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HIGHLIGHTS 

• A universal strategy was proposed to producing conductive, redox-active, and hydrophilic sulfonated lignin-conductive polymer 

nanoparticles (CP/LS NPs).

• By incorporating the CP/LS NPs into hydrogel network, a good conductive, adhesive, and tough hydrogel was obtained.

• The redox-active NPs maintained enough catechol groups inner the hydrogel for adhesiveness.

ABSTRACT Conductive polymers (CPs) are generally insoluble, and 

developing hydrophilic CPs is significant to broaden the applications of 

CPs. In this work, a mussel-inspired strategy was proposed to construct 

hydrophilic CP nanoparticles (CP NPs), while endowing the CP NPs 

with redox activity and biocompatibility. This is a universal strategy 

applicable for a series of CPs, including polyaniline, polypyrrole, and 

poly(3,4-ethylenedioxythiophene). The catechol/quinone contained 

sulfonated lignin (LS) was doped into various CPs to form CP/LS NPs 

with hydrophilicity, conductivity, and redox activity. These CP/LS NPs 

were used as versatile nanofillers to prepare the conductive hydrogels 

with long-term adhesiveness. The CP/LS NPs-incorporated hydrogels 

have a good conductivity because of the uniform distribution of the hydrophilic NPs in the hydrogel network, forming a well-connected 

electric path. The hydrogel exhibits long-term adhesiveness, which is attributed to the mussel-inspired dynamic redox balance of catechol/

quinone groups on the CP/LS NPs. This conductive and adhesive hydrogel shows good electroactivity and biocompatibility and therefore 

has broad applications in electrostimulation of tissue regeneration and implantable bioelectronics.
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1 Introduction

Conductive hydrogels (CHs) are an emerging class of 

hydrogels that combine biocompatibility and conductiv-

ity. These properties make CHs useful in bioelectronics. 

CHs are generally prepared by filling a hydrogel matrix 

with conductive materials such as graphene [1–4], car-

bon nanotubes [5, 6], metallic nanoparticles (NPs) [7], 

and organic or inorganic salts [8]. For example, Zhang 

et al. [9] prepared cellulose nanofibers and graphene co-

incorporated poly (vinyl alcohol)-borax (GN-CNF@PVA) 

hydrogel, which had good mechanical flexibility, strength, 

and conductivity. Han et al. [5] used PDA-chelated CNT-

Fe3O4 nanohybrids to construct an anisotropic hydrogel, 

which possessed conductive, magnetic, and self-adhesive 

properties. In particular, CPs, such as polyaniline (PANI), 

polypyrrole (PPY), and poly(3,4-ethylenedioxythiophene) 

(PEDOT), are promising conductive fillers for CHs because 

they have good conductivity and flexibility [10–13]. How-

ever, there are scientific challenges for using CPs as fillers 

to preparing CHs in biomedical applications. First, CPs 

generally have poor water solubility, and hydrophobic CPs 

cannot be well dispersed and integrated with the hydro-

philic hydrogel network. Thus, the mechanical properties 

and conductivity of reported CP-based CHs are generally 

weak. The typical approach to produce water-soluble CPs 

is to complex them with other hydrophilic molecules. 

For example, PEDOT is often doped with hydrophilic 

poly(styrene sulfonate) (PSS) to improve its conductivity 

[14, 15]. Unfortunately, the high content of PSS results in 

an acidic physiological environment, which restricts the 

long-term use of PSS-doped PEDOT in clinical practice 

[16]. Second, the biocompatibility of many CPs is insuf-

ficient and reported CP-based CHs lack cell affinity and 

biocompatibility [17]. Third, most modern bioelectronics 

are designed to be conformable and to tightly integrate 

with surrounding tissue [18, 19]. However, CP-based CHs 

generally lack tissue adhesiveness and the interfacial adhe-

sion between CHs and tissue is weak, resulting in high 

interfacial resistance and unstable electrical signals. Thus, 

a novel strategy for fabricating hydrophilic and biocompat-

ible CP fillers is therefore required for developing adhesive 

and conductive hydrogels applying in bioelectronics.

