpainting

A variety of different approaches have been proposed for the
image inpainting tasks, and these works can be summarized
into the following two groups.

Traditional Diffusion and Patch Based Approaches

These methods usually introduce variational algorithms based
on the patch similarities to fill target regions with local image
information propagating from background regions [Levin et
al., 2003; Ding et al., 2019]. Among which, the diffusion

based approaches can only fill small or narrow holes, while
the patch based methods may be performed on more com-
plicated image inpainting scenes and can fill large holes in
natural images. Specifically, a fast nearest neighbor field al-
gorithm called PatchMatch [Barnes et al., 2009] has shown
significant practical values for image editing applications in-
cluding inpainting. It is worth to note that these traditional
methods may work well for stationary textures but are not ef-
fective to fill in holes on complicated structures, since they
mainly depend on low-level features. Furthermore, they are
unable to generate novel objects which not exist in the source
image.

Learning-based Approach

In the recent years, the deep learning based approaches have
appeared as a remarkable exemplar for image inpainting.
Context Encoder [Pathak et al., 2016] attempts to inpaint the
center region (64×64) of 128×128 images, which is the first
parametric inpainting algorithm that is able to give reasonable
results for semantic hole-filling (i.e. large missing regions).
[Iizuka et al., 2017] introduces global and local context dis-
criminators as adversarial losses to improve the network to be
more consistent. Furthermore, [Yang et al., 2017] and [Snel-
grove, 2017], regard the image inpainting task as an opti-
mization problem. For example, [Yang et al., 2017] proposes
a multi-scale neural patch synthesis (MNPS) approach that
matches and adapts patches with the most similar mid-layer
feature correlations of a deep classification network. More
recently, the Shift-Net [Yan et al., 2018] introduces a spe-
cial shift-connection layer for the U-Net architecture [Ron-
neberger et al., 2015] to fill missing regions of any shape
with sharp structures and fine-detailed textures. Compared
with MNPS, the Shift-Net can uncover better results and takes
much less time in the training procedure.

2.2 Attention Modeling

In the case of limited computing resources, the attention
mechanism is a resource allocation scheme that solves the
problem of information overload, thus it may allocate the
computing resources to more important tasks. Attention can
be incorporated as an operator following one or more layers
representing higher-level abstractions for adaptation between
modalities. Researches on the spatial attention in deep convo-
lutional neural networks has emerged a lot in the recent years.

[Jaderberg et al., 2015] introduces a parametric spatial at-
tention module called spatial transformer network (STN) for
neural networks. The STN model can predict parameters of
global affine transformation to warp features with a localiza-
tion module, but not suitable for modeling patch-wise atten-
tion due to its global transformation. By introducing an ap-
pearance flow, [Zhou et al., 2016] predicts offset vectors that
specify which pixels in the input image should be moved to
reconstruct the target region for novel view synthesis. This
method is effective for matching related views of the same
objects but is not effective in predicting a flow field from the
background region to the target region. More recently, [Yu
et al., 2018] proposes a contextual attention layer to explic-
itly attend on related feature patches at distant spatial loca-
tions, which also has spatial propagation layer to encourage
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Figure 1: Overall model architecture

spatial coherency of attention. However, the original contex-
tual attention uses a fixed patch size when calculating patch
similarity and doing patch swap. Such strategy may perform
poorly when the background is misleading or lacks similar
content and is therefore unable to filexibly handle different
backgrounds. Unlike [Yu et al., 2018], we use a multi-scale
attention module to perform feature map swaping in differ-
ent scales. By doing so, we could have better confidence that
some of the attention layers have the expected feature map
and therefore eliminate the problem of misusing of informa-
tion. In addition, our model can solve various scenes and
balances the style and detail level, but Shift-Net may perform
not well in some datasets.

