
Must Fault Localization for Program
Repair

Bat-Chen Rothenberg and Orna Grumberg(B)

Technion - Israel Institute of Technology, Haifa, Israel
{batg,orna}@cs.technion.ac.il

Abstract. This work is concerned with fault localization for automated
program repair.

We define a novel concept of a must location set. Intuitively, such a set
includes at least one program location from every repair for a bug. Thus,
it is impossible to fix the bug without changing at least one location from
this set. A fault localization technique is considered a must algorithm if it
returns a must location set for every buggy program and every bug in the
program. We show that some traditional fault localization techniques are
not must.

We observe that the notion of must fault localization depends on the
chosen repair scheme, which identifies the changes that can be applied
to program statements as part of a repair. We develop a new algorithm
for fault localization and prove that it is must with respect to commonly
used schemes in automated program repair.

We incorporate the new fault localization technique into an existing
mutation-based program repair algorithm. We exploit it in order to prune
the search space when a buggy mutated program has been generated.
Our experiments show that must fault localization is able to significantly
speed-up the repair process, without losing any of the potential repairs.

1 Introduction

Fault localization and automated program repair have long been combined. Tra-
ditionally, given a buggy program, fault localization suggests locations in the
program that might be the cause of the bug. Repair then attempts to change
those suspicious locations in order to eliminate the bug.

Bad fault localization may cause a miss of potential repairs, if it is too restric-
tive, or cause an extra work, if it is too permissive. Studies have shown that for
test-based repair imprecise fault localizations happen very often in practice [27].
This identifies the need for fault localization that can narrow down the space of
candidates while still promising not to lose potential causes for a bug.

In this work, we define the concept of a must location set. Intuitively, such a
set includes at least one location from every repair for the bug. Thus, it must be

This research was partially supported by the Technion Hiroshi Fujiwara cyber secu-
rity research center and the Israel cyber bureau and partially by the Israel Science
Foundation.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 658–680, 2020.
https://doi.org/10.1007/978-3-030-53291-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_33&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_33

Must Fault Localization for Program Repair 659

used for repair. In other words, it is impossible to fix the bug using only
locations outside this set. A fault localization technique is considered a must
algorithm if it returns a must location set for every buggy program and every
bug in the program.

To demonstrate the importance of the must notion, consider the program in
Fig. 1 for computing the absolute value of a variable x. The program is buggy
since the assertion in location 4 is violated when initially x = -1. Intuitively, a
good repair would replace the condition (x < -1) in location 2 with condition
x <= -1. Our must fault localization, defined formally in the paper, will include
location 2 in the must location set. In contrast, the fault localization techniques
defined for instance in [14,21] do not include 2 in their location sets: They are
not must and may miss optional repairs.

Our first observation regarding must notions is that their definition should
take into account the repair scheme under consideration. A repair scheme iden-
tifies the changes that can be applied to program statements as part of a repair.
A scheme can allow, for instance, certain syntactic changes in a condition (e.g.
replacing < with >) or in the right-hand-side expression of an assignment (e.g.
replacing + by -). A particular location set can be a must set using one scheme,
but non-must using another. We further discuss this observation when presenting
our formal definition of a must fault localization.

The setting of our work is as follows. Our approach is formula-based rather
than test-based. We handle simple C-programs, with specification given as asser-
tions in the code. Similarly to bounded model checking tools (e.g. [8]), the pro-
gram and the negated specification are translated to a set of constraints, whose
conjunction forms the program formula. This formula is satisfiable if and only
if the program violates an assertion, in which case a satisfying assignment (also
called a model) is returned.

We focus on a simple repair scheme of syntactic changes, as described above.
We assume that the user prefers repairs that are as close to the original program
as possible and will want to get several repair suggestions. Thus, we return all
minimal repairs (minimal in the number of changes applied to the program
code).

Once the notion of must fault localization is defined, we develop a new algo-
rithm for fault localization and prove that it is must with respect to syntactic
mutation schemes. The input to the algorithm is a program formula ϕ and a
model μ for ϕ, representing a buggy execution of the program. Our approach is
based on a dynamic-slicing-like algorithm that computes dependencies.

For a variable v in ϕ, its slice F is computed based on dynamic dependencies
among variables in ϕ, whose values influence the value of v in μ. Informally, F is
a must location set that contains all assignment to the variables that v depends
upon. Some assignment from F thus must be changed in order to eliminate the
bug associated with μ.

We incorporated the new fault localization technique into an existing
mutation-based program repair algorithm [38]. In [38], the repair scheme is based
on a predefined set of mutations. Given a buggy program P , the goal of the
algorithm is to return all minimal repairs for P . The algorithm goes through

660 B.-C. Rothenberg and O. Grumberg

iterations of generate-validate, where the generate part produces a mutated pro-
gram of P and the validate part checks whether it is bounded-correct. The
bottleneck of the algorithm is the size of the search space, consisting of all pos-
sible mutated programs of P . In [38], the search space has been pruned when
the generated mutated program has been successfully validated. No pruning has
been applied otherwise.

In this work, we exploit our novel must fault localization in order to prune
the search space when a buggy mutated program P ′ has been generated (i.e.
validation failed). In this case, we compute the must location set F of P ′. We
can now prune from the search space any mutated program whose F locations
are identical to those of P ′. This is because, by the property of must location
set, it is guaranteed that the bug cannot be repaired without changing a location
in F . Thus, a large set of buggy mutated programs is pruned, without the need
for additional validation and without losing any minimally repaired program. It
should be noted that the smaller F is, the larger the pruned set is. Our exper-
imental results confirm the effectiveness of this pruning by showing significant
speedups.

To summarize, the contributions of this work are:

1. We define a novel notion of must fault localization with respect to a repair
scheme. We show that many of the formula-based techniques are not must.

2. We present a novel fault localization technique and prove that it is must for
the scheme of syntactic mutations. Our technique also has other advantages,
such as low-complexity and incrementality.

3. We show how our new fault localization technique can be incorporated into
an existing mutation-based program repair algorithm for pruning its search
space. The technique is applied iteratively, whenever a generated mutated
program is found to be incorrect.

4. We implemented the algorithm of repair with fault localization as part of
the open source tool AllRepair. Our experimental results show that fault-
localization is able to significantly speed-up the repair process, without losing
any of the potential repairs.

2 Motivating Example

procedure absValue(x)
1: abs := x
2: if x < -1 then
3: abs := -x
4: assert (abs >= 0)

Fig. 1. A buggy program

Figure 1 presents a simple program for com-
puting the absolute value of a variable x. The
result is computed in the variable abs, and
the specification states, using an assertion on
line 4, that in the end abs should always
be non-negative. Unfortunately, the program
has a bug. The true branch of the if is intended to flip the sign of x whenever
x is negative, but it accidentally misses the case where x is −1. As a result, if
x is −1, the wrong branch of the if is taken, and the assertion is reached with
abs = −1, which causes a violation.

Must Fault Localization for Program Repair 661

Clearly, it is desirable that line number 2 be returned when running fault
localization on this bug, as a human written repair is likely to change the con-
dition on this line from x < −1 to x <= -1 or x < 0. But, as we will show next,
some of the existing formula-based fault localization techniques do not include
this line in their result.

