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MUSIELAK-ORLICZ-SOBOLEV SPACES

ON METRIC MEASURE SPACES

Takao Ohno, Ōita, Tetsu Shimomura, Hiroshima

(Received April 11, 2014)

Abstract. Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric
measure spaces. We consider a Haj lasz-type condition and a Newtonian condition. We prove
that Lipschitz continuous functions are dense, as well as other basic properties. We study
the relationship between these spaces, and discuss the Lebesgue point theorem in these
spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator
on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood
maximal operator, we establish a generalization of Sobolev’s inequality for Sobolev functions
in Musielak-Orlicz-Haj lasz-Sobolev spaces.
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1. Introduction

Sobolev spaces on metric measure spaces have been studied during the last two

decades, see e.g. [6], [21], [23], [33], [51]. The theory was generalized to Orlicz-

Sobolev spaces on metric measure spaces in [4], [5], [53]. We refer to [2], [3], [15],

[54] for Sobolev spaces on RN , [9], [14] for variable exponent Sobolev spaces, [50] for

Musielak-Orlicz spaces, [16] for the study of differential equations of divergence form

in Musielak-Sobolev spaces and [17] for the study of uniform convexity of Musielak-

Orlicz-Sobolev spaces and its applications to variational problems. In the last decade,

variable exponent Sobolev spaces on metric measure spaces have been developed, see

The first author was partially supported by Grant-in-Aid for Young Scientists (B),
No. 23740108, Japan Society for the Promotion of Science. The second author was
partially supported by Grant-in-Aid for Scientific Research (C), No. 24540174, Japan
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e.g. [19], [20], [31], [32], [49]. The purpose of this paper is to define Musielak-Orlicz-

Sobolev spaces on metric measure spaces and prove the basic properties of such

spaces.

There are two ways to define first order Sobolev spaces on metric measure spaces.

Haj lasz [21] showed that a p-integrable function u, 1 < p < ∞, belongs to W 1,p(RN )

if and only if there exists a nonnegative p-integrable function g such that

(1.1) |u(x)− u(y)| 6 |x− y|(g(x) + g(y))

for almost every x, y ∈ RN . If we replace |x − y| by the distance of the points x

and y, (1.1) can be stated in metric measure spaces. Spaces defined using (1.1) are

called Haj lasz-Sobolev spaces. See also [23], [33]. The theory was generalized to

Orlicz-Sobolev spaces by Aı̈ssaoui (see [4], [5]). For the Sobolev capacity on Haj lasz-

Sobolev spaces, see [38]. By the classical Lebesgue differentiation theorem, almost

every point is a Lebesgue point for a locally integrable function. For the Lebesgue

point theorem in Haj lasz-Sobolev spaces, we refer the reader to [36].

Another way is to use weak upper gradients. A nonnegative Borel measurable

function h is said to be an upper gradient of u if

(1.2) |u(x)− u(y)| 6

∫

γ

h ds

for every x, y and every curve γ connecting x to y. Upper gradients were introduced

by Heinonen and Koskela [34] as a tool to study quasiconformal maps. If (1.2)

holds for a function u on every curve not belonging to an exceptional family of p-

modulus zero in metric measure spaces, we call h a weak upper gradient of u. We

call these spaces Newtonian spaces or Newton-Sobolev spaces. The study of Newton-

Sobolev spaces was initiated by Shanmugalingam [51]. See also [6]. The theory was

generalized to Orlicz-Sobolev spaces by Tuominen [53].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss

nonlinear partial differential equations with non-standard growth conditions (see [9],

[14]). See also [24], [27]. Harjulehto, Hästö and Pere [31] studied basic properties

of the variable exponent Haj lasz-Sobolev space and the variable exponent Newton-

Sobolev space. For the Lebesgue point theorem in variable exponent spaces, see

e.g. [25].

The Hardy-Littlewood maximal operator is a classical tool in harmonic analysis

and the study of Sobolev functions and partial differential equations, and plays a cen-

tral role in the study of differentiation, singular integrals, smoothness of functions

and so on (see e.g. [7], [35], [41], [52]). It is well known that the Hardy-Littlewood

maximal operator is bounded on the Lebesgue space Lp(RN ) if p > 1 (see [52]).
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See e.g. [8] for Orlicz spaces, [10], [12] for variable exponent Lebesgue spaces Lp(·),

[42], [47] for the two variable exponents spaces Lp(·)(logL)q(·). These spaces are spe-

cial cases of so-called Musielak-Orlicz spaces [44], [50]. For general Musielak-Orlicz

spaces, see [11]. In bounded doubling metric measure spaces, the boundedness of

the Hardy-Littlewood maximal operator on variable exponent Lebesgue spaces Lp(·)

was studied in [20], [32]. See also [1].

One of the important applications of the boundedness of the Hardy-Littlewood

maximal operator is Sobolev’s inequality; in the classical case,

‖Iα ∗ f‖Lp∗(RN ) 6 C‖f‖Lp(RN )

for f ∈ Lp(RN ), 0 < α < N and 1 < p < N/α, where Iα is the Riesz kernel of order α

and 1/p∗ = 1/p − α/N (see e.g. [2], Theorem 3.1.4). This result was extended to

Orlicz spaces in [8], [48]. In Euclidean setting, variable exponent versions were

discussed e.g. in [13], [39], [40], [44], [47]. For variable exponent versions on metric

measure spaces, see e.g. [20], [28].

In this paper, we define Musielak-Orlicz-Newton-Sobolev spaces as well as

Musielak-Orlicz-Haj lasz-Sobolev spaces on metric measure spaces and prove the

basic properties of such spaces.

The paper is organized as follows. In Section 2, we define Musielak-Orlicz spaces

on metric measure spaces.

In Section 3, we study basic properties of Musielak-Orlicz-Haj lasz-Sobolev spaces.

We show that Lipschitz continuous functions are dense and study a related Sobolev-

type capacity. We prove that every point except for a small set is a Lebesgue point

for Sobolev functions in Musielak-Orlicz-Haj lasz-Sobolev spaces.

In Section 4, we study basic properties of Musielak-Orlicz-Newton-Sobolev spaces.

We show that Lipschitz continuous functions are dense if the measure is doubling

and study a related Sobolev-type capacity. We discuss the Lebesgue point theorem

in Musielak-Orlicz-Newton-Sobolev spaces.

In Section 5, we study the relationship between Musielak-Orlicz-Haj lasz-Sobolev

spaces and Musielak-Orlicz-Newton-Sobolev spaces in a metric measure space (see

Theorem 5.4).

In Section 6, we show that the Hardy-Littlewood maximal operator is bounded on

Musielak-Orlicz spaces in our setting (see Theorem 6.3).

In Section 7, as an application of the boundedness of the Hardy-Littlewood maxi-

mal operator, we give a general version of Sobolev’s inequality for Sobolev functions

in Musielak-Orlicz-Haj lasz-Sobolev spaces (see Theorem 7.7). In such a general set-

ting, we can obtain new results (e.g., Corollaries 7.6 and 7.8).

In Section 8, we discuss Fuglede’s theorem for Musielak-Orlicz-Sobolev spaces in

Euclidean setting.
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2. Musielak-Orlicz spaces

Throughout this paper, let C denote positive constant independent of the variables

in question.

We denote by (X, d, µ) a metric measure space, where X is a set, d is a metric

on X and µ is a nonnegative complete Borel regular outer measure on X which is

finite in every bounded set. For simplicity, we often write X instead of (X, d, µ). For

x ∈ X and r > 0, we denote by B(x, r) the open ball centered at x with radius r,

and dΩ = sup{d(x, y) : x, y ∈ Ω} for a set Ω ⊂ X .

For a measurable function Q(·) satisfying

0 < Q− := inf
x∈X

Q(x) 6 sup
x∈X

Q(x) =: Q+ < ∞,

we say that a measure µ is lower Ahlfors Q(x)-regular if there exists a constant c0 > 0

such that

µ(B(x, r)) > c0r
Q(x)

for all x ∈ X and 0 < r < dX . Further, µ is Ahlfors Q(x)-regular if there exists

a constant c1 > 0 such that

c−1
1 rQ(x)

6 µ(B(x, r)) 6 c1r
Q(x)

for all x ∈ X and 0 < r < dX . We say that the measure µ is a doubling measure, if

there exists a constant c2 > 0 such that µ(B(x, 2r)) 6 c2µ(B(x, r)) for every x ∈ X

and 0 < r < dX . We say that X is a doubling space if µ is a doubling measure.

We consider a function

Φ(x, t) = tφ(x, t) : X × [0,∞) → [0,∞)

satisfying the following conditions (Φ1)–(Φ4):

(Φ1) φ(·, t) is measurable on X for each t > 0 and φ(x, ·) is continuous on [0,∞) for

each x ∈ X ;

(Φ2) there exists a constant A1 > 1 such that A−1
1 6 φ(x, 1) 6 A1 for all x ∈ X ;

(Φ3) φ(x, ·) is uniformly almost increasing, namely, there exists a constant A2 > 1

such that φ(x, t) 6 A2φ(x, s) for all x ∈ X whenever 0 6 t < s;

(Φ4) there exists a constant A3 > 1 such that φ(x, 2t) 6 A3φ(x, t) for all x ∈ X and

t > 0.

Note that (Φ2), (Φ3) and (Φ4) imply 0 < inf
x∈X

φ(x, t) 6 sup
x∈X

φ(x, t) < ∞ for each

t > 0.
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Let φ̄(x, t) = sup
06s6t

φ(x, s) and

Φ(x, t) =

∫ t

0

φ̄(x, r) dr

for x ∈ X and t > 0. Then Φ(x, ·) is convex and

(2.1)
1

2A3
Φ(x, t) 6 Φ(x, t) 6 A2Φ(x, t)

for all x ∈ X and t > 0.

By (Φ3), we see that

(2.2) Φ(x, at)

{
6 A2aΦ(x, t) if 0 6 a 6 1,

> A−1
2 aΦ(x, t) if a > 1.

We shall also consider the following conditions:

(Φ5) for every γ1, γ2 > 0, there exists a constant Bγ1,γ2
> 1 such that φ(x, t) 6

Bγ1,γ2
φ(y, t), whenever d(x, y) 6 γ1t

−1/γ2 and t > 1;

(Φ6) there exist x0 ∈ X , a function g ∈ L1(X) and a constant B∞ > 1 such that

0 6 g(x) < 1 for all x ∈ X and B−1
∞ Φ(x, t) 6 Φ(x′, t) 6 B∞Φ(x, t), whenever

d(x′, x0) > d(x, x0) and g(x) 6 t 6 1.