Adhesive hydrogels can be realized by tuning the 

chemical bonding and mechanics of energy dissipation 

[20]. Various adhesive hydrogels have been reported 

using different adhesion strategies, such as host–guest 

[21–23], nucleobase [24], and energy dissipative matrix 

[25]. Adhesive hydrogels could also come from biomol-

ecules or biopolymers. Gao et al. [26] reported an adhesive 

polyacrylamide hydrogel driven by lysine, which exhib-

ited excellent adhesiveness on different substrates. Wei 

et al. [27] designed chitosan–silicotungstic acid–poly-

acrylamide with repeatable adhesive capacity and highly 

sensitive conductivity upon strain, which demonstrated 

great potential for wearable strain sensors. In particular, 

adhesive hydrogels could be designed by learning from 

natural adhesion mechanisms such as those found in sun-

dew [28] and sandcastle worms [29]. Recently, adhesive 

hydrogels based on mussel-inspired catechol chemistry 

have attracted much attention [30, 31]. The adhesiveness 

of catechol-based hydrogels is attributed to the cova-

lent/noncovalent reactions between the catechol groups 

of the hydrogel and substrate [32–34]. Mussels retain 

their long-term adhesion properties because of the redox 

balance between quinone and catechol groups, which is 

achieved by secreting reductive and oxidative proteins in 

their byssal thread [35, 36]. We previously demonstrated 

that manipulating the redox balance of quinone/catechol 

groups of polydopamine (PDA) could endow hydrogels 

with long-term adhesiveness [2, 37, 38]. The adhesion 

mechanism of mussels inspired us to develop catechol 

chemistry-based hydrogels with high conductivity and 

long-term adhesiveness.

Lignin and its derivatives are abundant, renewable, and 

environmentally friendly natural polymers isolated from 

plants. Lignin has complex and varying structures with 

numerous functionality such as hydroxyl, methoxy, and 

phenolic hydroxyl groups [39, 40]. Lignin can be sul-

fonated to obtain water-soluble sulfonated lignin, which 

has a high content of sulfonate groups [41]. These nega-

tively charged sulfonate groups can act as charge balanc-

ing counterions to positively charged CP chains. Thus, 

water-soluble sulfonated lignin can be used to complex 

with polymers, which not only improve the hydrophilic-

ity, but also act as a dopant to improve the conductiv-

ity of the polymer. LS has been used as a dispersant or 

dopant to improve the dispersibility and conductivity of 

graphene [42], PANI [43], and PEDOT [44]. In particular, 

LS exhibits redox activity because it contains abundant 
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oxidative quinone groups [45]. We previously reported 

that lignin complexation with Ag formed a dynamic redox 

environment based on quinone/catechol couples, and this 

endowed the hydrogel with long-term and repeatable 

adhesiveness [46].

In this study, a mussel-inspired strategy was designed 

to construct redox-active, hydrophilic conductive NPs by 

using LS as dopant to CP (Fig. 1a left). One part of LS 

contains abundant sulfonate groups that are doped into the 

CP to promote conductivity. Another part of LS provides 

catechol groups to improve the hydrophilicity and redox 

activity of the CP (Fig. 1a right). Subsequently, the CP/

LS NPs were used as versatile nanofillers to incorporate in 

hydrogels and endow the hydrogels with good conductivity 

and adhesiveness. The CP/LS NPs-based conductive and 

adhesive hydrogels were potent to be used for bioelectronic 

applications (Fig. 1b).

2  Experimental Section

2.1  Materials

Alkali lignin (Wn = 1000−10,000) was purchased from Qun-

lin paper Group Co., China. 3,4-Ethylenedioxythiophene 

(EDOT), pyrrole (PY), aniline (ANI) were supplied by Mack-

lin. Ammonium persulfate (APS), sodium hydroxide (NaOH), 

N,N’-methylenebisacrylamide (BIS), N,N,N’,N’-tetramethyl-

ethylenediamine (TMEDA), and acrylamide (AM) were pur-

chased from KESHI Chemical Works in Chengdu.
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Fig. 1  Preparation of hydrophilic and redox-active conductive polymer/sulfonated lignin (CP/LS) NPs-incorporated conductive and adhesive 

hydrogels. a Conductive and adhesive mechanisms of the hydrogel. Left: LS-doped CPs, such as PEDOT, PANI, and PPY. Right: mussel adhe-

sion mechanism. b CP/LS NPs were incorporated into the hydrogel network to obtain a hydrogel with high conductivity and adhesiveness. (i) 

The NPs can form physical interaction with the Polyacrylamide (PAM) network and construct conductive pathway inner the hydrogel. (ii) The 

CH is adhesive and therefore is compatible with human tissue for bioelectronic applications
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2.2  Preparation of CP/LS NPs

The CP/LS NPs were prepared using the following procedure. 