3 Proposed Approach

The image inpainting task aims to generate the plausible con-
tent given masked input Im. The generated image should not
only exhibit global and local style coherency but also detailed
texture that is consistent with foreground. It’s easy to notice
that images from different scenes have various requirements
on style and detail level. For example, the Paris Street View
dataset contains large amount of latent structure information
like the size and location of windows and doors, under which
condition the model should take more care of global style and
should not try to generate too many details. While for another
datasets, the style consistency may be less important while
generating the detailed texture may help to improve visual
effect more.

For the one-stage inpainting methods, the U-Net [Akeret et
al., 2017] has been widely used as baseline network as skip
connections can preserve low level informations and enable
the rest of network to focus on recovering masked area. In this
study, we also use the U-Net as our baseline but with some
modifications. By merging the output feature maps from at-
tention modules of different matching patch sizes, our model
is able to generate content with fine details while the gen-
erated images are also consistent in style. One of the most
significant benefit of our model is that it can flexibly take
the advantage of background information without modifying
the model or changing any hyperparameter. In the follow-
ing subsections, a novel multi-scale attention module which
helps to better make use of the foreground information and
our proposed loss function which balanced generated details

and global style coherency will be introduced, respectibely.

3.1 Overview of the MUSICAL Algorithm

Our model follows a one-stage and end-to-end architecture,
which indicates that it works much faster than the two-stage
methods. In detail, as mentioned above, we use the U-Net
as our baseline network. Furthermore, we further extend the
architecture of U-Net. A series of downsampling layers are
contained on U-Net architecture and the size of feature map
is reduced to 1×1 in the inner most layers, which only con-
tains a trival amount of information. To preserve more de-
tail information, we replace the inner downsampling layers
with stride 1 dilated convolution [Yu and Koltun, 2015] lay-
ers, which have larger receptive field without losing too much
information. To avoid attention module using misleading or
even incorrect information from background feature map, the
input and masked area should be large enough. So we place
our multi-scale attention layers before the third last deconvo-
lution layer, where the size of feature map is 64×64.

3.2 Multi-scale Attention Module

Image Inpainting task requires GANs to generate style con-
sistent images given foreground. A promising way to en-
sure style consistency is to make use of background infor-
mation(unmasked area) such as the Patch-match [Barnes et
al., 2009]. Previous works have shown that doing patch/pixel
match on deep feature maps helped to improve quality of gen-
erated images. However, an appropriate size for patch match
is hard to determine as the requirements on detail and style
level various from image to image. In general, larger patch
size helps ensure style consistency while smaller patch size is
more flexible on using background feature map. Patch match-
ing on a single fixed scale seriously limits the capability to fit
the model into different scene. To this end, we propose a
novel multi-scale attention module that helps to make use of
background content flexibly based on the overall image style.

Given an input feature map φin, we firstly replace fore-
ground feature map using attention machnism. Instead of us-
ing fixed patch size and propagate size, we choose to use two
different patch size and therefore two feature maps φatt11 and
φatt33 are generated. For each attention map, we use similar
strategy to calculate scores as [Yu et al., 2018], the calcula-
tion of attention score could be implemented as convolution
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Figure 2: Multi-scale Attention Module: In this attention module,
the input feature map is sent to two different attention modules, on
the top there is a 3×3 attention module and the bottom is a pixel-
wise one, the stride and propagation sizes are the same for two mod-
ules. The output feature maps are then reweighted by a Squeeze-
and-Excitation module. In the end, the channel number is reduced
by the Pixel-Wise Convolution.

calculation.

sx,y,x′,y′ = 〈
fx,y

||fx,y||
,

bx′,y′

||bx′,y′ ||
〉 (1)

To calculate the weight of each patch, we use softmax on
the channel of score map, and get softmax score s∗. Since a
shift in foreground patch is likely corresponding to an equal
shift in background patch for attention, we adopt a left-right
propagation followed by a top-down propagation with kernel
size of k. Then we propagate the score to better merge patchs.