Example 2.1. Let p(·) and qj(·), j = 1, . . . , k, be measurable functions on X

such that

(P1) 1 < p− := inf
x∈X

p(x) 6 sup
x∈X

p(x) =: p+ < ∞

and

(Q1) −∞ < q−j := inf
x∈X

qj(x) 6 sup
x∈X

qj(x) =: q+j < ∞

for all j = 1, . . . , k.

Set Lc(t) = log(c+ t) for c > e and t > 0, L
(1)
c (t) = Lc(t), L

(j+1)
c (t) = Lc(L

(j)
c (t))

and

Φ(x, t) = tp(x)
k∏

j=1

(L(j)
c (t))qj (x).

Then, Φ(x, t) satisfies (Φ1), (Φ2), (Φ3) and (Φ4). Φ(x, t) satisfies (Φ5) if

(P2) p(·) is log-Hölder continuous, namely

|p(x) − p(y)| 6
Cp

Le(1/d(x, y))

with a constant Cp > 0 and
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(Q2) qj(·) is (j + 1)-log-Hölder continuous, namely

|qj(x) − qj(y)| 6
Cqj

L
(j+1)
e (1/d(x, y))

with constants Cqj > 0, j = 1, . . . , k.

Example 2.2. Let p1(·), p2(·), q1(·) and q2(·) be measurable functions on X

satisfying (P1) and (Q1).

Then,

Φ(x, t) = (1 + t)p1(x)(1 + 1/t)−p2(x)Lc(t)
q1(x)Lc(1/t)

−q2(x)

satisfies (Φ1), (Φ2) and (Φ4). It satisfies (Φ3) if p−j > 1, j = 1, 2 or q−j > 0, j = 1, 2.

As a matter of fact, it satisfies (Φ3) if and only if pj(·) and qj(·) satisfy the following

conditions:

(1) qj(x) > 0 at points x where pj(x) = 1, j = 1, 2;

(2) sup
{x: pj(x)>1}

{min(qj(x), 0) log(pj(x)− 1)} < ∞.

Moreover, we see that Φ(x, t) satisfies (Φ5) if p1(·) is log-Hölder continuous and

q1(·) is 2-log-Hölder continuous.

Example 2.3. Let Φ(·, ·) be defined as in Example 2.1 and fix x0 ∈ X . Let κ

and c be positive constants. If µ satisfies µ(B(x0, r)) 6 crκ for all r > 1 and

(P3) p(·) is log-Hölder continuous at ∞, namely |p(x) − p(x′)| 6 Cp,∞/Le(d(x, x0))

for d(x′, x0) > d(x, x0) with a constant Cp,∞ > 0,

then Φ(·, ·) satisfies (Φ6) with g(x) = 1/(1 + d(x, x0))
κ+1.

Example 2.4. Let Φ(·, ·) be defined as in Example 2.2 and fix x0 ∈ X . Let

κ and c be positive constants. If µ satisfies µ(B(x0, r)) 6 crκ for all r > 1, p2(·)

satisfies (P3) and

(Q3) q2(·) is 2-log-Hölder continuous at ∞, namely |q2(x) − q2(x
′)| 6 Cq2,∞/

L
(2)
c (d(x, x0)) for d(x′, x0) > d(x, x0) with a constant Cq2,∞ > 0,

then Φ(·, ·) satisfies (Φ6) with g(x) = 1/(1 + d(x, x0))
κ+1.

We say that u is a locally integrable function on X if u is an integrable function

on all balls B in X . From now on, we assume that Φ(x, t) satisfies (Φ1), (Φ2), (Φ3)

and (Φ4). Then the associated Musielak-Orlicz space

LΦ(X) =

{
f ∈ L1

loc(X) :

∫

X

Φ(y, |f(y)|) dµ(y) < ∞

}
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is a Banach space with respect to the norm

‖f‖LΦ(X) = inf

{
λ > 0:

∫

X

Φ(y, |f(y)|/λ) dµ(y) 6 1

}

(cf. [50]).

For a measurable function f on X , we define the modular ̺Φ(f) by

̺Φ(f) =

∫

X

Φ(y, |f(y)|) dµ(y).

Lemma 2.5 ([45], Lemma 2.2, and [50], Theorem 8.14). Let {fi} be a sequence

in LΦ(X). Then ̺Φ(fi) converges to 0 if and only if ‖fi‖LΦ(X) converges to 0.

3. Musielak-Orlicz-Haj lasz-Sobolev spaces M1,Φ(X)

3.1. Basic properties. We say that a function u ∈ LΦ(X) belongs to Musielak-

Orlicz-Haj lasz-Sobolev spaces M1,Φ(X) if there exists a nonnegative function g ∈

LΦ(X) such that

(3.1) |u(x)− u(y)| 6 d(x, y)(g(x) + g(y))

for µ-almost every x, y ∈ X . Here, we call the function g a Haj lasz gradient of u.

We define the norm

‖u‖M1,Φ(X) = ‖u‖LΦ(X) + inf ‖g‖LΦ(X),

where the infimum is taken over all Haj lasz gradients of u. For the case when

Φ(x, t) = tp, the spaces M1,p(X) were first introduced by P. Haj lasz [21] as a general-

ization of the classical Sobolev spaces W 1,p(RN ) to the general setting of quasi-metric

measure spaces. For variable exponent spaces M1,p(·)(X), see [31].

Since LΦ(X) is a Banach space, standard arguments yield the following proposi-

tions (see [31]).

Proposition 3.1 (cf. [31], Proposition 3.1). If LΦ(X) is reflexive, then for every

u ∈ M1,Φ(X), there exist Haj lasz gradients of u which minimize the norm. Moreover,

if ‖·‖LΦ(X) is a uniformly convex norm, then there exists a unique Haj lasz gradient

of u which minimizes the norm.

Remark 3.2. We say that Φ(x, t) is uniformly convex on X if for any ε > 0 there

exists a constant δ > 0 such that

|a− b| 6 εmax{|a|, |b|} or Φ
(
x,

|a+ b|

2

)
6 (1− δ)

Φ(x, |a|) + Φ(x, |b|)

2
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for all a, b ∈ R and x ∈ X . By [14], Section 2.4, if Φ(x, t) is uniformly convex on X ,

then the norm ‖·‖LΦ(X) is a uniformly convex norm.

Proposition 3.3 (cf. [31], Theorem 3.3). M1,Φ(X) is a Banach space.

Proposition 3.4 (cf. [21], Theorem 5). For every u ∈ M1,Φ(X) and ε > 0, there

exists a Lipschitz function h ∈ M1,Φ(X) such that

(1) µ({x ∈ X : u(x) 6= h(x)}) 6 ε;

(2) ‖u− h‖M1,Φ(X) 6 ε.

P r o o f. For u ∈ M1,Φ(X), we take g ∈ LΦ(X) which is a Haj lasz gradient of u.

Set

Eλ = {x ∈ X : |u(x)| 6 λ and g(x) 6 λ}.

Note that u is Lipschitz continuous with the constant 2λ on Eλ. By the McShane

extension [46], we extend u to a Lipschitz function ū on X , where

ū(x) = inf
y∈Eλ

{u(y) + 2λ dist(x, y)}.

We modify this extension by truncating

uλ = (sign ū)min{|ū|, λ}.

Then uλ is Lipschitz continuous with the constant 2λ, u = uλ on Eλ and |uλ| 6 λ.

For every λ > 1, we see from (Φ2), (Φ3), (Φ4) and (2.2) that

µ({x ∈ X : u(x) 6= uλ(x)}) 6 µ(X \ Eλ)

6 A1A2

∫

X\Eλ

Φ
(
x,

|u(x)| + g(x)

λ

)
dµ(x)

6 A1A
2
2

{∫

X\Eλ

Φ
(
x,

2|u(x)|

λ

)
dµ(x) +

∫

X\Eλ

Φ
(
x,

2g(x)

λ

)
dµ(x)

}

6
A1A

3
2

λ

{∫

X\Eλ

Φ(x, 2|u(x)|) dµ(x) +

∫

X\Eλ

Φ(x, 2g(x)) dµ(x)

}

6
2A1A

3
2A3

λ

{∫

X\Eλ

Φ(x, |u(x)|) dµ(x) +

∫

X\Eλ

Φ(x, g(x)) dµ(x)

}
.
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Hence we have µ({x ∈ X : u(x) 6= uλ(x)}) → 0 as λ → ∞. Since uλ 6 λ 6 |u| + g

in X \ Eλ, we find by (Φ3) and (Φ4) that

∫

X

Φ(x, |u(x)− uλ(x)|) dµ(x)

=

∫

X\Eλ

Φ(x, |u(x) − uλ(x)|) dµ(x)

6 A2

∫

X\Eλ

Φ(x, |u(x)| + |uλ(x)|) dµ(x)

6 A2
2

∫

X\Eλ

{Φ(x, 2|u(x)|) + Φ(x, 2|uλ(x)|)} dµ(x)

6 2A2
2A3

∫

X\Eλ

{Φ(x, |u(x)|) + Φ(x, |uλ(x)|)} dµ(x)

6 2A3
2A3

∫

X\Eλ

{Φ(x, |u(x)|) + Φ(x, |u(x)| + g(x))} dµ(x)

6 4A4
2A

2
3

∫

X\Eλ

{Φ(x, |u(x)|) + Φ(x, |u(x)|) + Φ(x, g(x))} dµ(x)

6 8A4
2A

2
3

∫

X\Eλ

{Φ(x, |u(x)|) + Φ(x, g(x))} dµ(x).

Since u, g ∈ LΦ(X) and µ(X \ Eλ) → 0 as λ → ∞, ̺Φ(u − uλ) converges to 0 as

λ → ∞. Therefore, we see from Lemma 2.5 and (2.1) that ‖u− uλ‖LΦ(X) converges

to 0 as λ → ∞.

Next we consider the function gλ = (g + 3λ)χX\Eλ
, where χE denotes the char-

acteristic function of E. Note that gλ is a Haj lasz gradient of u − uλ. We have by

(Φ3) and (Φ4) that

∫

X

Φ(x, gλ(x)) dµ(x) =

∫

X\Eλ

Φ(x, g(x) + 3λ) dµ(x)

6 8A2A
3
3

∫

X\Eλ

{Φ(x, g(x)) + Φ(x, λ)} dµ(x)

6 8A2
2A

3
3

∫

X\Eλ

{Φ(x, g(x)) + Φ(x, |u(x)|+ g(x))} dµ(x)

6 32A3
2A

4
3

∫

X\Eλ

{Φ(x, g(x)) + Φ(x, |u(x)|)} dµ(x)

and the above discussion implies that ‖gλ‖LΦ(X) converges to 0 as λ → ∞. Thus the

proposition is proved. �
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For a locally integrable function u on X and a ball B(x, r) ⊂ X , we define the

mean integral:

uB(x,r) =

∫

B(x,r)

u(y) dµ(y) =
1

µ(B(x, r))

∫

B(x,r)

u(y) dµ(y).