Firstly, lignin was sulfonated by APS according to the previous 

report to prepare LS solution [41, 42]. An CP/ethanol solution 

with different concentrations was added into the LS solution 

(0.15 wt%) under vigorous stirring for 20 min until the uniform 

dispersion of CP. Then, an APS (1.5 times the weight of the 

CP) solution was added dropwise to the LS-CP solution. The 

resulting mixture was stirred for 48 h in an ice bath (4 °C) to 

polymerize CP and complexed with LS. CP/LS was obtained 

by centrifuging and washing the resulting mixture with water 

and ethanol several times. Three kinds of conductive polymer 

(CP), such as PEDOT, PPY, and PANI, were used for prepara-

tion of CP/LS NPs. The compositions of the CP/LS are listed 

in Table S1.

2.3  Preparation of CP/LS‑PAM Hydrogels

The hydrogels were synthesized using the following proce-

dure. AM, ammonium persulfate (APS), N, N-methylenebi-

sacrylamide, and TMEDA were added in a breaker placed in 

an ice bath. The CP/LS-PAM hydrogel was synthesized after 

stirring the reaction mixture for 10 min. Hydrogels with dif-

ferent CP to LS and CP/LS to AM mass ratios were prepared. 

The compositions of the hydrogels are listed in Table S2.

2.4  Characterization of the Hydrogels

The freeze-dried PEDOT-PAM and PEDOT/LS-PAM 

hydrogels were then broken apart, and their inner morpholo-

gies were observed by SEM (JSM 6300, JEOL, Japan). The 

mechanical properties and adhesive strength of the PAM, 

PEDOT-PAM, and PEDOT/LS-PAM hydrogels were meas-

ured by carrying out their tensile adhesive tests using a uni-

versal testing machine (Instron 5567, USA), according to a 

previously reported procedure [2]. The conductivity of the 

hydrogel was measured by two-probe method on an electro-

chemical system (CHI 660, Chenghua, China). The biocom-

patibility of the hydrogel is evaluated in vitro and in vivo. 

All the animal experiments were performed according to 

the protocols approved by the local ethical committee and 

the laboratory animal administration rules of China. Details 

of the characterizations are described in the supplemental 

information.

3  Results and Discussion

3.1  Design Strategy

To overcome the hydrophobic property of CPs, the conduc-

tive, redox-active, and hydrophilic CP/LS NPs were pre-

pared by a universal method. The NPs had good conductivity 

because the negatively charged LS acted as counter ions to 

be doped into the CP and increase its conductivity. The NPs 

had excellent water dispersibility because of the hydrophilic 

catechol and sulfonate groups of LS. The NPs had redox 

activity because of the catechol/quinone groups on the lignin 

molecules. During the lignin sulfonation process, the addi-

tion of ammonium persulfate (APS) facilitated the grafting of 

sulfonated groups to lignin and oxidized the catechol groups 

to quinone groups (Fig. S1). During the process of the CP 

polymerization, the CP changed from a reduced state (intrin-

sic state) to a partially oxidized state, while electrons were 

transferred from the CP to LS, thereby converting the quinone 

groups into catechol groups (Fig. 1a, b). In short, the LS and 

CP formed an electron donor–acceptor complex. This com-

plex facilitated electron transfer between catechol and quinone 

groups, avoiding the excessive oxidization of catechol groups. 

Thus, it rendered the NPs with abundant catechol groups.

As a nanofiller with multifunctionality, CP/LS NPs were 

incorporated into the polyacrylamide (PAM) network to 

obtain adhesive, conductive, and stretchable hydrogels 

(Fig. 1b). The CP/LS NP-incorporated hydrogel had good 

conductivity due to the uniform distribution of LS-doped 

NPs within the hydrogel network, which formed well-

connected conductive pathways (Fig. 1b, i). The hydrogel 

had good mechanical properties due to the nanoreinforce-

ment of NPs, which introduced the noncovalent interactions 

within the chemically cross-linked PAM hydrogel network 

(Fig. 1b–i). The hydrogel was biocompatible because the 

incorporated NPs had cell/tissue affinitive catechol groups. 

These advantages make the hydrogel suitable for bioelec-

tronics application (Fig. 1b–ii).