s′x,y,x′,y′ =
∑

i,j∈{−k,...,k}

s∗x+i,y+j,x′+i,y′+j (2)

Finally, deconvolution operation is used to recover the at-
tention feature map with. By doing so, our model could
capture information in multiple scales and fit into vari-
ous background better. We then concatenate the gener-
ated feature maps and original feature maps, denoted by
〈φin,φatt11,φatt33〉. To decide which level of detail is the
most important one on current image, the feature maps are
then fed into a squeeze-and-excitation [Hu et al., 2018]

module to reweight different channels. The squeeze-and-
excitation function is denoted as fSE() in our paper. The SE
module firstly computes the average pooling value of the fea-
ture map, and then put it into a fully connected neural net-
work to calculate the weight of each channel of the original
feature map, and add weight to it. The output of SE mod-
ule could be expressed byfSE(〈φin,φatt11,φatt33〉). Note that
Squeeze-and-excitation module above could not be replaced
by convolutional computation as the convolution kernels are
a set of fixed parameters and lack the ability to add weight to
each channel variously based on background information. In
the end of the module, we use pixel-wise convolution opera-
tion to finally merge all feature maps and reduce the channel
numbers to the original channel number. As the output chan-
nel number is the same as input, it’s easy for our proposed
module to be added to any other inpainting model. The final
output of the module could be denoted as:

φout = fConv(fSE(〈φin, φatt11, φatt33〉)) (3)

3.3 Loss Function

Similar to the design of our model, the style consistency and
detail level are also taken into the consideration of our loss
function. In general, our loss function consists of two parts,
i.e., the perceptual and style losses for generating plausible
style and adversarial loss for generating sharper and detailed
content, respectively. For perceptual loss (Lperceptual), we
put the generated image into a V GG16 feature extractor and
compare the feature maps from pool1, pool2 and pool3 with
the ones corresponding to the ground truth image. In our
model, we use the perceptual loss to measure the similarity
between the high level structures. In Equation 4, H, W, C re-
fer to the height, weight and channels number for a feature
map, respectively. And N is the number of feature maps gen-
erated by the VGG16 feature extractor.

Lperceptual =
N
∑

i=1

1

HWC
|φgt

pooli
− φ

pred
pooli

|1 (4)

Perceptual loss helps to capture high level structure but it
still lacks the ability to preserve style consistency. To ad-
dress this issue, we further employ the style loss (Lstyle) as a
part of our loss function. With the help of the style loss, our
model could learn color and overall style information from
background.

Lstyle =
N
∑

i=1

1

C ∗ C

∣

∣

1

HWC
(φ

stylegt
pooli

− φ
stylepred
pooli

)
∣

∣

1
(5)

φ
style
pooli

= φpooliφ
T
pooli

(6)

With the loss functions discussed above, our model is ready
to generate plausible content where details are less impor-
tant than structure. However, the generated area tends to be
blurry when our model tries to learn more details and we no-
tice that having a discriminator is still necessary for generat-
ing fine details. In our model, we choose to use a pretrained
DenseNet121 [Huang et al., 2017] as our discriminator for its
relatively smaller size and high accuracy in recognizing ob-
jects. With the help of the adversarial loss (Ladv), the level
of sharpness and detail becomes controllable by using differ-
ent weights of adversarial loss. The total variation loss (Ltv)
[Rudin et al., 1992] is originally introduced to address the
checkboard artifact brought from style loss. In our model, we
have also employed it to enhance the smoothness of the gen-
erated content. In summary, the overall loss function of the
proposed MUSICAL algorithm is as follows:

Ltotal = λstyLstyle + λpercLperceptual

+λadvLadv + λtvLtv + λl1Ll1

(7)

4 Experiments

4.1 Experimental Settings

Dataset

In this section, we conduct experiments to investigate the ef-
fectiveness of our MUSICAL algorithm on three public im-
age datasets including the Paris Street View [Doersch et al.,
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(a) (b) (c) (d) (e)

Figure 3: Qualitative comparisons on Paris Street View dataset.
From left to right are: (a) Input, (b) CE, (c) GLC, (d) SN, (e) Ours.