We introduce a fractional sharp maximal operator. For every locally integrable

function u on X , we define

u♯(x) = sup
r>0

1

r

∫

B(x,r)

|u(x)− uB(x,r)| dµ(x).

For a locally integrable function u on X , the Hardy-Littlewood maximal function

Mu is defined by

Mu(x) = sup
r>0

1

µ(B(x, r))

∫

B(x,r)

|u(y)| dµ(y).

The following is a generalization of [22], Theorem 3.4, [23], Theorem 3.1, and [31],

Theorem 5.2, (see also [18]).

For a, b ∈ R, we write a ∼ b if C−1a 6 b 6 Ca for a constant C > 0.

Theorem 3.5. Let X be a doubling space. Suppose the Hardy-Littlewood maxi-

mal operator is bounded on LΦ(X). Then the following three statements are equiv-

alent:

(i) u ∈ M1,Φ(X);

(ii) u ∈ LΦ(X) and there exists a nonnegative function g ∈ LΦ(X) such that the

Poincaré inequality

∫

B(z,r)

|u(x)− uB(z,r)| dµ(x) 6 Cr

∫

B(z,r)

g(x) dµ(x)

holds for every z ∈ X and r > 0;

(iii) u ∈ LΦ(X) and u♯ ∈ LΦ(X).

Moreover, we obtain ‖u‖M1,Φ(X) ∼ ‖u‖LΦ(X) + ‖u♯‖LΦ(X) for all u ∈ LΦ(X).

This theorem is proved in the same way as [22], Theorem 3.4.

3.2. Sobolev capacity on Musielak-Orlicz-Haj lasz-Sobolev spaces. For

u ∈ M1,Φ(X), we define

˜̺Φ(u) = ̺Φ(u) + inf ̺Φ(g),
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where the infimum is taken over all Haj lasz gradients of u. For E ⊂ X , we write

SΦ(E) = {u ∈ M1,Φ(X) : u > 1 in an open set containing E}.

The Sobolev capacity in Musielak-Orlicz-Haj lasz-Sobolev spaces is defined by

CΦ(E) = inf
u∈SΦ(E)

˜̺Φ(u).

In the case SΦ(E) = ∅, we set CΦ(E) = ∞.

Remark 3.6. We can redefine the Sobolev capacity in Musielak-Orlicz-Haj lasz-

Sobolev spaces by

CΦ(E) = inf
u∈S′

Φ
(E)

˜̺Φ(u),

since M1,Φ(X) is a lattice (see [38], Lemma 2.4), where

S′
Φ(E) = {u ∈ SΦ(X) : 0 6 u 6 1}.

A standard argument yields the following results (see [31], Theorem 3.11, and [38],

Theorem 3.2, Remark 3.3 and Lemma 3.4).

Proposition 3.7. The set function CΦ(·) satisfies the following properties:

(1) CΦ(·) is an outer measure;

(2) CΦ(∅) = 0;

(3) CΦ(E1) 6 CΦ(E2) for E1 ⊂ E2 ⊂ X ;

(4) CΦ(E) = inf
{E⊂U,U : open}

CΦ(U) for E ⊂ X (CΦ(·) is an outer capacity);

(5) if K1 ⊃ K2 ⊃ . . . are compact sets on X , then lim
i→∞

CΦ(Ki) = CΦ

( ∞⋂
i=1

Ki

)
.

Furthermore, as in the proof of [37], Theorem 4.1, we have the following conse-

quence of [14], Theorem 2.2.8.

Proposition 3.8. If LΦ(X) is reflexive and E1 ⊂ E2 ⊂ . . . are subsets of X ,

then

lim
i→∞

CΦ(Ei) = CΦ

( ∞⋃

i=1

Ei

)
.

We say that a property holds CΦ-q.e. (quasi-everywhere) in X , if it holds every-

where except for a set F ⊂ X with CΦ(F ) = 0.
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Theorem 3.9. For each Cauchy sequence of functions in M1,Φ(X)∩C(X), there is

a subsequence which converges pointwise CΦ-q.e. in X. Moreover, the convergence is

uniform outside a set of arbitrary small Sobolev capacity in Musielak-Orlicz-Haj lasz-

Sobolev spaces.

P r o o f. Let {ui} be a Cauchy sequence of functions in M1,Φ(X) ∩ C(X). Since

for all 0 < ε < 1, ‖u‖M1,Φ(X) < ε implies ˜̺Φ(u) < ε, we can take a subsequence

of {ui}, which we still denote by {ui}, such that ˜̺Φ(ui − ui+1) 6 2−iA−1
2 (2A3)

−i−1

for each positive integer i. Consider the sets

Ei = {x ∈ X : |ui(x) − ui+1(x)| > 2−i}

and Fj =
∞⋃
i=j

Ei. Here note that 2i|ui−ui+1| ∈ SΦ(Ei) by the continuity of ui. Since

gi is also a Haj lasz gradient of |ui − ui+1| if gi is a Haj lasz gradient of ui − ui+1, we

have by (Φ4) and (2.1) that

CΦ(Ei) 6 ˜̺Φ(2i|ui − ui+1|) 6 A2(2A3)
i+1 ˜̺Φ(ui − ui+1) 6 2−i.

Then it follows from Proposition 3.7 that

CΦ(Fj) 6

∞∑

i=j

CΦ(Ei) 6 2−j+1.

Hence, we obtain

CΦ

( ∞⋂

j=1

Fj

)
6 lim

j→∞
CΦ(Fj) = 0

and {ui} converges in X \
∞⋂
j=1

Fj . Moreover, we find

|uj(x) − uk(x)| 6
k−1∑

i=j

|ui(x)− ui+1(x)| 6 2−j+1,

whenever x ∈ X \ Fj for every k > j, which implies that {ui} converges uniformly

in X \ Fj . �

We say that a function u is CΦ-quasicontinuous on X if, for any ε > 0, there is

a set E such that CΦ(E) < ε and u is continuous on X \E. By Proposition 3.4 and

Theorem 3.9, we have the following result.
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Proposition 3.10. For each u ∈ M1,Φ(X), there is a CΦ-quasicontinuous func-

tion v ∈ M1,Φ(X) such that u = v µ-a.e. in X .

As in the proof of [38], Lemma 4.1, we have the following result.

Lemma 3.11. µ(E) 6 CCΦ(E) for every E ⊂ X .

In fact, note that for u ∈ SΦ(E)

µ(E) 6 A1A2

∫

X

Φ(x, |u(x)|) dµ(x) 6 2A1A2A3̺Φ(u)

by (2.1), (Φ2) and (Φ3).

Theorem 3.12. Suppose Φ(x, t) satisfies (Φ5). Then there exists a constant C > 0

such that CΦ(B(x0, r)) 6 CΦ(x0, r
−1)µ(B(x0, 2r)) for all x0 ∈ X and 0 < r 6 1.

P r o o f. Define

u(x) =





2r − d(x, x0)

r
, x ∈ B(x0, 2r) \B(x0, r),

1, x ∈ B(x0, r),

0, x ∈ X \B(x0, 2r)

and

g(x) =





1

r
, x ∈ B(x0, 2r),

0, x ∈ X \B(x0, 2r).

Then note from [38], Theorem 4.6, that g is a Haj lasz gradient of u and u ∈

SΦ(B(x0, r)). Hence, we have by (Φ2), (Φ3), (Φ5) and (2.1)

CΦ(B(x0, r)) 6

∫

B(x0,2r)

Φ(x, u(x)) dµ(x) +

∫

B(x0,2r)

Φ(x, g(x)) dµ(x)

6 A2

∫

B(x0,2r)

Φ(x, u(x)) dµ(x) +A2

∫

B(x0,2r)

Φ(x, r−1) dµ(x)

6 A1A
2
2µ(B(x0, 2r)) +A2B2,1Φ(x0, r

−1)µ(B(x0, 2r))

6 A2(A
2
1A

2
2 +B2,1)Φ(x0, r

−1)µ(B(x0, 2r)),

as required. �

3.3. Lebesgue points in Musielak-Orlicz-Haj lasz-Sobolev spaces. Let X

be a doubling space. We recall from [36], Section 3, the definition of a discrete

447



maximal function. Fix r > 0 and let B(xi, r), i = 1, 2, . . ., be a family of balls

covering X such that every point x ∈ X belongs to at most θ balls B(xi, 6r). Here,

θ can be chosen to depend only on the doubling constant c2. Let {ϕi} be a set of

functions such that 0 6 ϕi 6 1, ϕi = 0 in the complement of B(xi, 3r), ϕi > c3 > 0

in B(xi, r), ϕi is Lipschitz with a constant c3/r and
∞∑
i=1

ϕi = 1 on X . We set

ur(x) =

∞∑

i=1

ϕi(x)

µ(B(xi, 3r))

∫

B(xi,3r)

|u(y)| dµ(y).

Let {rj} be an enumeration of positive rationals. For every radius rj , we choose

a covering {B(xi, rj)} as above. We define the discrete maximal function related to

the covering {B(xi, rj)} by

M∗u(x) = sup
j

urj (x).

Note that the discrete maximal function related to the covering {B(xi, rj)} depends

on the chosen coverings. However, by [36], Lemma 3.1, the inequalities

(3.2) c−1
M Mu(x) 6 M∗u(x) 6 cMMu(x)

hold for every x ∈ X and every u ∈ L1
loc(X). Here the constant cM > 1 depends

only on the doubling constant.

Lemma 3.13. Let X be a doubling space. Suppose the Hardy-Littlewood maxi-

mal operator is bounded on LΦ(X). Then there exists a constant C > 0 such that

CΦ({x ∈ X : Mu(x) > λ}) 6 Cλ− log2(2A3)‖u‖M1,Φ(X)

for all 0 < λ < 1 and u ∈ M1,Φ(X) with ‖u‖M1,Φ(X) 6 1.

P r o o f. Let u ∈ M1,Φ(X) with ‖u‖M1,Φ(X) 6 1 and let g be a Haj lasz gradient

of u. By our assumption, there exists a constant BM > 0 such that ‖Mv‖LΦ(X) 6

BM‖v‖LΦ(X) for all v ∈ LΦ(X).