The hydrogel had long-term and repeatable adhesive-

ness because the redox-active NPs formed a dynamic redox 

system and maintained sufficient catechol groups within 

the hydrogel. The adhesive mechanism of the hydrogel is 

similar to that of mussels (Fig. 1a, right). Mussels main-

tain their long-term adhesiveness because of the dynamic 

redox reaction of catechol/quinone groups among the 
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mussel foot proteins (Mfp). To avoid excessive oxidation 

of catechol groups on the Mfp-3 and Mfp-5, the reductive 

Mfp-6 is secreted by the mussel to maintain the redox bal-

ance [47–49]. We previously demonstrated that redox-active 

lignin promotes hydrogel adhesion [2, 46]. In this hydrogel, 

the redox-active LS and CP in the NPs formed an electron 

donor–acceptor complex, which facilitated the dynamic con-

version between catechol and quinone groups. In short, the 

CP/LS NPs created a dynamic redox environment within the 

hydrogel network, which mimicked that of catechol/quinone 

groups in mussels and provided abundant catechol groups 

for hydrogel adhesion.

3.2  Characterization of CP/LS NPs

To determine the universality of the LS as a complexa-

tion template, three kinds of NPs were prepared, including 

PEDOT/LS, PPY/LS, and PANI/LS NPs (Fig. 2a). After 

doped by LS, the three kinds of CP/LS NPs were well dis-

persed in aqueous solution due to the synergistic contri-

bution of catechol and sulfonate groups of LS. Compared 

with pristine PEDOT NPs, the LS-doped CP/LS NPs did 

not agglomerate and/or precipitate after standing as long 

as 2 days (Figs. S2, S3). These NPs showed different mor-

phologies depending on the type of CP (Fig. 2b–d). PEDOT/
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LS appeared as spherical NPs, while PPY/LS and PANI/

LS had nanorod-like structures. XPS analysis showed that 

the characteristic peaks of C-S and C-N bonds appeared 

at 285.15 and 285.53 eV in the PEDOT/LS, PPY/LS, and 

PANI/LS NPs (Fig. 2e–g). The characteristic XPS peaks of 

the C–O bonds of the abundant catechol groups appeared at 

286.58 eV. These results demonstrated that LS doped into 

CP, and that the CP/LS NPs contained catechol groups. This 

was caused by the CP promoting electron transfer between 

the quinone and catechol groups of lignin, which ensured a 

dynamic redox balance in the CP/LS NPs. Furthermore, the 

CP/LS NPs also exhibited the high antioxidative ability to 

scavenge free radicals (Fig. S4).

3.3  Adhesive Properties of CP/LS NPs‑Incorporated 

Hydrogels

The CP/LS NPs-incorporated hydrogels had good adhe-

siveness to different surfaces. As shown in Fig. 3a, the 

hydrogel strongly adhered to human skin and easily peeled 

off without leaving a residue. The strong adhesive strength 

allowed the hydrogel to be stretched to seven times of 

its original length from a steel surface without detach-

ment. Moreover, the hydrogel could adhere to various 

surfaces such as glass, plastic, and animal tissue. Using 

the PEDOT/LS NPs as an example, the adhesion of PAM, 

PEDOT-PAM hydrogel, and PEDOT/LS-PAM hydrogel 
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was compared to demonstrate the effect of the CP/LS NPs 

on the adhesiveness of the hydrogels. Figure 3b shows 

the adhesive strength of the PEDOT/LS-PAM hydro-

gel to steel (23.2 kPa), polytetrafluoroethylene (PTFE) 

(22.5 kPa), glass (21.5 kPa), and porcine skin (20 kPa). 

Hydrogels without CP/LS NPs did not exhibit effective 

adhesiveness. The content of PEDOT/LS NPs can affect 

the hydrogel adhesive strength (Fig. S5). The adhesive 

strength increased with increasing CP content because 

of the higher content of catechol groups in the hydro-

gel. The high adhesive strength of the PEDOT/LS-PAM 

hydrogel was maintained after 30 peeling-adhering cycles, 

which indicated that the CP/LS NPs-based hydrogels have 

repeatable adhesiveness (Fig. 3c). The adhesiveness of 

the NP-incorporated hydrogel was caused by the abun-

dant catechol groups on the redox-active CP/LS NPs. XPS 

analysis proved that lignin had high contents of C-O and 

C–OH groups at 286.4 eV and a low content of C = O at 

288.0 eV (Fig. S6). The high content of C–OH confirmed 

the presence of the catechol groups in the PEDOT/LS-

PAM hydrogel [1, 46]. The catechol groups exert strong 

adhesion to various substrates through hydrogen bonds, 

coordination bond, covalent linking, and π–π interaction 

[32, 46] (Fig. 3d).