The error trace representing the bug for input I = {x ← −1} is π =< 1, 2, 4 >
(this is the sequence of program locations visited when executing the program
on I). The MAX-SAT-based fault localization technique of [21] and the error-
invariant-based technique of [14] use a formula called the extended trace formula
in order to find faulty statements along the error trace. The extended trace
formula for the bug in question is

(x = −1)
︸ ︷︷ ︸

Input

∧ (abs = x) ∧ (x ≥ −1)
︸ ︷︷ ︸

Computation

∧ (abs ≥ 0)
︸ ︷︷ ︸

Assertion

This formula encodes three things: a) that the input remains I, b) that the
computation is as the trace dictates, and, c) that the assertion holds at the
end. Therefore, the formula is unsatisfiable. Both [21] and [14] intuitively look
for explanations of its unsatisfiability, and therefore decide that the statement
(x ≥ −1) on line 2 is irrelevant; The formula remains unsatisfiable even if the
constraint (x ≥ −1) is removed.

Even the method of [6], which suggests a flow-sensitive encoding of the
extended trace formula, with the goal of including all statements affecting
control-flow decisions that are relevant to the bug, classifies the statement on
line 2 as irrelevant. This is because the error trace does not include any location
from the body of the branch that was taken (in our case it is the else branch,
which is empty), in which case the flow-sensitive formula remains identical to
the traditional formula.

The dynamic slicing method of [2,23] also fails to include line 2 in its result.
This method computes the set of statements influencing the evaluation of the
assertion along the trace, using data and control dependency relations. A state-
ment st1 is data dependent on st2 iff st1 uses a variable x, and st2 is the last
to assign a value to x along the trace. In our example, the assertion on line 4
is data dependent only on the statement in line 1, which in itself is not data
dependent on any other statement. A statement st1 is control dependent on a
conditional statement st2 iff st1 is inside the body of either branch of st2. None of
the statements along our error trace is control dependent on another statement.
The slice, which is the set of lines returned, is computed using the transitive
closure of these relations. Thus, for our example, only line 1 is part of the slice.

In this example, we have seen how many different fault localization techniques
fail to include a statement that is relevant, i.e., where a modification could be
made for the bug to be fixed. In contrast, the set of locations returned by our
technique for this example is {1, 2}. The fact that our technique includes line 2
is not a coincidence: We show that, intuitively, whenever a repair can be made
by making changes to a single line, this line must be included in the result.

662 B.-C. Rothenberg and O. Grumberg

proc. foo(x, w)
1: t := 0
2: y := x - 3
3: z := x + 3
4: if (w > 3) then
5: t := z + w
6: assert (t < x)
7: y := y + 10

8: assert (y > z)

proc. simFoo(x, w)
t := 0
y := x - 3
z := x + 3
g := w > 3
if (g) then

t := z + w
assert (t < x)
y := y + 10

assert (y > z)

proc. SSAFoo(x, w)
t0 := 0
y0 := x0 - 3
z0 := x0 + 3
g0 := w0 > 3
t1 := z0 + w0
assert (g0 → t1 < x0)
y1 := y0 + 10
t2 := g0 ? t1 : t0
y2 := g0 ? y1 : y0
assert (y2 > z0)

ϕfoo = {
t0 = 0,
y0 = x0 − 3,
z0 = x0 + 3,
g0 = w0 > 3,
t1 = z0 + w0,

y1 = y0 + 10,
t2 = ite(g0, t1, t0),
y2 = ite(g0, y1, y0),
¬(y2 > z0) ∨ ¬(g0 → t1 < x0)
}

Fig. 2. Example of the translation process of a simple program

In general, whenever a repair can be made by making changes to a set of lines,
at least one of them must be included in the result.

3 Preliminaries

3.1 Programs and Error Traces

For our purposes, a program is a sequential program composed of standard state-
ments: assignments, conditionals, loops and function calls, all with their standard
semantics. Each statement is located at a certain location (or line) li, and all
statements are defined over the set of program variables X.

In addition to the standard statements, a program may also contain assume
statements of the form assume(bexpr), and assert statements of the form
assert(bexpr). In both cases bexpr is a boolean expression over X. If an assume
or an assert statement is located in li, execution of the program stops whenever
location li is reached in a state where bexpr is evaluated to false. In the case
of an assertion, this early termination has the special name assertion violation,
and it is an indication that an error has occurred.

A program P has a bug on input I if an assertion violation occurs during the
execution of P on I. Otherwise, the program is correct for I.1 Whenever P has
a bug on I, this bug is associated with an error trace, which is the sequence of
statements visited during the execution of P on I.

3.2 From Programs to Program Formulas

In this section we explain how a program is translated into a set of constraints,
whose conjunction constitutes the program formula. In addition to constraints
representing assignments and conditionals, such a formula includes constraints
representing assumptions and a constraint representing the negated conjunction
of all assertions. Thus, a satisfying assignment (a model) of the program formula

1 Alternatively, one could assume to know the desired output of the program for I
and define a bug on I as a case where the program outputs the wrong value for I.

Must Fault Localization for Program Repair 663

represents an execution of the program that satisfies all assumption but violates
at least one assertion. Such an execution is a counterexample.

The translation, following [8], goes through four stages. We refer to the exam-
ple in Fig. 2 to demonstrate certain steps.

1. Simplification: Complex constructs of the language are replaced with equiv-
alent simpler ones. Also, branch conditions are replaced with fresh boolean
variables. In the example, the if condition (w > 3) is assigned to a fresh
boolean variable g. Branching is then done based on the value of g, instead
of (w > 3).

2. Unwinding: The body of each loop and each function is inlined wb times. The
set of executions of the new program is called the wb-executions of P .

3. Conversion to SSA: The program is converted to static single assignment
(SSA) form, which means that each variable in the new program is assigned
at most once. This is done by replacing all variables with indexed variables,
and increasing the index of a variable whenever it appears on the left-hand-
side of an assignment. In the example, the first assignment to t is replaced
by an assignment to t0 and the second, by an assignment to t1. Since t
is assigned inside a conditional statement and is used after the statement,
the if-then-else assignment t2 := g0?t1:t0 is inserted in order to determine
which copy of t should be used after the conditional statement. These special
if-then-else assignments are called Φ-assignments. In the example, there is
also a Φ-assignment for y (y2=g0?y1:y0).
Note that, assertions are also expressed by means of indexed variables. The
specific indices in the assertion indicate the location in the execution in which
the assertion is checked. In addition, if an assumption or an assertion is
located within an if statement with branch condition g, then it is implied by
g if it is within the then part of the if and is implied by ¬g, if it is within the
else part. In the example, assert (t < x) is encoded by (g0 → t1 < x0).

4. Conversion to SMT constraints: Once the program is in SSA form, conver-
sion to SMT is straightforward: An assignment x:=e is converted to the con-
straint x = e; A Φ-assignment x:= b?x1:x2 is converted to the constraint
(x = ite(b, x1, x2)), which is an abbreviation of ((b∧x = x1)∨ (¬b∧x = x2));
An assume statement assume(bexpr) is converted to the constraint bexpr,
and an assert statement assert(bexpr) is converted to the constraint ¬bexpr
(since a model of the SMT formula should correspond to an assertion viola-
tion).
If the program includes several assertions, then they are converted to one
constraint, representing the negation of their conjunction. In the example,
the two assertions are converted to the following constraint:

¬(y2 > z0) ∨ ¬(g0 → t1 < x0).