By (3.2), we have {x ∈ X : Mu(x) > λ} ⊂ Eλ, where set Eλ = {x ∈ X :

cMM∗u(x) > λ} is open, since the supremum of continuous functions is lower semi-

continuous.
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Note, from the proof of [36], Theorem 3.6, that cMM∗u/λ ∈ SΦ(Eλ) and cMg is

a Haj lasz gradient of M∗u for some constant c > 1. We have by (Φ3), (Φ4) and (2.2)

CΦ(Eλ)

6

∫

X

Φ(x, cMM∗u(x)/λ) dµ(x) +

∫

X

Φ(x, ccMMg(x)/λ) dµ(x)

6 A2

∫

X

Φ(x, cMM∗u(x)/λ) dµ(x) +A2

∫

X

Φ(x, ccMMg(x)/λ) dµ(x)

6 2A2
2A3

(ccM
λ

)log2(2A3)
{∫

X

Φ(x,M∗u(x)) dµ(x) +

∫

X

Φ(x,Mg(x)) dµ(x)

}
.

Since ‖Mu/BM‖LΦ(X) 6 ‖u‖LΦ(X) 6 1, we find by (Φ3), (Φ4), (2.2) and (3.2) that

∫

X

Φ(x,M∗u(x)) dµ(x) 6 A2

∫

X

Φ(x, cMMu(x)) dµ(x)

6 2A2
2A3(cMBM )log2(2A3)

∫

X

Φ(x,Mu(x)/BM ) dµ(x)

6 4A2
2A

2
3(cMBM )log2(2A3)

∫

X

Φ(x,Mu(x)/BM ) dµ(x)

6 4A2
2A

2
3(cMBM )log2(2A3)‖Mu/BM‖LΦ(X)

6 4A2
2A

2
3(cMBM )log2(2A3)‖u‖LΦ(X).

Similarly, we have

∫

X

Φ(x,Mg(x)) dµ(x) 6 2A2A3(BM )log2(2A3)

∫

X

Φ(x,Mg(x)/BM ) dµ(x)

6 4A2A
2
3(BM )log2(2A3)‖g‖LΦ(X).

Thus we obtain the required result. �

As in the proof of [36], Theorem 4.5, we can show the following result by

Lemma 3.13.

Theorem 3.14. Let X be a doubling space and let u ∈ M1,Φ(X). Suppose the

Hardy-Littlewood maximal operator is bounded on LΦ(X). Then there exists a set

E ⊂ X of zero Sobolev capacity in Musielak-Orlicz-Haj lasz-Sobolev spaces such that

ũ(x) = lim
r→0

uB(x,r)

for every x ∈ X \ E, where ũ is the CΦ-quasicontinuous representative of u.
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4. Musielak-Orlicz-Newton-Sobolev spaces N1,Φ(X)

4.1. Basic properties. A curve γ in the set X is a nonconstant continuous map

γ : I → X , where I = [a, b] is a closed interval in R. The image of γ is denoted

by |γ|. Let Γ be a family of rectifiable curves in X . We denote by F (Γ) the set of

all admissible functions, that is, all Borel measurable functions h : X → [0,∞] such

that ∫

γ

h ds > 1

for every γ ∈ Γ, where ds represents integration with respect to path length. We

define the Φ-modulus of Γ by

MΦ(Γ) = inf
h∈F (Γ)

̺Φ(h).

If F (Γ) = ∅, then we set MΦ(Γ) = ∞.

Lemma 4.1 (cf. [30], Lemma 2.1). MΦ(·) is an outer measure.

P r o o f. Since it is obvious that MΦ(∅) = 0 and Γ1 ⊂ Γ2 implies MΦ(Γ1) 6

MΦ(Γ2), we show that MΦ(·) is a countably subadditive capacity. For ε > 0, we take

hi ∈ F (Γi) such that

∫

X

Φ(x, hi(x)) dµ(x) 6 MΦ(Γi) + ε2−i.

We set h = sup
i

hi. Noting that h satisfies
∫
γ
h ds > 1 for every γ ∈

∞⋃
i=1

Γi, we have

MΦ

( ∞⋃

i=1

Γi

)
6 ̺Φ(h) 6

∞∑

i=1

∫

X

Φ(x, hi(x)) dµ(x) 6

∞∑

i=1

MΦ(Γi) + ε.

Letting ε → 0, we have the required result. �

A family of curves Γ is said to be exceptional if MΦ(Γ) = 0. The following lemma

is an extension of [31], Lemma 4.1. The proof is the same as the proof of [30],

Lemma 2.2.
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Lemma 4.2 (Fuglede’s lemma). Let {ui} be a sequence of nonnegative Borel

functions in LΦ(X) converging to zero in LΦ(X). Then there exist a subsequence

{uik} and an exceptional family Γ of rectifiable curves such that for every γ /∈ Γ we

have

lim
k→∞

∫

γ

uik ds = 0.

Let u be a real-valued function on X . A nonnegative Borel measurable function h

is said to be a Φ-weak upper gradient of u if there exists a family Γ of rectifiable

curves with MΦ(Γ) = 0 and

|u(x)− u(y)| 6

∫

γ

h ds

for every rectifiable curve γ /∈ Γ with endpoints x and y. Here note that the basic

properties of p-weak upper gradients can be extended to the basic properties of

Φ-weak upper gradients as in [6], Chapter 1.

We define the norm

‖u‖N1,Φ(X) = ‖u‖LΦ(X) + inf ‖h‖LΦ(X),

where the infimum is taken over all Φ-weak upper gradients of u. We say that the

function u ∈ LΦ(X) belongs to Musielak-Orlicz-Newton-Sobolev spaces N1,Φ(X) if

‖u‖N1,Φ(X) < ∞.

Remark 4.3. Let u be a real-valued function on X and let h be a Φ-weak upper

gradient of u. Suppose Γ is a family of rectifiable curves γ satisfying the condition

that there exists a rectifiable subcurve γ′ of γ, that is, |γ′| ⊂ |γ|, such that

|u(x′)− u(y′)| �
∫

γ′

h ds,

where x′ and y′ are endpoints of γ′. Then note that MΦ(Γ) = 0 (see [6], Lemma 1.40).

Lemma 4.4 (cf. [36], Lemma 2.6, and [29], Lemma 3). Suppose that {ui} is

a sequence of measurable functions. Let gi be a Φ-weak upper gradient of ui. If

u = supi ui is finite almost everywhere, then g = supi gi is a Φ-weak upper gradient

of u.

For u ∈ N1,Φ(X), we set

̺̂Φ(u) = ̺Φ(u) + inf ̺Φ(h),
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where the infimum is taken over all Φ-weak upper gradients of u. For E ⊂ X , we

denote

sΦ(E) = {u ∈ N1,Φ(X) : u > 1 on E}.

We define the capacity in Musielak-Orlicz-Newton-Sobolev spaces by

cΦ(E) = inf
u∈sΦ(E)

̺̂Φ(u).

In the case sΦ(E) = ∅, we set cΦ(E) = ∞. For the definition of Sobolev capacity,

see [6], Section 6.2.

By Lemma 4.4, we have the following result.

Proposition 4.5. The set function cΦ(·) is an outer measure.

P r o o f. Since it is obvious that cΦ(∅) = 0 and E1 ⊂ E2 implies cΦ(E1) 6 cΦ(E2),

we only show that cΦ(·) is a countably subadditive capacity. Let Ei be subsets in X .

We may assume that
∞∑
i=1

cΦ(Ei) < ∞. For ε > 0, we take ui ∈ sΦ(Ei) such that

∫

X

Φ(x, |ui(x)|) dµ(x) +

∫

X

Φ(x, hi(x)) dµ(x) 6 cΦ(Ei) + ε2−i,

where hi is a Φ-weak upper gradient of ui. Set u = sup
i

ui and h = sup
i

hi. Noting

that u ∈ LΦ(X) and h ∈ LΦ(X), we find that h is a Φ-weak upper gradient of u by

Lemma 4.4 and u ∈ sΦ

( ∞⋃
i=1

Ei

)
. Hence, we have

cΦ

( ∞⋃

i=1

Ei

)
6 ̺̂Φ(u)

6

∞∑

i=1

{∫

X

Φ(x, |ui(x)|) dµ(x) +

∫

X

Φ(x, hi(x)) dµ(x)

}

6

∞∑

i=1

cΦ(Ei) + ε.

Letting ε → 0, we have the required result. �

We denote by ΓE the family of all rectifiable curves whose image intersects the

set E.
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Lemma 4.6. Let E ⊂ X . If cΦ(E) = 0, then MΦ(ΓE) = 0.

P r o o f. Let E ⊂ X with cΦ(E) = 0. Then for all positive integers i, we choose

functions ui ∈ N1,Φ(X) with Φ-weak upper gradients κi such that ui(x) > 1 for

every x ∈ E and

∫

X

Φ(x, |ui(x)|) dµ(x) +

∫

X

Φ(x, κi(x)) dµ(x) 6 A−1
2 (2A3)

−i−1.

Set vk =
k∑

i=1

|ui|. Then note that hk =
k∑

i=1

κi is a Φ-weak upper gradient of vk. Since

∫

X

Φ
(
x,

|ui(x)|

2−i

)
dµ(x) 6 A2(2A3)

i

∫

X

Φ(x, |ui(x)|) dµ(x)

6 A2(2A3)
i+1

∫

X

Φ(x, |ui(x)|) dµ(x) 6 1

and ∫

X

Φ
(
x,

κi(x)

2−i

)
dµ(x) 6 1

by (2.1) and (Φ4), we have

‖vl − vm‖LΦ(X) 6

l∑

i=m+1

‖ui‖LΦ(X) 6 2−m

and

‖hl − hm‖LΦ(X) 6

l∑

i=m+1

‖κi‖LΦ(X) 6 2−m

for every l > m. Hence {vk} and {hk} are Cauchy sequences in LΦ(X). Therefore,

{hk} converges to a function h in LΦ(X), which we may assume to be a Borel

function. Setting v(x) = lim
k→∞

vk(x) for every x ∈ X , we find v ∈ LΦ(X). Since

vk(x) > k for x ∈ E, we have

E ⊂ E∞ = {x ∈ X : v(x) = ∞}.

Hence it suffices to show that MΦ(ΓE∞
) = 0.

It follows from Lemma 4.2 that there exists a subsequence {hkj
} of {hk} such that

there exists an exceptional family Γ1 and

lim
j→∞

∫

γ

|hkj
− h| ds = 0
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for all rectifiable curves γ /∈ Γ1. Set

Γ2 =
{
γ : γ is a rectifiable curve satisfying

∫
γ
v ds = ∞

}

and

Γ3 =
{
γ : γ is a rectifiable curve satisfying

∫
γ
h ds = ∞

}
.