2012], Places [Zhou et al., 2018], and CelebA [Liu et al.,
2015]. The Paris Street View contains 14,900 training images
and 100 test images. The Places dataset is the canyon scene
selected from Places365-Standard dataset, and this category
has 5,000 training images, 900 test images and 100 validation
images. In our experiment, we use the training set for train-
ing and the validation set for testing. And the CelebA dataset
contains 162,770 training images, 19,867 validation images
and 19,962 test images. We use both of the training set and
validation set for training, and use the test set for testing. We
use the same dataset setting for all experiments, including our
experiment and comparison experiments.

Training Details

For both Paris Street View and Places, we resize each training
image to let its minimal length/width be 350, and randomly
crop a subimage of size 256×256 as input to our model. As
for CelebA, we resize each training image to let its minimal
length/width be 256, and crop a subimage of size 256×256 at
the center as input to our model. The size of mask is 128×128
for each image, and the mask is located in the center of the
image. We train the model with a batch size of 5 for each
epoch. For all the datasets, the tradeoff parameters are set as
λsty = 250, λperc = 0.07, λtv = 0.001 and λl1 = 100.
While the λadv is different in these datasets. Specifically, for
the CelebA dataset, we have set λadv = 0.0, while we set
λadv = 0.3 for the other two datasets. All the experiments
are conducted with the Python on Ubuntu 17.10 system, with
i7-6800K 3.40GHz CPU and 12G NVIDIA Titan Xp GPU.

4.2 Experimental Results

We compare the proposed MUSICAL algorithm with the fol-
lowing three state-of-the-art methods:

– CE: Context Encoder [Pathak et al., 2016]

– GLC: Globally and Locally Consistent Image Comple-
tion [Iizuka et al., 2017]

– SN: Shift-Net [Yan et al., 2018]

(a) (b) (c) (d) (e)

Figure 4: Qualitative comparisons on Places dataset. From left to
right are: (a) Input, (b) CE, (c) GLC, (d) SN, (e) Ours.

(a) (b) (c) (d) (e)

Figure 5: Qualitative comparisons on CelebA dataset. From left to
right are: (a) Input, (b) CE, (c) GLC, (d) SN, (e) Ours.

Qualitative Comparisons

Figure 3 shows the comparisons of our method with the three
state-of-the-art approaches on Paris Street View. The images
are all shown at the same resolution (256×256) except CE
(128×128). Context encoder is effective in semantic inpaint-
ing, but the results seem blurry and detail-missing due to
the effect of bottleneck. Compared with CE, the proposed
method can handle much larger images and the synthesized
contents are much sharper. GLC is effective in understand-
ing the context of entire image, but the results tend to be less
realistic or recognizable. Shift-Net enable the generated con-
tent to have similar texture as background region. However,
it will performs poorly when the background information is
misleading. Our inpainting results have significantly fewer
artifacts than these methods and in particular better than the
state-of-the-art methods most of the time for large holes. In
comparison to these methods, our proposed MUSICAL al-
gorithm is able to generate more visual-pleasing and more
elegant results.

In addition, we have also evaluated our method on the
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Method SSIM PSNR Mean l1 Loss

CE 0.7879 22.87 2.943%
GLC 0.7925 23.01 2.771%
SN 0.8292 23.85 2.482%
Our Method 0.8428 24.42 2.264%

Table 1: Numerical comparison on Paris Street View dataset.

Method SSIM PSNR Mean l1 Loss

CE 0.7794 22.30 3.157%
GLC 0.7886 20.74 3.551%
SN 0.7944 21.14 3.360%
Our Method 0.8025 21.84 3.063%

Table 2: Numerical comparison on Places dataset.