We say that a constraint encodes the statement it came from and we partition
constraints into three sets, Sassign, Sphi and Sdemand, based on what they
encode. Sassign contains constraints encoding assignments, including those
originated from assigning a fresh boolean variable with a branching condition;

664 B.-C. Rothenberg and O. Grumberg

Sphi - encoding Φ-assignments; and Sdemand - encoding demands from assert
and assume statements. In particular, it encodes the negated conjunction of
all assertions.

The triple (Sassign, Sphi, Sdemand) is called a program constraint set. The
program constraint set we get from a program P when using wb as an unwinding
bound is denoted CSwb

P . The program formula ϕwb
P , is the conjunction of all

constraints in all three sets of CSwb
P :

ϕwb
P = (

∧

s∈Sassign

s) ∧ (
∧

s∈Sphi

s) ∧ (
∧

s∈Sdemand

s).

Theorem 1 ([9]). A program P is wb-violation free iff the formula ϕwb
P is unsat-

isfiable.

For simplicity of notation, in the rest of the paper we omit the superscript wb.
Since the program formula is the result of translating an SSA program, the

formula is defined over indexed variables. Further, each constraint in Sassign

corresponds to the single variable, which is assigned in the statement encoded
by the constraint.

4 Must Fault Localization

In this section, we precisely define when a location should be considered relevant
for a bug. This definition is motivated by a repair perspective, taking into account
which changes can be made to statements in order to repair a bug.

In order to define the changes allowed, we use repair schemes. A repair scheme
S is a function from statements to sets of statements. An S-patch for a program
P is a set of pairs of location and statement {(l1, str1), · · · , (lk, strk)}, for which
the following holds: for all 1 ≤ i ≤ k, let sti be the statement in location li in
P , then stri ∈ S(sti). The patch is said to be defined over the set of locations
{l1, · · · , lk}. Applying an S-patch τ to a program P means replacing for every
location li in τ , the statement sti with stri . This results in an S-patched program
of P . The set of all S-patched programs created from a program P is the S-search
space of P .

Let P be a program with a bug on input I, and S be a repair scheme. An
S-repair for I is an S-patched program that is correct for I. An S-repairable set
is a set of locations F such that there exists an S-repair defined over F . An S-
repairable set is minimal if removing any location from it makes it no longer an
S-repairable set. A location is S-relevant if it is a part of a minimal S-repairable
set.2

In this paper, we focus on two repair schemes that are frequently used
for automated program repair: the arbitrary scheme (Sarb) and the mutation
scheme (Smut). Both schemes only manipulate program expressions, but the

2 We sometimes omit S from notations where S is clear from context.

Must Fault Localization for Program Repair 665

mutation scheme is more restrictive than the arbitrary scheme: Sarb(st) is the
set of all options to replace the expression of st3 with an arbitrary expression,
while Smut(st) only contains statements where the expression in st is mutated
according to a set of simple syntactic rules. The rules we consider are replacing
a + operator with a - operator, and vice versa, replacing a < operator with a
> operator, and vice versa, and increasing or decreasing a numerical constant
by 1.4

Example 1. In this example we demonstrate how different repair schemes define
different sets of relevant locations. Consider again the foo program from Fig. 2.
This program has a bug on input I = x ← 0, w ← 0. The error trace associated
with the bug is 〈1, 2, 3, 4, 8〉 (the assertion on line 8 is violated).

The location set {3, 4} is a minimal Smut-repairable set: It is an Smut-
repairable set because applying the Smut-patch {(3, z:=x-3), (4, w<3)}, results
in an Smut-patched program that is correct for I. This set is also minimal,
because none of the Smut-patches defined over {3} or {4} alone is an Smut-repair
for I: Each one of the Smut-patches {(3, z:=x-3)}, {(3, z:=x+4)}, {(3, z:=x+2)},
{(4, w<3)}, {(4, w>4)}, {(4, w>2)} results in an assertion violation for I.

On the other hand, {3, 4} is not a minimal Sarb-repairable set: For example,
the Sarb-patch {(3, z:=-6)} is an Sarb-repair for I. Note that, the Sarb-patch
only needs to repair the bug, and not the program. That is, it is sufficient that
there is no assertion violation on the specific input I, even though an assertion
could be violated in the Sarb-patched program on another input.

The set of all minimal Sarb-repairable sets is {{2}, {3}, {4, 5}}. Therefore,
the set of Sarb-relevant statements is {2, 3, 4, 5}. The set of all minimal Smut-
repairable sets is {{2, 3}, {3, 4}}. Therefore, the set of Smut-relevant statements
is {2, 3, 4}.

Fault localization should focus the programmer’s attention on locations that
are relevant for the bug. But, returning the exact set of S-relevant locations,
as defined above, can be computationally hard. In practice, what many fault
localization algorithms return is a set of locations that may be relevant: The
returned locations have a higher chance of being S-relevant than those who are
not, but there is no guarantee that all returned locations are S-relevant, nor
that all S-relevant locations are returned. We call such an algorithm may fault
localization. In contrast, we define must fault localization, as follows:

Definition 1 (S-must location set). An S-must location set is a set of loca-
tions that contains at least one location from each minimal S-repairable set.5

3 If st is an assignment, its expression is its right-hand-side. If st is a conditional
statement, its expression is its condition.

4 This simple definition of the mutation scheme is used only for simplicity of presenta-
tion. Our implementation supports a much richer set of mutation rules, as explained
in Sect. 7.

5 This is, in fact, a hitting set of the set of all minimal S-repairable sets.

666 B.-C. Rothenberg and O. Grumberg

Definition 2 (S-must fault localization). An S-must fault localization algo-
rithm is an algorithm that for every program P and every buggy input I, returns
an S-must location set.

Note that, an S-must location set is not required to contain all S-relevant
locations, but only one location from each minimal S-repairable set. Still, this is
a powerful notion since it guarantees that no repair is possible without including
at least one element from the set.

Also note, that the set of all locations visited by P during its execution on
I is always an S-must location set. This is because any S-patch where none of
these locations is included is definitely not an S-repair, since the same assertion
will be violated along the same path. However, this set of locations may not be
minimal. In the sequel, we aim at finding small S-must location sets.

Example 2. Continuing the previous example, the set {2, 3, 4} is an Sarb-must
location set, and also an Smut-must location set. In contrast, the set {2, 3} is
only an Smut-must location set, but not an Sarb-must location set, since it does
not contain any location from the Sarb-minimal repairable set {4, 5}. The set
{2} is neither an Sarb-must location set nor an Smut-must location set.

Example 3. Consider again the absValue procedure of Fig. 1. The set {2} is an
Smut-minimal repairable set and an Sarb-minimal repairable set for the bug in
question. Therefore, we can say that all algorithms that were shown in Sect. 2
not to include the location 2 in their result [2,6,14,21,23], are neither Sarb-must
nor Smut-must fault localization algorithms.

5 Fault Localization Using Program Formula Slicing

In this section we formally define the notion of slicing. Based on this, we present
an algorithm for computing must fault localization for Sarb and Smut.