The adhesive strength of the hydrogels could be tuned 

by varying the ratio of CPs to LS. Figure 4 shows that the 

optimal mass–feed ratios in a range from 1:3 to 4:1 for the 

PEDOT/LS, PPY/LS, and PANI/LS hydrogels were 1:1, 

2:1, and 2:1, respectively. This could be explained from 

two aspects. First, a low ratio of CP to LS may cause less 

electrons to maintain the redox balance of catechol/quinone 

groups. Second, a high ratio of CP to LS may result in insuf-

ficient catechol groups. Thus, only the NPs with a suitable 

ratio of CP to LS could possess enough catechol groups to 

endow the hydrogel with strong adhesion. In the following 

studies, we took PEDOT/LS-PAM hydrogels as representa-

tive samples.
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3.4  Bioelectronic Applications of the Hydrogels

The CP/LS NPs-incorporated hydrogel had good conduc-

tivity, which was attributed to the hydrophilicity of CP/LS 

NPs. With the hydrophilicity, the CP/LS NPs readily dis-

persed in the hydrogel network and formed well-connected 

electric pathways, endowing the hydrogel with good con-

ductivity. The PEDOT/LS-PAM hydrogel had higher con-

ductivity (68 S  m−1) than that of the PEDOT-PAM hydro-

gel (21 S  m−1) and LS-PAM hydrogel (12 S  m−1) (Fig. 5a). 

Moreover, the conductivity of the hydrogel increased with 

increasing PEDOT/LS NP content (Fig. 5b). Furthermore, 

the ratio of CP to LS affected the conductivity of the CP/

LS-PAM hydrogel (Figs. 5c and S7). When the ratio of CP 

(EDOT, PY, ANI) to LS was 1:1 or 2:1, the conductivity 

of the CP/LS-PAM hydrogel reached the maximum value.

Owing to the good conductivity and adhesiveness, the CP/

LS NPs-incorporated hydrogel can be used for bioelectronic 

applications. The PEDOT/LS-PAM (EDOT/LS ratio = 2:1; 

the content of NPs is 3 wt‰) hydrogel was selected for fol-

lowing applications because PEDOT is electrochemically 

stable in aqueous solution [17]. The adhesive and conductive 

PEDOT/LS-PAM hydrogel adhered to plastic and was linked 

into a circuit with a light-emitting diode (LED) (Fig. 5d). The 
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brightness of the LED varied with the strain of the hydrogel. 

The different strain state of the hydrogel was indicated by the 

increased resistance, and therefore, the hydrogel can act as a 

strain sensor (Fig. 5e). Meanwhile, the PEDOT/LS-incorpo-

rated hydrogels can be also used as the adhesive bioelectrodes 

to detect the electromyographic (EMG) and electrocardio-

graphic (ECG) signals (Fig. 5f, g). In summary, this water 

dispersible CP/LS NPs-incorporated hydrogel has more stable 

conductivity, biocompatibility, and adhesiveness, which is a 

promising candidate for bioelectronics.

3.5  Mechanical Properties of the Hydrogels

The PEDOT/LS NPs endowed the hydrogel with good 

stretchability and recoverability. Figure 6a shows that the 

PEDOT/LS-PAM hydrogel nearly recovered to its original 

length after stretching. Cyclic loading–unloading tensile 

testing at a strain of 500% indicated that the first unload-

ing path had a hysteresis loop with a small residual strain 

(Fig. 6b). This is similar to the typical behavior of elasto-

mers [50]. In latter cycles of the loading–unloading tensile 
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test, the PEDOT/LS-PAM hydrogel showed remarkable 

overlap in the cyclic tensile curves, indicating excellent 

elasticity and mechanical stability. Compared with the LS 

and PEDOT NPs, incorporating the PEDOT/LS NPs signifi-

cantly improved the tensile strength (Figs. 6c and S8). The 

strength and ductility product (SDP) of various hydrogels 

indicated that the comprehensive mechanical performance 

of the PEDOT/LS-PAM hydrogel was improved by incor-

poration PEDOT/LS NPs in the hydrogel matrix (Fig. S8b). 