Places dataset (see Figure 4) and CelebA dataset (see Fig-
ure 5). It is observed that our MUSICAL algorithm performs
favorably in generating fine-detailed, semantically plausible,
and realistic images.

Quantitative Comparisons

We have also compared our model quantitatively with the
comparison methods on three datasets. Three quality mea-
surements that we adopted are the structural similarity index
(SSIM), peak signal-to-noise ratio (PSNR) and mean l1 loss,
respectively [Liao et al., 2018]. Note that the results of the
CE are based on the inputs and outputs of 128×128 images
since the codes only accept 128×128 images as inputs.

Table 1,Table 2 and Table 3 show numerical comparison
results among our approach, CE, SN and GLC on Paris Street
View, Places, and CelebA datasets, respectively. As shown in
Table 1, our method produces decent results with best SSIM,
PSNR and mean l1 loss on Paris Street View dataset. On the
Places dataset, our approach has better SSIM and mean l1

loss, but the PSNR is lower than CE. As for the CelebA faces
dataset, we yield best SSIM, PSNR and mean l1 loss among
these methods. As reported above, our MUSICAL algorithm
achieves the best numerical performance on the Paris Street
View, Places, and CelebA datasets.

Internal Analysis of MUSICAL Algorithm

As highlighted before, the main contributions of our MUSI-
CAL algorithm are the multi-scale attention module and the
combination of different losses. To clearly present the ef-
fectiveness of these operations, the following experiment set-
tings are applied on Paris Street View dataset.

Experiment 1: maintaining the overall model architecture,
but eliminating the adversarial loss in loss function.

Experiment 2: keeping other settings but replacing our
multi-scale attention module with a single-scale attention
module, i.e. using single fixed patch size and propagate size.

Method SSIM PSNR Mean l1 Loss

CE 0.8631 24.82 2.208%
GLC 0.8776 24.02 2.360%
SN 0.8796 25.13 1.958%
Our Method 0.9008 26.64 1.629%

Table 3: Numerical comparison on CelebA dataset.

(a) (b) (c) (d) (e)

Figure 6: Qualitative comparisons of Internal analysis. From left to
right are: (a) Input, (b) Ground Truth, (c) Experiment 1, (d) Experi-
ment 2, (e) Ours.

Experiment 1 (see Figure 6(c)) shows that Ladv is impor-
tant for generating sharper images. Compared to our algo-
rithm (see Figure 6(e)), the results without Ladv exhibit more
artifacts and distortions. For our MUSICAL algorithm, Ladv

is introduced for inpainting with clear content as Lstyle and
Lperceptual mainly help us to produce structure of images.
Thus, the Ladv helps to generate sharper results.

By comparing Experiment 2 (see Figure 6(d)) with our al-
gorithm (see Figure 6(e)), we can notice that, we get general
structure with single-scale attention module but quality in-
ferior to the multi-scale result. Given an input feature map
φin, our method uses two different patch sizes and gener-
ates two feature maps φatt11 and φatt33, while Experiment
2 only uses single patch size and generates one feature map
φatt33. Therefore, multi-scale attention module can get more
comprehensive information from φin than single-scale. The
difference between Figure 6(d) and Figure 6(e) indicates the
fact that multi-scale attention module acts as a refinement and
enhancement role in recovering clear and fine details.

5 Conclusion

In this paper, we propose the MUSICAL algorithm for im-
age inpainting. The novel points of our model lie in that we
develop a multi-scale attention module and introduce several
losses (including style loss, perceptual loss and adversarial
loss) to ensure the style consistency and fine-detailed con-
tent. Various image inpainting experiments show that the pro-
posed MUSICAL algorithm generates sharp and fine-detailed
images, and achieves the state-of-the-art performance across
different datasets. In the future research, the proposed MUSI-
CAL algorithm can also be generalized to the similar image
restoration tasks including the image denoising, conditional
image generation, and image editing.
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