5.1 Program Formula Slicing

A central building block in our fault localization technique is slicing. But, we do
not define slicing in terms of the program directly, but in terms of the program
formula representing it, instead. The input to the slicing algorithm is a program
formula ϕ, a model μ of it, and a variable v. Recall that ϕ is a conjunction of
constraints from Sassign, Sphi and Sdemand (see Sect. 3.2). The goal of the slicing
algorithm is to compute the slice of the variable v with respect to ϕ and μ.
Intuitively, this slice includes the set of all constraints that influence the value
v gets in μ.

Similar to traditional slicing, it is easy to define the slice as the reflexive-
transitive closure of a dependency relation. But, unlike traditional slicing, which
defines dependencies between statements, our dependency relation is between
variables of the formula. These variables are indexed. Each originates from a
variable of the underlying SSA program, where it was assigned at most once.

Must Fault Localization for Program Repair 667

y1

y0

x0

y2

t1

z0

g0

w0

t2

t0

g0

¬g0

g0

¬g0

y1

y0

x0

y2

t1

z0

g0

w0

t2

t0

g0

¬g0

g0

¬g0

SDG DDϕ,μ, µ[g0] = false
InfluenceV arsϕ,μ(y2)

Fig. 3. Illustration of the static and dynamic dependency relations of the foo

procedure

We refer to variables never assigned as input variables, and denote the set con-
taining them by InputV ars. A variable v that was assigned once is called a
computed variable, and the (unique) constraint encoding the assignment to it is
denoted Assign(v). The set of all computed variables is denoted ComputedV ars.
We also denote by vars(e) the set of variables that appear in a formula or expres-
sion e.

Definition 3 (Static Dependency). The static dependency relation of a pro-
gram formula ϕ is SDϕ ⊆ vars(ϕ) × vars(ϕ) s.t.

SDϕ = {(v1, v2) | ∃e s.t. (v1 = e) ∈ Sassign, v2 ∈ vars(e)}∪

{(v, b), (v, v1), (v, v2)| (v = ite(b, v1, v2)) ∈ Sphi}
.

The left-hand-side of Fig. 3 presents the graph for the static dependency
relation of the foo procedure of Fig. 2. The nodes in the graph are (indexed)
variables and there is an arrow from v1 to v2 iff (v1, v2) ∈ SDϕ .

Definition 4 (Dynamic Dependency). The dynamic dependency relation of
a program formula ϕ and a model μ of ϕ is DDϕ,μ ⊆ vars(ϕ) × vars(ϕ) s.t.

DDϕ,μ = {(v, v1) | ∃b, v2 s.t. (v = ite(b, v1, v2)) ∈ Sphi, μ[b] = true}

∪{(v, v2) | ∃b, v1 s.t. (v = ite(b, v1, v2)) ∈ Sphi, μ[b] = false}
∪{(v, b) | ∃v1, v2 s.t. (v = ite(b, v1, v2)) ∈ Sphi}

∪{(v, v1) | ∃e s.t. (v = e) ∈ Sassign, v1 ∈ vars(e)}
Note that, dynamic dependency includes only dependencies that coincide with
the specific model μ, which determines whether the then or the else direction

668 B.-C. Rothenberg and O. Grumberg

of the if is executed. Static dependency, on the other hand, takes both options
into account. Thus, DDϕ,μ ⊆ SDϕ for every model μ.

The bold arrows on the right-hand-side of Fig. 3 represent the relation DDϕ,μ

of the foo procedure, for any μ where μ[g0] = false.

Definition 5 (Influencing Variables). Given a program formula ϕ, a model
μ of it, and a computed variable v, the set of influencing variables of v with
respect to ϕ and μ is:

InfluenceV arsϕ,μ(v) = {v′ | (v, v′) ∈ (DDϕ,μ)∗}

The circled nodes on the right-hand-side of Fig. 3 represents the variables that
belong to InfluenceV arsϕ,μ(y2).

Definition 6 (Program Formula Slice). Given a program formula ϕ, a model
μ of it, and a computed variable v, the program formula slice of v with respect
to ϕ and μ is:

Sliceϕ,μ(v) = {Assign(v′) | v′ ∈ (InfluenceV arsϕ,μ(v) ∩ ComputedV ars)}

Thus, intuitively, Sliceϕ,μ(v) includes all constraints (in SSA form) encoding
assignments that influence the value of v in μ. More precisely, when considering
the conjunction of only the constraints of Sliceϕ,μ(v), as long as the value of all
input variables remains the same as in μ, the value of v will remain the same as
well. This is formalized in the following theorem, whose proof can be found in
the full version [39].

Theorem 2. For every ϕ, μ and v, the following holds:
⎡

⎣

∧

c∈Sliceϕ,μ(v)

c ∧
∧

vi∈InputV ars

(vi = μ[vi])

⎤

⎦ =⇒ (v = μ[v])

Continuing with our example of foo procedure,

Sliceϕ,μ(y2) = { y2 = ite(g0, y1, y0), y0 = x0 − 3, g0 = w0 > 3}.

5.2 Computing the Program Formula Slice

The computation of the program formula slice is composed of two steps. In the
first step, we build a graph based on the static dependency relation, SDϕ . In
the second step, we compute the slice Sliceϕ,μ(v) by computing the set of nodes
reachable from v in this graph, using a customized reachability algorithm, which
makes use of the model μ.

The graph built during the first step is called the Static Dependency Graph
(SDG) of ϕ. Nodes of this graph are variables of ϕ and edges are the static
dependencies of SDϕ . Edges are annotated using the function ψ, mapping every
static dependency (v, v′) to a boolean formula such that (v, v′) ∈ DDϕ,μ iff

Must Fault Localization for Program Repair 669

μ |= ψ[(v, v′)]. Specifically, for every constraint of the form (v = ite(b, v1, v2)) in
Sphi, the edge (v, v1) is annotated with b and the edge (v, v2) is annotated with
¬b. All other edges of the graph are annotated with true. See the left-hand-side
of Fig. 3. For simplicity all true annotations are omitted.

The algorithm for the second step is presented in Algorithm 1. This algorithm
gets a program formula ϕ, its SDG, a model μ of ϕ, and a variable v, and
computes Sliceϕ,μ(v). First, the set InfluenceV arsϕ,μ(v) is computed as the
set of nodes reachable from v in SDG, except that the reachability algorithm
traverses an edge (v, v′) only if μ |= ψ[(v, v′)]. Thus, an edge (v, v′) is traversed
iff (v, v′) ∈ DDϕ,μ, which means that the set of reachable nodes computed this
way is in fact InfluenceV arsϕ,μ(v). Finally, the slice Sliceϕ,μ(v) is the set of
constraints encoding assignments to variables in InfluenceV arsϕ,μ(v).

Algorithm 1. Compute The Program
Formula Slice
Input: a program formula ϕ, its SDG,

a model μ of ϕ and a variable v.
Output: Sliceϕ,μ(v).

Procedure
ComputeSlice(ϕ, SDG, μ, v)
1: V := ∅
2: ModelBasedDFS(SDG, v, μ, V)
3: Slice := {Assign(v′) | v′ ∈ V }
4: return Slice

Procedure
ModelBasedDFS(SDG, v, μ, V)
1: V := V ∪ {v}
2: for (v, w) ∈ E s.t. μ |= ψ[(v, w)] do
3: if w /∈ V then
4: ModelBasedDFS(SDG, w, μ, V)

Algorithm 2. FOrmula-Slicing-Fault-
Localization (FOSFL)

Input: A program formula ϕ of a
program P , and a model μ of ϕ.