We see from the convexity of Φ that

MΦ(Γ2) 6

∫

X

Φ
(
x,

v(x)

i

)
dµ(x) 6

‖v‖LΦ(X)

i

for all i > ‖v‖LΦ(X). Hence MΦ(Γ2) = 0. Similarly, MΦ(Γ3) = 0. We denote by Γ4,i

the exceptional family of rectifiable curves for ui in Remark 4.3 and by Γ4 the union

of Γ4,i. By Remark 4.3 and Lemma 4.1, we have MΦ(Γ4) = MΦ(
⋃
Γ4,i) = 0. Hence

we find MΦ(Γ0) = 0, where Γ0 = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

To complete the proof, we show that ΓE∞
⊂ Γ0. Suppose γ /∈ Γ0. Since γ /∈ Γ2,

there is y ∈ |γ| with v(y) < ∞. For any x ∈ |γ|, we find that

vkj
(x) 6 vkj

(y) + |vkj
(x) − vkj

(y)| 6 vkj
(y) +

∫

γ

hkj
ds,

since γ /∈ Γ4. Letting j → ∞, we have

v(x) = lim
j→∞

vkj
(x) 6 v(y) +

∫

γ

h ds,

since γ /∈ Γ1. Since γ /∈ Γ3 and v(y) < ∞, we have v(x) < ∞ for all x ∈ |γ|, which

implies γ /∈ ΓE∞
, as required. �

Standard arguments and Lemma 4.6 yield the following proposition (see [31]).

Proposition 4.7 (cf. [31], Theorem 4.4). N1,Φ(X) is a Banach space.

We say that X supports a (1, 1)-Poincaré inequality if there exists a constant

C > 0 such that for all open balls B in X ,

1

µ(B)

∫

B

|u(x)− uB| dµ(x) 6 CdB
1

µ(B)

∫

B

h(x) dµ(x)

holds, whenever h is a Φ-weak upper gradient of u on B and u is integrable on B.
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Lemma 4.8. Let X be a doubling space that supports a (1, 1)-Poincaré inequality.

Assume that the Hardy-Littlewood maximal operator is bounded on LΦ(X). Then

Lipschitz continuous functions are dense in N1,Φ(X).

P r o o f. Let u ∈ N1,Φ(X) and let h be a Φ-weak upper gradient of u. By trun-

cation, we may assume that u is a bounded function on X , say |u| 6 u0 for u0 > 1

(see [51], Lemma 4.3). Set

Eλ = {x ∈ X : Mh(x) > λ}.

As in the proof of [31], Theorem 4.5, we can define

uλ(x) = lim
r→0

uB(x,r)

for all x ∈ X \ Eλ and uλ is cλ-Lipschitz in X \ Eλ with some constant c > 1. We

extend uλ as a Lipschitz function to all of X by the McShane extension [46], by

setting

uλ(x) = inf
y∈X\Eλ

{uλ(y) + cλd(x, y)}.

We may assume that uλ is still bounded by u0 by truncation. Then we have by (Φ2),

(Φ3) and (Φ4) that

∫

X

Φ(x, |u(x) − uλ(x)|) dµ(x)

=

∫

Eλ

Φ(x, |u(x) − uλ(x)|) dµ(x)

6 2A2
2A3

{∫

Eλ

Φ(x, |u(x)|) dµ(x) +

∫

Eλ

Φ(x, |uλ(x)|) dµ(x)

}

6 4A3
2A3

∫

Eλ

Φ(x, u0) dµ(x)

6 8A1A
4
2A

2
3u

log2(2A3)
0 µ(Eλ).

Hence we see from the boundedness of the Hardy-Littlewood maximal operator on

LΦ(X), Lemma 2.5 and (2.1) that uλ → u in LΦ(X). Since Eλ is open and u − uλ

is zero µ-a.e. in X \ Eλ, we may assume that the Φ-weak upper gradient of u − uλ

is zero in X \ Eλ (see [51], Lemma 4.3). Since

∫

X

Φ(x, λχEλ
(x)) dµ(x) 6 A2

∫

X

Φ(x,Mh(x)) dµ(x) < ∞
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by the boundedness of the Hardy-Littlewood maximal operator on LΦ(X), we find

that the function (cλ+h)χEλ
∈ LΦ(X) is a Φ-weak upper gradient of u−uλ. Hence

u− uλ ∈ N1,Φ(X) and therefore so does uλ. We have

∫

X

Φ(x, (cλ + h)χEλ
(x)) dµ(x)

6 4A3
2A

2
3c

log2(2A3)

{∫

Eλ

Φ(x, λ) dµ(x) +

∫

Eλ

Φ(x, h(x)) dµ(x)

}

6 4A4
2A

2
3c

log2(2A3)

{∫

Eλ

Φ(x,Mh(x)) dµ(x) +

∫

Eλ

Φ(x, h(x)) dµ(x)

}
.

Then the right hand side converges to zero as λ → ∞. Hence {uλ} converges to u

in N1,Φ(X) by Lemma 2.5 and (2.1). �

4.2. Lebesgue points in Musielak-Orlicz-Newton-Sobolev spaces.

Lemma 4.9. Let X be a doubling space that supports a (1, 1)-Poincaré inequality.

If the Hardy-Littlewood maximal operator is bounded on LΦ(X), then there exists

a constant C > 0 such that

cΦ({x ∈ X : Mu(x) > λ}) 6 Cλ− log2(2A3)‖u‖N1,Φ(X)

for all 0 < λ < 1 and u ∈ N1,Φ(X) with ‖u‖N1,Φ(X) 6 1.

P r o o f. Let u ∈ N1,Φ(X) with ‖u‖N1,Φ(X) 6 1 and h ∈ LΦ(X) be a Φ-weak

upper gradient of u. By (3.2), we have

{x ∈ X : Mu(x) > λ} ⊂ Eλ,

where Eλ = {x ∈ X : cMM∗u(x) > λ}. Here, note from the boundedness of the

Hardy-Littlewood maximal operator on LΦ(X), Lemma 4.4 and [29], Lemma 5, that

M∗u ∈ LΦ(X) and cMh ∈ LΦ(X) is a Φ-weak upper gradient of M∗u for some

constant c > 1. Since cMM∗u/λ ∈ sΦ(Eλ), we have by (Φ3), (Φ4) and (2.2) that

cΦ(Eλ) 6

∫

X

Φ(x, cMM∗u(x)/λ) dµ(x) +

∫

X

Φ(x, ccMMh(x)/λ) dµ(x)

6 2A2
2A3

(ccM
λ

)log2(2A3)
{∫

X

Φ(x,M∗u(x)) dµ(x) +

∫

X

Φ(x,Mh(x)) dµ(x)

}
.

Thus, as in the proof of Lemma 3.13, we obtain the required result. �

As in the proof of [29], Theorem 1, we can show the following consequence of

Lemma 4.9.
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Theorem 4.10. Let X be a doubling space that supports a (1, 1)-Poincaré

inequality. If the Hardy-Littlewood maximal operator is bounded on LΦ(X) and

u ∈ N1,Φ(X), then there exists a set E ⊂ X of zero Sobolev capacity in Musielak-

Orlicz-Newton-Sobolev space such that

u(x) = lim
r→0

uB(x,r)

and

lim
r→+0

∫

B(x,r)

|u(y)− u(x)| dµ(y) = 0

for every x ∈ X \ E.

5. Equivalence of function spaces

Let RN be the N -dimensional Euclidean space. In the case X = RN , let µ be

the Lebesgue measure on RN and let d be the Euclidean metric. We define the

Musielak-Orlicz-Sobolev space W 1,Φ(RN ) by

W 1,Φ(RN ) = {u ∈ LΦ(RN ) : |∇u| ∈ LΦ(RN )}.

The norm

‖u‖W 1,Φ(RN ) = ‖u‖LΦ(RN ) + ‖|∇u|‖LΦ(RN )

makes W 1,Φ(RN ) a Banach space.

We prove relations between the Musielak-Orlicz-Haj lasz-Sobolev space and the

Musielak-Orlicz-Sobolev space W 1,Φ(RN ).

Proposition 5.1. M1,Φ(RN ) ⊂ W 1,Φ(RN ). Moreover, if the Hardy-Littlewood

maximal operator is bounded on LΦ(RN ), then M1,Φ(RN ) = W 1,Φ(RN ).

P r o o f. First we show M1,Φ(RN ) ⊂ W 1,Φ(RN ). Let u ∈ M1,Φ(RN ) and let

g ∈ LΦ(RN ) be a Haj lasz gradient of u. Since t 6 A1A2Φ(x, t) for t > 1 by (Φ2)

and (2.2), we have g ∈ L1(B) for every ball B and hence ∇u exists and satisfies

|∇u(x)| 6 Cg(x) for a.e. x ∈ RN by [33], Remark 5.13. Thus we have M1,Φ(RN ) ⊂

W 1,Φ(RN ).

Next we prove the second claim. Let u ∈ W 1,Φ(RN ). Then we have by [21],

Section 2,

|u(x)− u(y)| 6 |x− y|(M |∇u|(x) +M |∇u|(y))

for a.e. x, y ∈ RN . By the boundedness of the Hardy-Littlewood maximal operator

on LΦ(RN ), we find that M |∇u| ∈ LΦ(RN ) is a Haj lasz gradient of u. Hence we

obtain the required result. �
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Theorem 5.2. N1,Φ(RN ) ⊂ W 1,Φ(RN ). Moreover, if W 1,Φ(RN ) is reflexive and

C1-functions are dense in W 1,Φ(RN ), then N1,Φ(RN ) = W 1,Φ(RN ).

P r o o f. The proof of the first claim is exactly the same as the proof of [31],

Theorem 5.3. Hence we only show the second claim. Let u ∈ W 1,Φ(RN ). Then we

can take {ui} ⊂ W 1,Φ(X) ∩C1(X) such that ui converges to u in W 1,Φ(X). By the

proof of [30], Theorem 4.2, we see that the sum of absolute value of the distributional

gradient of ui is a Φ-weak upper gradient of u in RN . Hence we obtain the required

result. �

Remark 5.3. By [43], Theorem 3.5, we know that C1-functions are dense in

W 1,Φ(RN ) if Φ(x, t) satisfies (Φ5) and (Φ6).

Theorem 5.4. For u ∈ M1,Φ(X), there exists a representative ũ of u such that

‖ũ‖N1,Φ(X) 6 4‖u‖M1,Φ(X).