Increasing the content of PEDOT/LS NPs increased the 

tensile strength of the PEDOT/LS-PAM hydrogel (Fig. 6d). 

The PEDOT/LS-PAM hydrogel could be stretched to 25 

times its initial length with a strength of 61.5 kPa, when 

the NPs content was 3 wt%. However, the high content of 

NPs (6 wt%) decreased the stretchability of the hydrogel, 

which was caused by aggregation of NPs in the hydrogel 

network. The fracture energy of the PEDOT/LS-PAM hydro-

gel (3500 J m−2) was higher than that of the PAM hydrogel 

(1000 J m−2), LS-PAM hydrogel (500 J m−2), and PEDOT-

PAM hydrogel (1500 J m−2) (Fig. 6e). The high toughness of 

the hydrogel was attributed to the nanoreinforcement effects 

of the incorporated NPs. These NPs were uniformly distrib-

uted in the hydrogel and introduced noncovalent interactions 

into the chemically cross-linked PAM hydrogel and con-

sequently increased the energy dissipation ability [51, 52]. 

As revealed by SEM, the lyophilized bare PAM hydrogel 

showed large pores (Fig. S9). After incorporating PEDOT, 

the hydrogel exhibited a porous structure and PEDOT aggre-

gated in the hydrogel network (Fig. 6f). In contrast, the 

lyophilized PEDOT/LS-PAM hydrogel exhibited an inter-

woven microfibril structure and the PEDOT/LS NPs were 

uniformly distributed within the hydrogel (Fig. 6g).

Compared with the previously reported typical conduc-

tive hydrogels (Fig. 7), the PEDOT/LS NPs-incorporated 

hydrogel has better adhesiveness, mechanical properties, and 

conductivity, which is an ideal material for bioelectronic 

applications [34, 53–60]. First, the hydrogel exhibits long-

term and repeatable adhesiveness because the redox activ-

ity of PEDOT/LS NPs endows the hydrogel with catechol 

groups, which avoids interfacial delamination and reduces 

interfacial resistance between the hydrogel and the con-

tacted human skin during biosignal detection. In particular, 

the hydrogel possesses suitable adhesive properties to skin 

surfaces and can be easily peeled off without any residue 

and anaphylactic reaction. Second, the hydrogel has good 

conductivity because the hydrophilic PEDOT/LS NPs form 

well-connected conductive pathways in the hydrogel net-

work. Consequently, the hydrogel exhibits excellent sensor 

performance for ultrasensitive healthcare monitoring. Third, 

the hydrogel has good mechanical properties because the 

PEDOT/LS NPs introduce noncovalent bonds and nanore-

inforcement effect into the chemical cross-linked hydrogel 

networks. Thus, the hydrogel could suffer mechanical defor-

mation during the biosignal detection.

3.6  Electrostimulated Cell Culture

The hydrogel can be used to regulate cell behavior through 

electrical stimulation due to its good conductivity and cell 

adhesiveness. The proliferation and adhesion spreading 

of C2C12 were evaluated on the PAM, PEDOT-PAM, 

and PEDOT/LS-PAM hydrogels with a homemade high-

throughput electrostimulation device (Fig.  8a) under 

electrostimulation voltages of 0, 300, and 600 mV. Com-

pared with PAM and PEDOT-PAM hydrogels, cells on the 

PEDOT/LS-PAM hydrogel exhibited better proliferation 

activities. However, the proliferation activity of C2C12 

decreased under the higher potential (Fig. 8b). Cell spread-

ing and focal adhesion formation on the different hydrogels 

indicated that the spreading and adhesion of C2C12 on 

the PEDOT/LS-PAM hydrogel were better than that on the 

PEDOT-PAM and PAM hydrogels (Fig. 8c, d). Vinculin is 

Fig. 7  Comparison of this work with previous reported conductive 

hydrogels in terms of stretchability, adhesiveness, and conductivity
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Fig. 8  Electrostimulation of C2C12 cells on different hydrogels after 7 days of culture. a Homemade multi-channel high-throughput cell elec-
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a highly conserved actin-binding protein that is frequently 

used as a marker for focal adhesion [61, 62]. Vinculin was 

stained to reveal the cell adhesion (Fig. 8d). Cells grown 

on PAM and the PEDOT-PAM hydrogel showed few link-

ing filaments and reduced spreading. Cells on the PEDOT/

LS-PAM hydrogel were more clustered with extensive 

actin filaments linking adjacent cells. Electrostimulation 

increased the size of the focal adhesions when the potential 

was lower than 300 mV. The aspect ratio of C2C12 indi-

cated the earliest stage of myotubes formation [63, 64]. 