Output: A set of statements F of P .

Procedure FOSFL(ϕ, μ)
1: SDG := ComputeDependencyGraph(ϕ)
2: demandFormula :=

∧
c∈Sdemand

c

3: V := ImportantV ars(demandFormula,μ)
4: S := ∅
5: for v ∈ V do
6: S := S ∪ ComputeSlice(ϕ, SDG, μ, v)

7: F := ∅
8: for c ∈ S ∩ Sassign do
9: F := F ∪ {Origin(c)}
10: return F

5.3 The Fault Localization Algorithm

Our fault localization algorithm is presented in Algorithm 2. The input to this
algorithm is a program formula ϕ of a program P , and a model μ of ϕ. The
model μ represents a buggy execution of P on an input I, and the algorithm
returns a set of locations, F , that is an Smut-must location set.

As before, we assume to know the origin of constraints in ϕ, and use the
sets Sassign, Sphi and Sdemand. Furthermore, here we also assume that for every
constraint c ∈ Sassign, we know exactly which program statement it came from.
We call this statement the origin of c, and denote it by Origin(c).

As a first step, the algorithm computes a set of variables V by calling the
procedure ImportantV ars. This procedure receives an SMT formula ϕ and a
model μ of ϕ, and reduces μ to a partial model of ϕ. A partial model of ϕ
w.r.t. μ is a partial mapping from variables of the formula to values, which is

670 B.-C. Rothenberg and O. Grumberg

consistent with μ and is sufficient to satisfy the formula. For example, for the
formula ϕ = (a = 0 ∨ b = 0) and the model μ = {a �→ 0, b �→ 1}, the valuation
{a �→ 0} is a partial model of ϕ. Procedure ImportantV ars will return the set
of variables that appear in the partial model ({a} in our example). Details of
this procedure are presented in the full version [39].

The formula passed to ImportantV ars in our case is the conjunction of all
demands in Sdemand. Recall that the set Sdemand contains constraints encoding
all conditions that need to be met for an assertion violation to happen: Condi-
tions from assumptions appear as is, while conditions from assertions are negated
and disjuncted (See Fig. 2. The last constraint on the right-hand-side represents
the disjunction of the negated assertions). Therefore, the set of variables V ,
returned by ImportantV ars, is such that as long as their values in μ remain
the same, this conjunction will still be satisfied, which means that an assertion
violation will still occur.

To make sure that their values do not remain the same, we use slicing: The
algorithm proceeds by computing the program formula slice for each of the vari-
ables in V using Algorithm 1. All slices are united into the combined set S. This
set represents all constraints that if remain the same, then all the variables in
V maintain their value. Thus, at least one element from S must be included in
any repair.

Note that, by first applying ImportantV ars, we reduce the number of vari-
ables whose value should be preserved in order to maintain the bug. The smaller
this number, the smaller F is. We will explain the usefulness of a small F in
Sect. 6.

Finally, we need to translate the constraints in S back to statements of P .
Because of how the slicing algorithm works, constraints in S may belong to either
Sassign or Sphi. If they belong to Sphi, we ignore them, because they encode the
control-flow structure of the program, rather than a particular statement. Oth-
erwise, we add the origin of the constraint, which is a statement of the program,
to the set of returned locations, F . Note that, several different constraints may
have the same origin, for example due to loop unwinding. In such a case, it is
sufficient for one constraint encoding the statement st to be included in S, for
st to be included in F . A proof for the following theorem can be found in the
full version [39].

Theorem 3. Algorithm FOSFL is an Sarb-must and also an Smut-must fault
localization algorithm.

5.4 Incremental Fault Localization

It is often necessary to apply fault localization to several bugs in the same pro-
gram, or even to several programs with different bugs. Therefore, it is desired
that the fault localization algorithm be incremental, which means that the com-
putation effort of each fault localization attempt should be proportional to the
changes made from the previous attempt. In other words, we should avoid re-
computation whenever possible, taking advantage of the fact that the program
remains the same, or at least remains similar.

Must Fault Localization for Program Repair 671

Algorithm FOSFL can be easily made incremental for the case of different
bugs of the same program. In this case, several successive calls are made to
the algorithm using the same program formula ϕ, but with different models of
it. Since the static dependency relation SDϕ depends solely on the program
formula, and not on the model, we can avoid re-computing the SDG for each
call. Instead, we can compute the SDG once, upfront, and whenever FOSFL
is called, simply skip the first line. We call the incremental version of FOSFL
Incremental-Formula-Slicing-Fault-Localization (I-FOSFL).

Note that I-FOSFL is useful not only for fault localization of different bugs
of the same program, but also whenever the SDG remains the same during
successive fault localization calls. This is the case when considering different
mutated programs P ′ of the same program P , since every change to P ′ replaces
an expression e with an expression e′ over the same variables. Thus, the SDG
remains the same, since the static dependency relation, in fact, only depends on
vars(e), and not on e itself6.

6 Program Repair with Iterative Fault Localization

In [38], a mutation-based algorithm for program repair, named AllRepair, was
presented. This algorithm uses the mutation scheme in order to repair programs
with respect to assertions in the code. Unlike fault localization, where the moti-
vation is repairing a bug for a specific input, program repair aims at repairing the
program for all inputs. To avoid confusion, we refer to a repair for all inputs as a
full repair. In [38], the notion of a full repair is bounded: loops are unwound wb
times, and a program is considered fully repaired if no assertion is violated along
executions with at most wb unwindings. A program that is not fully repaired
is said to be buggy. For the rest of this section, we refer to an Smut-patch as a
patch, and to an Smut-patched program as a mutated program.

As its name implies, the goal of AllRepair is to obtain all minimal fully
repaired mutated programs, where minimality refers to the patch used in the
program. It goes through an iterative generate-validate process. The generate
phase chooses a mutated program from the search space, and the validate phase
checks whether this program is fully repaired, by solving its program formula.
The mutated program is fully repaired iff the formula is unsatisfiable.

The generate-validate process is realized using an interplay between a SAT
solver and an SMT solver. The SAT solver is used for the generate stage. For
every mutation M and line l, there is a boolean variable BM (l), which is true
if and only if mutation M is applied to line l. A boolean formula is constructed
and sent to the SAT solver, where each satisfying assignment corresponds to
a program in the search space. The SMT solver is used for the validate stage.
The program formula of the mutated program is solved to check if it is buggy

6 This is true for Smut but not for Sarb, since the latter allows to replace an expression
e with an expression e′ over different variables.

672 B.-C. Rothenberg and O. Grumberg

Find an
unexplored

mutated program PM

Generate

Solve ϕPM

to determine if

PM is fully repaired

Validate

Fault localization

output
PM

PM unsat

ϕPM , μ
s.t.

μ |= ϕPM

satblock all
P ′ s.t.