Furthermore, if X is a doubling space that supports a (1, 1)-Poincaré inequality and

the Hardy-Littlewood maximal operator is bounded on LΦ(X), then M1,Φ(X) ⊃

N1,Φ(X).

P r o o f. Let u ∈ M1,Φ(X) and let g ∈ LΦ(X) be a Haj lasz gradient of u. If

u is continuous on X , we find that 4g is a Φ-weak upper gradient of u as in [51],

Lemma 4.7. Since continuous functions are dense in M1,Φ(X) by Proposition 3.4,

we can take {ui} ⊂ M1,Φ(X) such that ui is continuous on X , ui converges to u in

M1,Φ(X) and

‖un − um‖N1,Φ(X) 6 4‖un − um‖M1,Φ(X)

for all positive integers n, m. Therefore, {ui} ⊂ N1,Φ(X) is a Cauchy sequence.

Hence there exists a ũ ∈ N1,Φ(X) such that

‖ũ‖N1,Φ(X) 6 4‖u‖M1,Φ(X),

since N1,Φ(X) is a Banach space by Proposition 4.7. Noting that u(x) = ũ(x) for

a.e. x ∈ X , we find that ũ is an equivalence class of u in M1,Φ(X).

By our assumption and Theorem 3.5, we obtain that M1,Φ(X) ⊃ N1,Φ(X). �
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6. Boundedness of the maximal operator on LΦ

In this section, we show the boundedness of maximal operators on LΦ(X). This

proof with only a minor change appears in [44], but for reader’s convenience, we give

the proof.

For a nonnegative f ∈ L1
loc(X), let

I(f, x, r) =
1

µ(B(x, r))

∫

X∩B(x,r)

f(y) dµ(y)

and

J(f, x, r) =
1

µ(B(x, r))

∫

X∩B(x,r)

Φ(y, f(y)) dµ(y).

Lemma 6.1 (cf. [44], Lemma 3.1). Assume that µ is lower Ahlfors Q(x)-regular.

Suppose that Φ(x, t) satisfies (Φ5). Then there exists a constant C > 0 such that

Φ(x, I(f ;x, r)) 6 CJ(f ;x, r)

for all x ∈ X , r > 0 and for all nonnegative f ∈ L1
loc(X) such that f(y) > 1 or

f(y) = 0 for each y ∈ X and ‖f‖LΦ(X) 6 1.

P r o o f. Given f as in the statement of the lemma, x ∈ X and r > 0, set I =

I(f ;x, r) and J = J(f ;x, r). Note that ‖f‖LΦ(X) 6 1 implies

J 6 2A3µ(B(x, r))−1 6 2A3c
−1
0 r−Q(x)

for 0 < r < dX by (2.1) and lower Ahlfors Q(x)-regularity of µ.

By (Φ2) and (2.2), Φ(y, f(y)) > (A1A2)
−1f(y), since f(y) > 1 or f(y) = 0. Hence

I 6 A1A2J . Thus, if J 6 1, then

Φ(x, I) 6 (A1A2J)A2φ(x,A1A2) 6 CJ.

Next, suppose J > 1. Since Φ(x, t) → ∞ as t → ∞, there exists K > 1 such that

Φ(x,K) = Φ(x, 1)J.

Then K 6 A2J by (2.2). With this K, we have

∫

X∩B(x,r)

f(y) dµ(y) 6 Kµ(B(x, r)) +A2

∫

X∩B(x,r)

f(y)
φ(y, f(y))

φ(y,K)
dµ(y).
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Since

1 6 K 6 A2J 6 2A2A3c
−1
0 r−Q(x)

6 Cr−Q+

,

by (Φ5) there is β > 0, independent of f , x, r, such that

φ(x,K) 6 βφ(y,K) for all y ∈ B(x, r).

Thus, we have by (Φ2)

∫

X∩B(x,r)

f(y) dµ(y) 6 Kµ(B(x, r)) +
A2β

φ(x,K)

∫

X∩B(x,r)

f(y)φ(y, f(y)) dµ(y)

= Kµ(B(x, r)) +A2βµ(B(x, r))
J

φ(x,K)

= Kµ(B(x, r))
(
1 +

A2β

φ(x, 1)

)
6 Kµ(B(x, r))(1 +A1A2β).

Therefore

I 6 (1 +A1A2β)K.

By (Φ2), (Φ3) and (Φ4), we obtain

Φ(x, I) 6 CΦ(x,K) 6 CJ

with C > 0 independent of f , x, r, as required. �

Lemma 6.2 (cf. [44], Lemma 3.2). Suppose that Φ(x, t) satisfies (Φ6). Then

there exists a constant C > 0 such that

Φ(x, I(f ;x, r)) 6 C{J(f ;x, r) + Φ(x, g(x))}

for all x ∈ X , r > 0 and for all nonnegative f ∈ L1
loc(X) such that g(y) 6 f(y) 6 1

or f(y) = 0 for each y ∈ X , where g is the function appearing in (Φ6).

P r o o f. Given f as in the statement of the lemma, x ∈ X and r > 0, let I =

I(f ;x, r) and J = J(f ;x, r).

By Jensen’s inequality, we have

Φ(x, I) 6
1

µ(B(x, r))

∫

X∩B(x,r)

Φ(x, f(y)) dµ(y).

In view of (2.1),

Φ(x, I) 6 2A2A3
1

µ(B(x, r))

∫

X∩B(x,r)

Φ(x, f(y)) dµ(y).
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If d(x, x0) > d(y, x0), then Φ(x, f(y)) 6 B∞Φ(y, f(y)) by (Φ6), where x0 is the

point appearing in (Φ6).

Let d(x, x0) < d(y, x0). If g(x) < f(y), then Φ(x, f(y)) 6 B∞Φ(y, f(y)) by (Φ6)

again. If g(x) > f(y), then Φ(x, f(y)) 6 A2Φ(x, g(x)) by (Φ3). Hence,

Φ(x, f(y)) 6 C{Φ(y, f(y)) + Φ(x, g(x))}

in any case. Therefore, we obtain the required inequality. �

Theorem 6.3 (cf. [44], Theorem 4.1). Assume that X is a doubling space and µ

is lower Ahlfors Q(x)-regular. Suppose that Φ(x, t) satisfies (Φ5), (Φ6) and further

assume:

(Φ3∗) t 7→ t−ε0φ(x, t) is uniformly almost increasing on (0,∞) for some ε0 > 0.

Then the Hardy-Littlewood maximal operator M is bounded from LΦ(X) into itself,

namely, there is a constant C > 0 such that

‖Mf‖LΦ(X) 6 C‖f‖LΦ(X)

for all f ∈ LΦ(X).

We use the following result, which is a special case of the theorem for Φ(x, t) =

tp0 (p0 > 1) (see [33], Theorem 2.2).

Lemma 6.4. Let p0 > 1. Suppose that X is a doubling space. Then there exists

a constant c̃ > 0 depending only on p0 and c2 for which the following holds: If f is

a measurable function such that
∫

X

|f(y)|p0 dµ(y) 6 1,

then ∫

X

[Mf(x)]p0 dµ(x) 6 c̃.

P r o o f of Theorem 6.3. Set p0 = 1+ε0 for ε0 > 0 in condition (Φ3∗) and consider

the function

Φ0(x, t) = Φ(x, t)1/p0 .

Then Φ0(x, t) also satisfies all the conditions (Φj), j = 1, 2, . . . , 6. In fact, it trivially

satisfies (Φj) for j = 1, 2, 4, 5, 6 with the same g as in (Φ6). Since

Φ0(x, t) = tφ0(x, t) with φ0(x, t) = [t−ε0φ(x, t)]1/p0 ,

condition (Φ3∗) implies that Φ0(x, t) satisfies (Φ3).
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Let f > 0 and ‖f‖LΦ(X) 6 1. Let f1 = fχ{x : f(x)>1}, f2 = fχ{x : g(x)6f(x)<1} with

g from (Φ6) and f3 = f − f1 − f2.

Since Φ(x, t) > 1/(A1A2) for t > 1 by (Φ2) and (2.2),

Φ0(x, t) 6 (A1A2)
1−1/p0Φ(x, t)

if t > 1. Hence there is a constant λ > 0 such that ‖f1‖LΦ0(X) 6 λ, whenever

‖f‖LΦ(X) 6 1. Applying Lemma 6.1 to Φ0 and f1/λ, we have

Φ0(x,Mf1(x)) 6 CMΦ0(·, f1(·))(x).

Hence

(6.1) Φ(x,Mf1(x)) 6 C[MΦ0(·, f(·))(x)]
p0

for all x ∈ X with a constant C > 0 independent of f .

Next, applying Lemma 6.2 to Φ0 and f2, we have

Φ0(x,Mf2(x)) 6 C[MΦ0(·, f2(·))(x) + Φ0(x, g(x))].

Noting that Φ0(x, g(x)) 6 Cg(x) by (2.2) and (Φ2), we have

(6.2) Φ(x,Mf2(x)) 6 C{[MΦ0(·, f(·))(x)]
p0 + g(x)p0}

for all x ∈ X with a constant C > 0 independent of f .

Since 0 6 f3 6 g 6 1, we have 0 6 Mf3 6 Mg 6 1. Hence

(6.3) Φ(x,Mf3(x)) 6 A2Φ0(x,Mg(x))p0 6 C[Mg(x)]p0

for all x ∈ X with a constant C > 0 independent of f .

Combining (6.1), (6.2) and (6.3), and noting that g(x) 6 Mg(x) for a.e. x ∈ X ,

we obtain

(6.4) Φ(x,Mf(x)) 6 C{[MΦ0(·, f(·))(x)]
p0 + [Mg(x)]p0}

for a.e. x ∈ X with a constant C > 0 independent of f .

In view of (2.1),

∫

X

Φ0(y, f(y))
p0 dµ(y) =

∫

X

Φ(y, f(y)) dµ(y) 6 2A3
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for all x ∈ X . Hence, applying Lemma 6.4 to (2A3)
−1/p0Φ0(y, f(y)), we have

∫

X

[MΦ0(·, f(·))(y)]
p0 dµ(y) 6 C

with a constant C > 0 independent of f .

By Lemma 6.4, we obtain
∫

X

[Mg(y)]p0 dµ(y) 6 C

as g ∈ Lp0(X).

Thus, by (6.4), we finally obtain
∫

X

Φ(y,Mf(y)) dµ(y) 6 C.