The C2C12 on the PEDOT/LS-PAM hydrogels were more 

elongated than those on the PAM and PEDOT-PAM hydro-

gel under electrostimulation voltages of 600 mV (Fig. 8e). 

Electrostimulation increased the size of the focal adhesions 

when the potential was lower than 300 mV (Fig. 8f). In 

short, the results of electrostimulated cell culture indicated 

that the PEDOT/LS-PAM hydrogel has good biocompat-

ibility and conductivity and therefore can act as a bridge 

for promoting the transduction of the physiological electri-

cal signals. Previous studies proved that the CH has ability 

not only to regulate cell adhesion and proliferation, but also 

to improve the expression of the factors related to the tis-

sue regeneration [5, 64]. Thus, the conductive PEDOT/LS-

PAM hydrogel has potential in cell stimulation and related 

bioelectronic applications at cellular level.

3.7  In vivo Biocompatibility of the Hydrogels

In vivo biocompatibility is of critical importance for bio-

implantable applications of the hydrogels. To evaluate 

the in vivo biocompatibility, the PAM, PEDOT-PAM, 

and PEDOT/LS-PAM hydrogels were implanted into sub-

cutaneous muscle spaces of New Zealand white rabbits 

and retrieved after 14 days (Fig. 9a). Histological stain-

ing revealed that the PAM hydrogel was surrounded by a 

thin inflammatory zone with eosinophils (green arrow) 

and macrophages (red arrow) (Fig. 9b). For the PEDOT-

PAM hydrogel, a thick reactive inflammatory area was 

observed. The inflammatory area was surrounded by many 

macrophages, neutrophils, and eosinophils. In contrast, the 

PEDOT/LS-PAM hydrogel exhibited minimal inflamma-

tory reaction and integrated with the surrounding muscle 

tissue because of the existence of the tissue affinitive cat-

echol groups. Thus, the PEDOT/LS-PAM hydrogel is a 

potential material for bioimplantable applications.

4  Conclusion

In conclusion, we developed a universal strategy to prepare 

hydrophilic, redox-active, and biocompatible CP/LS NPs. 

The CP/LS NPs were used as nanofillers for construction of 

(a) (b) PAM PEDOT-PAM PEDOT/LS-PAM

S

Sample

S S

5 mm

500 µm

Fig. 9  a Surgical operation of the hydrogel implanted in subcutaneous muscle space of New Zealand white rabbit for biocompatibility evalu-

ation. b Representative photomicrographs of hematoxylin and eosin (H&E) stained surrounding tissues after 14 days of implantation. Green 

arrows indicate eosinophils; red arrows indicate macrophages; S means sample
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conductive and adhesive hydrogels. The CP/LS NPs signifi-

cantly improved the conductivity of the hydrogel due to their 

water dispersibility and consequent uniform distribution in 

the hydrogel networks. The CP/LS-incorporated hydrogel 

had long-term and repeatable adhesive properties, which 

were attributed to the dynamic redox balance of catechol/

quinone groups of the CP/LS NPs. Meanwhile, the mechani-

cal properties of the hydrogel were also enhanced by the CP/

LS NPs, which was attributed to nanoreinforcement effects 

and noncovalent interactions between the NPs and chemi-

cally cross-linked PAM network.

With the good conductivity, adhesiveness, and mechanical 

properties, the hydrogel was used as a flexible and adhe-

sive strain sensor and bioelectrode for monitoring biosig-

nal. Moreover, the PEDOT/LS-PAM hydrogel showed good 

biocompatibility and electroactive properties favoring cell 

spreading/growth and therefore has potential in the elec-

trostimulation of tissue regeneration as the implantable bio-

electrodes. This is because the implantation of electroac-

tive materials promoted the transmission of physiological 

electrical signals among the cells and enhanced the activity 

of cells [65, 66]. This universal strategy for preparing redox-

active, hydrophilic, and conductive NPs is a breakthrough to 

overcome the intrinsic shortcomings of CPs, such as hydro-

phobicity and brittleness. Compared with previous simple 

blending, this strategy of in situ forming nanostructures ini-

tiates a new route to employ CPs into hydrogels for flexible 

and adhesive bioelectronic devices.
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