PM ≡F P ′ F

block all P ′ s.t. PM � P ′

Fig. 4. Algorithm fl-AllRepair: Mutation-based program repair with iterative fault
localization. The notation P M ≡F P ′ means that P M and P ′ agree on the content of
all locations in F . The notation P M � P ′ means that the patch used for creating P ′

is a superset of the patch used for creating P M .

or not. To achieve minimality, when a mutated program created using a patch τ
is fully repaired, every mutated program created using a patch τ ′, with τ ⊆ τ ′,
is blocked.

Example 4. Let PM be a fully repaired mutated program obtained by applying
the patch τ , consisting of mutating line l1 using mutation M1 and mutating
line l2 using mutation M2. Then blocking any superset of τ will we done by
adding to the boolean formula representing the search space, the blocking clause
¬(BM1(l1) ∧ BM2(l2)), which means “either do not apply M1 to l1 or do not
apply M2 to l2”. This clause blocks any mutated program with τ ⊆ τ ′.

Blocking such programs prunes the search space, but only in a limited way. No
pruning occurs when the mutated program is buggy.

In this paper, we extend the algorithm of [38] with a fault localization compo-
nent. The goal of the new component is to prune the search space by identifying
sets of mutated programs that are buggy, without inspecting each of the indi-
vidual programs in the set.

Figure 4 shows the program repair algorithm with the addition of fault local-
ization. In the new algorithm, called fl-AllRepair, whenever a mutated pro-
gram is found to be buggy during the validation step, its program formula is
passed to the fault localization component along with the model obtained when
solving the formula. The fault localization component returns a set of locations
F , following the I-FOSFL algorithm. Since this set is guaranteed to be an Smut-
must location set, at least one of the locations in it should be changed for the
bug to be fixed. Consequently, all mutated programs in which all locations from
F remain unchanged are blocked from being explored in the future. As before,
blocking is done by adding a blocking clause that disallows such programs.

Example 5. Let PM be a buggy mutated program for which F consists of
{l1, l2, l3}, where l1 was mutated with M1, l2 was not mutated, and l3 was mutated
with M3. The blocking clause ¬BM1(l1)∨¬BOriginal(l2)∨¬BM3(l3) will be added

Must Fault Localization for Program Repair 673

to the boolean formula representing the search space of mutated programs. It
restricts the search space to those mutated programs that either do not apply
mutation M1 to l1, or do mutate l2 or do not apply M3 to l3. This will prune from
the search space all mutated programs which are identical to PM on the locations
in F . Note that smaller F will result in a larger set of pruned programs.

Proposition 1. Algorithm fl-AllRepair is sound and complete.

7 Experimental Results

We have implemented our fault localization technique and its integration
with mutated-based program repair in the tool AllRepair, available at
https://github.com/batchenRothenberg/AllRepair. In this section, we present
experiments evaluating the contribution of the new fault localization component
to the program repair algorithm. We refer to the algorithm of [38], without fault
localization, as AllRepair, and to the algorithm presented in this paper as FL-
AllRepair. Both algorithms search for minimal wb-violation free programs, and
both are sound and complete. Thus, for every buggy program and every bound
wb, both algorithms will eventually produce the same list of repairs.

The difference between the algorithms lies in the repair loop. In case a mutated
program is found to be buggy, the AllRepair algorithm will only block the one pro-
gram, while the FL-AllRepair algorithm might block a set of programs. Therefore,
the number of repair iterations required to cover the search space can only decrease
using the FL-AllRepair algorithm. On the other hand, the cost of each iteration
with fault localization is strictly higher than without it. Our goal in this evaluation
is to check if the use of fault localization pays off. That is, to check if repairs are
produced faster using FL-AllRepair than using AllRepair.

Benchmarks. For our evaluation, we have used programs from two benchmarks:
TCAS and Codeflaws. The TCAS benchmark is part of the Siemens suite [12],
and is frequently used for program repair evaluation [5,34,38]. The TCAS pro-
gram implements a traffic collision avoidance system for aircrafts, and consists
of approximately 180 lines of code. We have used all 41 faulty versions of the
benchmark in our experiments.

The Codeflaws benchmark [41] is also a well-known and widely used bench-
mark for program repair. Programs in this benchmark are taken from buggy user
submissions to the programming contest site Codeforces7. In each program, a
user tries to solve a programming problem published as part of a contest on the
site. The programming problems are varied, and also the users have a diverse
level of expertise. The benchmark also provides correct versions for all buggy
versions, which are used to classify bug types by computing the syntactic differ-
ence. For our experiments we randomly chose 13 buggy versions classified with
bug types that can be fixed using mutations. The size of the chosen programs
ranges from 17 to 44 lines of code.
7 http://codeforces.com/.

https://github.com/batchenRothenberg/AllRepair
http://codeforces.com/

674 B.-C. Rothenberg and O. Grumberg

Mutations. The mutations used inAllRepair (and accordingly in FL-AllRepair)
is a subset of themutations used in [37].Wedefine twomutation levels, where level 1
contains only a subset of the mutations available in level 2. Thus, level 1 involves
easier computation but may fail more often in finding repairs.

Level 1 Level 2

{+,−}, {/,%} {+,−, ∗}, {/,%}
{>,>=},
{<,<=}

{>,>=, <,<=}, {==, ! =}

{||, & & }
{>>,<<},{&, |, ˆ}

C→C +1, C→C −1, C→ −C,
C→ 0

Table 1. Partition of mutations to levels

Table 1 shows the list of muta-
tions used in each mutation level.
For example, for the category of
arithmetic operator replacement,
in mutation level 1, the table
specifies two sets: {+,−} and
{/,%}. This means that a + can
be replaced by a − , and vice
versa, and that the operators /, %
can be replaced with each other.
Constant manipulation mutations
apply to a numeric constant and include increasing its value by 1 (C → C +1),
decreasing it by 1 (C → C −1), setting it to 0 (C → 0) and changing its sign
(C → −C).

Setting. All of our experiments were run on a Linux 64-bit Ubuntu 16.0.4 virtual
machine with 1 CPU, 4 GB of RAM and 40 GB of storage, provided using the
Vmware vRA service8. For each of the buggy versions in our benchmarks we have
experimented with both mutation levels 1 and 2. For the Codeflaws benchmarks we
additionally experimented with different unwinding bounds: 2 (entering the loop
once), 5, 8 and 10. This experiment is irrelevant to the TCAS benchmarks since
the TCAS program does not contain loops or recursive calls. Overall we had 186
combinations of buggy programs, mutation levels and unwinding bounds. We refer
to each such combination as an input. For each input, we run both the AllRepair
and the FL-AllRepair algorithms with a timeout of 10 minutes and a mutation size
limit of 2 (i.e., at most two mutations could be applied at once).

7.1 Results

In total, 131 different repairs were found during our experiments, for 60 different
inputs (for several inputs there was more than one possible repair). In this count,
we treat repairs fixing the same program in the same way as different, if they were
produced using different mutation levels or unwinding bounds. This is because
our evaluation is concerned with the time to find these repairs, and both the
mutation level and the unwinding bound greatly influence this time.