This completes the proof. �

Corollary 6.5. Suppose µ is Ahlfors Q(x)-regular. Let Φ(x, t) be defined as in

Examples 2.1 and 2.4. Then the Hardy-Littlewood maximal operator M is bounded

from LΦ(X) into itself.

In fact, Φ(x, t) satisfies (Φ3∗) with ε0 = (p− − 1)/2.

Similarly to Theorem 6.3, we can show the following lemma.

Lemma 6.6. Assume that X is a bounded doubling space. Suppose that Φ(x, t)

satisfies (Φ3∗) and (Φ5). Then the Hardy-Littlewood maximal operator M is

bounded from LΦ(X) into itself.

Corollary 6.7. Assume that X is a bounded doubling space. Let Φ(x, t) be

defined as in Example 2.1. Then the Hardy-Littlewood maximal operator M is

bounded from LΦ(X) into itself.

By Proposition 5.1 and Theorem 6.3, we have the following result.

Proposition 6.8. Suppose that Φ(x, t) satisfies (Φ3∗), (Φ5) and (Φ6). Then

M1,Φ(RN ) = W 1,Φ(RN ).

7. Sobolev’s inequality

In this section, we show a Sobolev-type inequality on Musielak-Orlicz-Haj lasz-

Sobolev spaces. For this purpose, we first prove Sobolev’s inequality for a Riesz-type

operator in Musielak-Orlicz spaces.

463



Lemma 7.1 (cf. [44], Lemma 5.1). Let H(x, t) be a positive function on X×(0,∞)

satisfying the following conditions:

(H1) H(x, ·) is continuous on (0,∞) for each x ∈ X ;

(H2) there exists a constant K1 > 1 such that K−1
1 6 H(x, 1) 6 K1 for all x ∈ X ;

(H3) t 7→ t−ε′H(x, t) is uniformly almost increasing for ε′ > 0; namely, there ex-

ists a constant K2 > 1 such that t−ε′H(x, t) 6 K2s
−ε′H(x, s) for all x ∈ X

whenever 0 < t < s.

Set H−1(x, s) = sup{t > 0: H(x, t) < s} for x ∈ X and s > 0. Then:

(1) H−1(x, ·) is nondecreasing.

(2) H−1(x, λs) 6 (K2λ)
1/ε′H−1(x, s) for all x ∈ X , s > 0 and λ > 1.

(3) H(x,H−1(x, t)) = t for all x ∈ X and t > 0.

(4) K
−1/ε′

2 t 6 H−1(x,H(x, t)) 6 K
2/ε′

2 t for all x ∈ X and t > 0.

(5) min{1, (s/K1K2)
1/ε′} 6 H−1(x, s) 6 max{1, (K1K2s)

1/ε′} for all x ∈ X and

s > 0.

Remark 7.2. H(x, t) = Φ(x, t) satisfies (H1), (H2) and (H3) with K1 = A1,

K2 = A2 and ε′ = 1.

Lemma 7.3. Assume that X is a bounded space. Suppose that µ is lower Ahlfors

Q(x)-regular and Φ(x, t) satisfies (Φ5). Then there exists a constant C > 0 such that

1

µ(B(x, r))

∫

X∩B(x,r)

f(y) dµ(y) 6 CΦ−1(x, r−Q(x))

for all x ∈ X , 0 < r < dX and f > 0 satisfying ‖f‖LΦ(X) 6 1.

P r o o f. Let f be a nonnegative function on X such that ‖f‖LΦ(X) 6 1. Then we

have
∫
X
Φ(y, f(y)) dµ(y) 6 2A3 by (2.1). By Lemma 6.1, (Φ2), (Φ3) and (Φ4), we

obtain

Φ

(
x,

1

µ(B(x, r))

∫

X∩B(x,r)

f(y) dµ(y)

)
6 C(1 + µ(B(x, r))−1)

6 C(1 + r−Q(x)) 6 C1r
−Q(x)

for some constant C1 > 1 and for all x ∈ X and 0 < r < dX . Hence, we find by

Lemma 7.1 with H = Φ

1

µ(B(x, r))

∫

X∩B(x,r)

f(y) dµ(y) 6 A2Φ
−1(x,C1r

−Q(x)) 6 C1A
2
2Φ

−1(x, r−Q(x)),

as required. �
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For an open set Ω ⊂ X , f ∈ L1
loc(X) and α > 0, we define the Riesz-type operator

JΩ
α f of order α by

JΩ
α f(x) =

∑

2i62dΩ

2iα

µ(B(x, 2i))

∫

Ω∩B(x,2i)

|f(y)| dµ(y).

If µ is a doubling measure, then IΩα f(x) 6 CJΩ
α f(x) for a.e. x ∈ X , where

IΩα f(x) =

∫

Ω

d(x, y)α|f(y)|

µ(B(x, r))
dµ(y)

is the usual Riesz potential of order α (see e.g. [23]).

Lemma 7.4. Suppose that X is a bounded space and µ is lower Ahlfors Q(x)-

regular. Assume that Φ(x, t) satisfies (Φ5) and

(Φµ) there exist constants γ > 0 and A4 > 1 such that sγ+αΦ−1(x, s−Q(x)) 6

A4t
γ+αΦ−1(x, t−Q(x)) for all x ∈ X , whenever 0 6 t < s.

Then there exists a constant C > 0 such that

∑

δ<2i62dX

2iα

µ(B(x, 2i))

∫

X∩B(x,2i)

f(y) dµ(y) 6 CδαΦ−1(x, δ−Q(x))

for all x ∈ X , 0 < δ < dX and f > 0 satisfying ‖f‖LΦ(X) 6 1.

P r o o f. Let f be a nonnegative function on X such that ‖f‖LΦ(X) 6 1. By

Lemmas 7.1 and 7.3 and (Φµ), we have

∑

δ<2i62dX

2iα

µ(B(x, 2i))

∫

X∩B(x,2i)

f(y) dµ(y)

6 C
∑

δ<2i62dX

2iαΦ−1(x, 2−iQ(x)) 6 C

∫ ∞

δ

tαΦ−1(x, t−Q(x))
dt

t

6 CδαΦ−1(x, δ−Q(x)),

as required. �

Note that (Φµ) implies

(7.1) lim
t→∞

tΦ(x, t)−α/Q(x) = ∞ uniformly in x ∈ X.

We consider a function Ψα(x, t) : X × [0,∞) → [0,∞) satisfying the following

conditions:
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(Ψ1) Ψα(·, t) is measurable on X for each t > 0 and Ψα(x, ·) is continuous on

[0,∞) for each x ∈ X ;

(Ψ2) there is a constant A5 > 1 such that Ψα(x, at) 6 A5aΨα(x, t) for all x ∈ X ,

t > 0 and 0 6 a 6 1;

(ΨΦµ) there exists a constant A6 > 1 such that Ψα(x, tΦ(x, t)
−α/Q(x)) 6 A6Φ(x, t)

for all x ∈ X and t > 0.

Note: (Ψ2) implies that Ψα(x, ·) is uniformly almost increasing on [0,∞); (Ψ2),

(7.1) and (ΨΦµ) imply that Ψα(·, t) is bounded on X for each t > 0.

Theorem 7.5. Assume that X is a bounded doubling space and µ is lower Ahlfors

Q(x)-regular. Suppose that Φ(x, t) satisfies (Φ3∗), (Φ5) and (Φµ), and that Ψα(x, t)

satisfies (Ψ1), (Ψ2) and (ΨΦµ). Then there exist constants C1, C2 > 0, such that

∫

X

Ψα(x, J
X
α f(x)/C1) dµ(x) 6 C2

for all f > 0 satisfying ‖f‖LΦ(X) 6 1.

P r o o f. Let f be a nonnegative measurable function on X satisfying ‖f‖LΦ(X)61.

Write

JX
α f(x) =

∑

2i6δ

2iα

µ(B(x, 2i))

∫

X∩B(x,2i)

f(y) dµ(y)

+
∑

δ<2i<2dX

2iα

µ(B(x, 2i))

∫

X∩B(x,2i)

f(y) dµ(y) =: J1 + J2.

We have by Lemma 7.4

J2 6 CδαΦ−1(x, δ−Q(x)).

Since J1 6 CδαMf(x), we find that

JX
α f(x) 6 C{δαMf(x) + δαΦ−1(x, δ−Q(x))}.

Here, let δ = min{dX ,Φ(x,Mf(x))−1/Q(x)}.

If dX 6 Φ(x,Mf(x))−1/Q(x), then note from Lemma 7.1 that

Mf(x) 6 A2Φ
−1(x, d

−Q(x)
X ) 6 A2 max{1, A1A2d

−Q(x)
X } 6 C.

Therefore JX
α f(x) 6 C.

Next, if dX > Φ(x,Mf(x))−1/Q(x), then we have

Φ−1(x, δ−Q(x)) = Φ−1(x,Φ(x,Mf(x))) 6 A2
2Mf(x)
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in view of Lemma 7.1. Hence we see that

JX
α f(x) 6 C1 max{Mf(x)Φ(x,Mf(x))−α/Q(x), 1}

for some constant C1 > 0. By (Ψ2) and (ΨΦµ), we find

Ψα(x, J
X
α f(x)/C1) 6 A5{Ψα(x,Mf(x)Φ(x,Mf(x))−α/Q(x)) + Ψα(x, 1)}

6 C{Φ(x,Mf(x)) + 1}.

Hence, by Lemma 6.6

∫

X

Ψα(x, J
X
α f(x)/C1) dµ(x) 6 C

{∫

X

Φ(x,Mf(x)) dµ(x) + µ(X)

}
6 C2

for some constant C2 > 0, as required. �

Corollary 7.6. Assume that X is a bounded doubling space and µ is lower

Ahlfors Q(x)-regular. Let Φ(x, t) be defined as in Example 2.1 and set

Ψα(x, t) =

(
t

k∏

j=1

(L(j)
c (t))qj (x)/p(x)

)p♯(x)

for all x ∈ X and t > 0, where 1/p♯(x) = 1/p(x)− α/Q(x). Suppose

(7.2) ess sup
x∈X

(αp(x) −Q(x)) < 0.

Then there exists a constant C > 0 such that

∫

X

Ψα(x, J
X
α f(x)) dµ(x) 6 C

for all f > 0 satisfying ‖f‖LΦ(X) 6 1.

P r o o f. First note that

Φ−1(x, t) ∼ t1/p(x)
k∏

j=1

(L(j)
c (t))−qj(x)/p(x)

for all x ∈ X and t > 0. Therefore, by (7.2), there exists a constant γ > 0 such that

tγ+αΦ−1(x, t−Q(x)) ∼ tγ+α−Q(x)/p(x)
k∏

j=1

(L(j)
c (t−1))−qj(x)/p(x)
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is uniformly almost decreasing on t. Hence Φ(x, t) satisfies (Φµ). Similarly, since

t−1Ψα(x, t) is uniformly almost increasing on t, we see that Ψα(x, t) satisfies (Ψ2).