Because the time to produce a repair sometimes varied in several orders of
magnitude depending on the input, we have chosen to split repairs into three
categories: fast, intermediate, and slow, and examine the time difference sepa-
rately for each category. Splitting repairs to categories was done according to
the time it took to find them using the AllRepair algorithm. If that time was

8 https://www.vmware.com/il/products/vrealize-automation.html.

https://www.vmware.com/il/products/vrealize-automation.html

Must Fault Localization for Program Repair 675

(a) Fast repairs (< 5s)

0

5

10
AR

FLAR

(b) Medium repairs (5− 240s)

0

20

40

60 AR

FLAR

(c) Slow repairs (> 240s)

0

600

1,200

1,800

2,400

3,000 AR

FLAR

Fig. 5. Time to find each repair using AllRepair (AR) and FL-AllRepair (FLAR). Each
x value represents a single repair, and the corresponding y values represent the time, in
seconds, it took to find that repair using both algorithms. Note that the graphs differ
in the y axis scale.

under 5 seconds, the repair was considered fast. If it was over 4 minutes, it was
considered slow, and otherwise it was considered intermediate.

Figure 5 shows a comparison of the time, in seconds, it took to find repairs
in both algorithms. There are three graphs, according to our three categories. In
all graphs, each x value represents a single repair, where the corresponding blue
dot in the y axis represents the time it took to find that repair using AllRepair,
and the red square represents the time using FL-AllRepair. So, whenever the
blue dot is above the red square, FL-AllRepair was faster in finding that repair,
and the y difference represents the time saved.

For the fast category (Fig. 5a), there is no clear advantage to FL-AllRepair.
The majority of the repairs in this category are produced in less than a second
using both algorithms. For the remaining repairs, there appears to be as many
cases where FL-AllRepair is faster as when it is slower. But, in all cases where
there is a time difference, in either direction, it is only of a few seconds.

For the intermediate category (Fig. 5b), the advantage of FL-AllRepair is
starting to become clear. There are now only 4 repairs (out of 20) for which
FL-AllRepair is slower. Also, on average, it is slower by 4 seconds, but faster by
10 seconds. Finally, for the slow category (Fig. 5c), there is an obvious advantage
to FL-AllRepair. First, it is able to find 6 repairs exclusively, while AllRepair
reaches a time-out. Also, for the remaining 27 repairs, FL-AllRepair is faster in
all cases but one. The time difference is now also very significant: FL-AllRepair
is faster by 1512 seconds (around 25 minutes) on average.

To sum up, the results show that in many cases our algorithm FL-AllRepair
is able to save time in finding repairs. The savings are especially significant in

676 B.-C. Rothenberg and O. Grumberg

cases where it takes a long time to produce the repair using the original AllRepair
algorithm, and these are the cases where time savings are most needed.

7.2 Comparison with Other Repair Methods

The TCAS benchmark was recently used also in [34], where AllRepair’s per-
formance was compared to that of four other automated repair tools: Angelix
[29], GenProg [26], FoRenSiC [5] and Maple [34]. AllRepair was found
to be faster by an order of magnitude than all of the compared tools, taking
only 16.9 seconds to find a repair on average, where the other tools take 1540.7,
325.4, 360.1, and 155.3 seconds, respectively. Since in our experiments on TCAS
fl-AllRepair was faster than AllRepair on average (and even when it was
slower it was only by a few seconds), we conclude that fl-AllRepair also com-
pares favorably to these other tools.

In terms of repairability, the repair scheme used by AllRepair (and fl-
AllRepair) is limited compared to the other tools: AllRepair only uses muta-
tions on expressions while Angelix, FoRenSiC and Maple allow replacing an
expression with a template (e.g., a linear combination of variables), which is
then filled out to create a repair. GenProg allows modifying a statement as
well as deleting it or adding a statement after it. Therefore, the other tools are
inherently capable of producing repairs in more cases than AllRepair.

In the case of TCAS, the study showed that AllRepair is able to find
repairs for 18 versions (a result that we confirm in our experiments as well),
while Angelix, GenProg, FoRenSiC and Maple found 32, 11, 23 and 26,
respectively. But, what the study also showed, is that in repair methods that
are based on tests, in many cases the repair found only adhered to the test-
suite, but was not correct when inspected manually. When counting only correct
repairs, AllRepair finds repairs for 18 versions (all of AllRepairs repairs
are correct), while Angelix, GenProg, FoRenSiC and Maple find 9, 0, 15
and 26, respectively. Since fl-AllRepair is able to find all repairs found by
AllRepair, the same results also apply to fl-AllRepair.

8 Related Work

Dynamic slicing has been widely used for fault localization in the past [16,36,
43,45–47]. But, as we have seen, traditional notations of dynamic slicing [2,23]
are not must (with respect to neither of the presented schemes), and thus, the
above techniques may fail to include relevant locations in their results.

Other approaches for fault localization include spectrum-based (SBFL) [1,
13,20,31,44], mutation-based (MBFL) [15,18,30,35] and formula-based (FBFL)
[7,14,17,21,40]. Both SBFL and MBFL techniques compute the suspiciousness of
a statement using coverage information from failing and passing test executions.
MBFL uses, in addition, information on how test results change after applying
different mutations to the program. Both SBFL and MBFL techniques can be
seen as may fault localization techniques, in nature: they return locations that

Must Fault Localization for Program Repair 677

are likely to be relevant to the failing execution, based on all executions. We
see may fault localization techniques as orthogonal to ours (and to must fault
localization techniques in general), since in the trade-off between returning a
small set of locations, and returning one that is guaranteed to contain all relevant
statements, may techniques prefer the first, while must techniques prefer the
second. In the context of repair, there are interesting applications for both.

FBFL techniques represent an error trace using an SMT formula and analyze
it to find suspicious locations. These techniques include using error invariants
[6,14,17,40], maximum satisfiability [21,24,25], and weakest preconditions [7].
What we were able to show in this paper, is that the methods of [6,14,21] are
not must. In contrast, we believe (though we do not prove it) that the methods
of [7,24,25] are must. But, what [7,24,25] have in common is that they use the
semantics of the error trace or the program. Though semantic information can
help to further minimize the number of suspicious locations, retrieving it involves
using expensive solving-based procedures. Our approach, on the other hand,
uses only syntactic information, which makes the fault localization computation
relatively cheap; No SMT solving is needed. Thus, these approaches can be seen
as complementary to ours.

In the literature there is also a wide range of techniques for automated pro-
gram repair using formal methods [4,10,19,22,29,32,33,42]. Both [11] and [37]
also use fault localization followed by applying mutations for repair. But, unlike
this work, fault localization is applied only for the original program. Also, nei-
ther the Tarantula fault localization used in [11] nor the dynamic slicing used
in [37] carries the guarantee of being a must fault localization. The tool MUT-
APR [3] fixes binary operator faults in C programs, but only targets faults that
require one line modification. The tools FoREnSiC [5] and Maple [34] repair
C programs with respect to a formal specification, but they do so by replacing
expressions with templates, which are then patched and analysed. SemGraft
[28] conducts repair with respect to a reference implementation, but relies on
tests for SBFL fault localization of the original program.

9 Conclusion

In this work we define a novel notion of must fault localization, that carefully
identifies program locations that are relevant for a bug, so that the set is suffi-
ciently small but is guaranteed not to miss desired repairs. We also show that
the notion of must fault localization should be defined with respect to the repair
scheme in use. We show that our notion of must fault localization is particularly
useful in pruning the search space of a specific mutation-based repair algorithm.

To the best of our knowledge, we are the first to investigate the widely-used
notion of fault localization and to suggest criteria for evaluating its different
implementation.