Finally, since

Ψα(x, tΦ(x, t)
−α/Q(x)) = Ψα

(
x, tp(x)/p

♯(x)
k∏

j=1

(L(j)
c (t))−αqj(x)/Q(x)

)
6 CΦ(x, t)

for all x ∈ X and t > 0, we see that Ψα(x, t) satisfies (ΨΦµ). Hence we obtain the

required result by Theorem 7.5. �

Theorem 7.7. Assume that X is a bounded doubling space and µ is lower Ahlfors

Q(x)-regular. Suppose that Φ(x, t) satisfies (Φ3∗), (Φ5) and (Φµ), and that Ψ1(x, t)

satisfies (Ψ1), (Ψ2) and (ΨΦµ). Then for each ball B ⊂ X , there exist constants

C1, C2 > 0 such that
∫

B

Ψ1(x, |u(x) − uB|/C1) dµ(x) 6 C2

for all u satisfying ‖u‖M1,Φ(X) 6 1.

P r o o f. Let u ∈ M1,Φ(X) and let g ∈ LΦ(X) be a Haj lasz gradient of u. Inte-

grating both sides in (3.1) over y and x, we obtain the Poincaré inequality
∫

B

|u(x)− uB| dµ(x) 6 CdB

∫

B

g(x) dµ(x)

for every ball B ⊂ X . Here, if µ is a doubling measure, then we have by [23],

Theorem 5.2,

|u(x)− uB| 6 CJX
1 g(x)

for µ-a.e. x ∈ B. Hence we obtain the Sobolev-type inequality on Musielak-Orlicz-

Haj lasz-Sobolev spaces by Theorem 7.5. �

Corollary 7.8. Assume that X is a bounded doubling space and µ is lower Ahlfors

Q(x)-regular. Let Φ(x, t) and Ψ1(x, t) be defined as in Corollary 7.6. Suppose

ess sup
x∈X

(p(x) −Q(x)) < 0.

Then for each ball B ⊂ X , there exists a constant C > 0 such that
∫

B

Ψ1(x, |u(x) − uB|) dµ(x) 6 C

for all u satisfying ‖u‖M1,Φ(X) 6 1.
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8. Appendix

8.1. Musielak-Orlicz-Sobolev capacity in RN . For u ∈ W 1,Φ(RN ), we define

˘̺Φ(u) = ̺Φ(u) + ̺Φ(∇u).

For E ⊂ RN , we denote

TΦ(E) = {u ∈ W 1,Φ(RN ) : u > 1 in an open set containing E}.

The Musielak-Orlicz-Sobolev CapΦ-capacity is defined by CapΦ(E) = inf
u∈TΦ(E)

˘̺Φ(u).

In the case TΦ(E) = ∅, we set CapΦ(E) = ∞.

Remark 8.1. Let u, v ∈ W 1,Φ(RN ). Since

∫

B(x,1)

|u(x)| dx+

∫

B(x,1)

|∇u(x)| dx

6 2|B(x, 1)|+A1A2

{∫

B(x,1)

Φ(x, |u(x)|) dx+

∫

B(x,1)

Φ(x, |∇u(x)|) dx

}

6 2|B(x, 1)|+ 2A1A2A3 ˘̺Φ(u)

for all x ∈ RN by (2.1), (Φ2) and (Φ3), we find u ∈ W 1,1
loc (R

N ). The symbol |E|

denotes the Lebesgue measure for a set E ⊂ RN . As in the proof of [26], Theorem 2.2,

we have min{u, v},max{u, v} ∈ W 1,Φ(RN ),

∇min{u, v}(x) =

{
∇u(x) for a.e. x ∈ {u 6 v},

∇v(x) for a.e. x ∈ {u > v}

and

∇max{u, v}(x) =

{
∇u(x) for a.e. x ∈ {u > v},

∇v(x) for a.e. x ∈ {u 6 v}.

Lemma 8.2. Let {uj} and {vj} be sequences in W 1,Φ(RN ). Assume that

{ ˘̺Φ(uj)} is bounded. If { ˘̺Φ(uj − vj)} converges to zero, then { ˘̺Φ(uj) − ˘̺Φ(vj)}

converges to zero.

P r o o f. We have by (Φ3) and (Φ4) that

Φ(x, |vj(x)|) 6 A2Φ(x, |uj(x)− vj(x)| + |uj(x)|)

6 2A2
2A3{Φ(x, |uj(x) − vj(x)|) + Φ(x, |uj(x)|)}
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for all x ∈ RN . Hence { ˘̺Φ(vj)} is also bounded. For any ε > 0, there exists

a constant C(ε) > 0 such that

|Φ(x, t1)− Φ(x, t2)| 6 ε{Φ(x, t1) + Φ(x, t2)}+ C(ε)Φ(x, |t1 − t2|)

for all x ∈ RN and t1, t2 > 0. Therefore we have

| ˘̺Φ(uj)− ˘̺Φ(vj)| 6 ε{ ˘̺Φ(uj) + ˘̺Φ(vj)}+ C(ε)˘̺Φ(uj − vj)

6 2Mε+ C(ε)˘̺Φ(uj − vj),

since ˘̺Φ(uj) 6 M and ˘̺Φ(vj) 6 M for some constant M > 0. Hence we find

lim
j→∞

| ˘̺Φ(uj)− ˘̺Φ(vj)| 6 2Mε,

as required. �

Standard arguments and Lemma 8.2 yield the following results (see [26], Theo-

rems 3.1 and 3.2).

Proposition 8.3. The set function CapΦ(·) satisfies the following conditions:

(1) CapΦ(∅) = 0;

(2) if E1 ⊂ E2 ⊂ RN , then CapΦ(E1) 6 CapΦ(E2);

(3) CapΦ(·) is an outer capacity;

(4) for E1, E2 ⊂ RN , CapΦ(E1 ∪ E2) + CapΦ(E1 ∩ E2) 6 CapΦ(E1) + CapΦ(E2);

(5) if K1 ⊃ K2 ⊃ . . . are compact sets of RN , then

lim
i→∞

CapΦ(Ki) = CapΦ

( ∞⋂

i=1

Ki

)
;

(6) if W 1,Φ(RN ) is reflexive and E1 ⊂ E2 ⊂ . . . are subsets of RN , then

lim
i→∞

CapΦ(Ei) = CapΦ

( ∞⋃

i=1

Ei

)
;

(7) if W 1,Φ(RN ) is reflexive and Ei ⊂ RN for i = 1, 2, . . ., then

CapΦ

( ∞⋃

i=1

Ei

)
6

∞∑

i=1

CapΦ(Ei).

We say that a property holds CapΦ-q.e. in RN , if it holds everywhere except for

a set F ⊂ RN with CapΦ(F ) = 0. Analogously to Theorem 3.9, we have the following

result.
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Theorem 8.4 (cf. [26], Lemma 5.1). Suppose that W 1,Φ(RN ) is reflexive. Then,

for each Cauchy sequence of functions in W 1,Φ(RN )∩C(RN ), there is a subsequence

which converges pointwise CapΦ-q.e. in RN . Moreover, the convergence is uniform

outside a set of arbitrary small Musielak-Orlicz-Sobolev CapΦ-capacity.

We say that a function u : RN → R is CapΦ-quasicontinuous, if for every ε > 0,

there exists a open set E with CapΦ(E) < ε such that u restricted to RN \ E is

continuous.

Corollary 8.5 (cf. [26], Theorem 5.2). Suppose that W 1,Φ(RN ) is reflexive

and C1-functions are dense in W 1,Φ(RN ). Then u ∈ W 1,Φ(RN ) has a CapΦ-

quasicontinuous representative of u.

8.2. Fuglede’s theorem in RN .

Lemma 8.6 (cf. [30], Lemma 3.1). Suppose that C1-functions are dense in

W 1,Φ(RN ). Let E ⊂ RN . If CapΦ(E) = 0, then MΦ(ΓE) = 0.

P r o o f. Let E ⊂ X with CapΦ(E) = 0. Then, for every positive integer i, we

choose a function ui ∈ W 1,Φ(RN )∩C1(RN ) such that ui(x) > 1 for every x ∈ E and

˘̺Φ(ui) 6 A−1
2 (2A3)

−i−1. Set vk =
k∑

i=1

|ui|. Since

˘̺Φ

( ui

2−i

)
6 A2(2A3)

i+1 ˘̺Φ(ui) 6 1

by (2.1) and (Φ4), we have ‖ui‖W 1,Φ(RN ) 6 2−i. Therefore

‖vl − vm‖W 1,Φ(RN ) 6

l∑

i=m+1

‖ui‖W 1,Φ(RN ) 6 2−m

for every l > m. Hence {vk} is a Cauchy sequence in W 1,Φ(RN ). Setting v(x) =

lim
k→∞

vk(x) for every x ∈ X , we see that v ∈ W 1,Φ(RN ) is a Borel function. Thus, as

in the proof of Lemma 4.6, we have the required result. �

We say that u : RN → R is absolutely continuous on lines, u ∈ ACL(RN ), if u is

absolutely continuous on almost every line segment in RN parallel to the coordinate

axes. Note that an ACL function has classical derivatives almost everywhere. An

ACL function is said to belong to ACLΦ(RN ) if |∇u| ∈ LΦ(RN ). Since W 1,Φ(RN ) →֒

W 1,1(RN ) locally, we obtain the following result.
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Lemma 8.7. ACLΦ(RN ) ∩ LΦ(RN ) = W 1,Φ(RN ).

Let u : RN → R and Γ be the family of rectifiable curves γ : [0, l(γ)] → RN such

that u ◦ γ is not absolutely continuous on [0, l(γ)]. We say that u is absolutely

continuous on curves, u ∈ ACCΦ(RN ), if MΦ(Γ) = 0. It is clear that ACCΦ(RN ) ⊂

ACL(RN ). An ACCΦ function is said to belong to ACCΦ(RN ) if |∇u| ∈ LΦ(RN ).

The proof of the following theorem is the same as the proof of [30], Theorem 4.2.

Theorem 8.8 (cf. [30], Theorem 4.2). Suppose that W 1,Φ(RN ) is reflexive and

C1-functions are dense in W 1,Φ(RN ). Then ACCΦ(RN ) ∩ LΦ(RN ) = W 1,Φ(RN ).
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