678 B.-C. Rothenberg and O. Grumberg

References

1. Abreu, R., Zoeteweij, P., Van Gemund, A.J.C.: An evaluation of similarity coeffi-
cients for software fault localization. In: Proceedings of the 12th Pacific Rim Inter-
national Symposium on Dependable Computing, PRDC 2006, pp. 39–46 (2006)

2. Agrawal, H., Horgan, J.R.: Dynamic Program Slicing. In: PLDI, pp. 246–256 (1990)
3. Assiri, F.Y., Bieman, J.M.: MUT-APR: MUTation-based automated program

repair research tool. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FICC 2018. AISC,
vol. 887, pp. 256–270. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
03405-4 17

4. Attie, P.C., Dak, K., Bab, A.L., Sakr, M.: Model and program repair via SAT
solving. ACM Trans. Embed. Comput. Syst. 17(2), 1–25 (2017)

5. Bloem, R., Drechsler, R., Fey, G., Finder, A., Hofferek, G., Könighofer, R., Raik, J.,
Repinski, U., Sülflow, A.: FoREnSiC– an automatic debugging environment for C
programs. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp.
260–265. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-
3 24

6. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
189–208. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-
9 13

7. Christakis, M., Heizmann, M., Mansur, M.N., Schilling, C., Wüstholz, V.: Seman-
tic fault localization and suspiciousness ranking. In: Vojnar, T., Zhang, L. (eds.)
TACAS 2019. LNCS, vol. 11427, pp. 226–243. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17462-0 13

8. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

9. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: Proceedings of the Design Automation
Conference, 2003, pp. 368–371. IEEE (2003)

10. D’Antoni, L., Samanta, R., Singh, R.: Qlose: program repair with quantitative
objectives. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
383–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 21

11. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes for faulty
programs. In: 2010 Third International Conference on Software Testing, Verifica-
tion and Validation (ICST), pp. 65–74. IEEE (2010)

12. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact. Empir. Softw. Eng.
10(4), 405–435 (2005)

13. Eric Wong, W., Debroy, V., Choi, B.: A family of code coverage-based heuristics
for effective fault localization. J. Syst. Softw. 83(2), 188–208 (2010)

14. Ermis, E., Schäf, M., Wies, T.: Error invariants. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 187–201. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32759-9 17

15. Gong, P., Zhao, R., Li, Z.: Faster mutation-based fault localization with a novel
mutation execution strategy. In: Proceedings of the 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation Workshops, ICSTW
2015, pp. 1–10. IEEE (2015)

https://doi.org/10.1007/978-3-030-03405-4_17
https://doi.org/10.1007/978-3-030-03405-4_17
https://doi.org/10.1007/978-3-642-39611-3_24
https://doi.org/10.1007/978-3-642-39611-3_24
https://doi.org/10.1007/978-3-642-35873-9_13
https://doi.org/10.1007/978-3-642-35873-9_13
https://doi.org/10.1007/978-3-030-17462-0_13
https://doi.org/10.1007/978-3-030-17462-0_13
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-642-32759-9_17

Must Fault Localization for Program Repair 679

16. Hofer, B., Wotawa, F.: Spectrum enhanced dynamic slicing for better fault local-
ization. ECAI 242, 420–425 (2012)

17. Holzer, A., Schwartz-Narbonne, D., Tabaei Befrouei, M., Weissenbacher, G., Wies,
T.: Error invariants for concurrent traces. In: Fitzgerald, J., Heitmeyer, C., Gnesi,
S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 370–387. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48989-6 23

18. Hong, S., Lee, B., Kwak, T., Jeon, Y., Ko, B., Kim, Y., Kim, M.: Mutation-based
fault localization for real-world multilingual programs. In: ASE, pp. 464–475 (2015)

19. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988 23

20. Jones, J., Harrold, M., Stasko, J.: Visualization for fault localization. In: Proceed-
ings of ICSE 2001 Workshop on Software Visualization, pp. 71–75 (2001)

21. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: PLDI, pp. 437–446 (2011)

22. Kneuss, E., Koukoutos, M., Kuncak, V.: Deductive program repair. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 217–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 13

23. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29, 155–163
(1988)

24. Lamraoui, S.-M., Nakajima, S.: A formula-based approach for automatic fault
localization of multi-fault programs. J. Inf. Process. 24, 88–98 (2016)

25. Lamraoui, S.-M., Nakajima, S., Hosobe, H.: Hardened flow-sensitive trace formula
for fault localization. In: ICECCS (2015)

26. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method
for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

27. Liu, K., Koyuncu, A., Bissyande, T.F., Kim, D., Klein, J., Le Traon, Y.: You
cannot fix what you cannot find! An investigation of fault localization bias in
benchmarking automated program repair systems. In: ICST, pp. 102–113 (2019)

28. Mechtaev, S., Nguyen, M.-D., Noller, Y., Grunske, L., Roychoudhury, A.: Semantic
program repair using a reference implementation. In: ICSE (2018)

29. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalable multiline program patch
synthesis via symbolic analysis. In: ICSE (2016)

30. Moon, S., Kim, Y., Kim, M., Yoo, S.: Ask the mutants: mutating faulty programs
for fault localization. In: ICST (2014)

31. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol. 20(3), 1–32 (2011)

32. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: SemFix: program repair
via semantic analysis. In: Proceedings of the 2013 International Conference on
Software Engineering, pp. 772–781. IEEE Press (2013)

33. Nguyen, T.V., Weimer, W., Kapur, D., Forrest, S.: Connecting program synthesis
and reachability: automatic program repair using test-input generation. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 301–318. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 17

34. Nguyen, T.-T., Ta, Q.-T., Chin, W.-N.: Automatic program repair using formal
verification and expression templates. In: Enea, C., Piskac, R. (eds.) VMCAI 2019.
LNCS, vol. 11388, pp. 70–91. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-11245-5 4

35. Papadakis, M., Traon, Y.L.: Metallaxis-FL: mutation-based fault localization.
Softw. Test. Verif. Reliab. 21(3), 195–214 (2015)

https://doi.org/10.1007/978-3-319-48989-6_23
https://doi.org/10.1007/11513988_23
https://doi.org/10.1007/978-3-319-21668-3_13
https://doi.org/10.1007/978-3-662-54577-5_17
https://doi.org/10.1007/978-3-030-11245-5_4
https://doi.org/10.1007/978-3-030-11245-5_4

680 B.-C. Rothenberg and O. Grumberg

36. Qian, J., Xu, B.: Scenario oriented program slicing. In: Proceedings of the ACM
Symposium on Applied Computing, pp. 748–7752 (2008)

37. Repinski, U., Hantson, H., Jenihhin, M., Raik, J., Ubar, R., Guglielmo, G.D.,
Pravadelli, G., Fummi, F.: Combining dynamic slicing and mutation operators for
ESL correction. In: 2012 17th IEEE European Test Symposium (ETS), pp. 1–6.
IEEE (2012)

38. Rothenberg, B.-C., Grumberg, O.: Sound and complete mutation-based program
repair. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016.
LNCS, vol. 9995, pp. 593–611. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48989-6 36

39. Rothenberg, B.-C., Grumberg, O.: Must fault localization for program
repair. https://batg.cswp.cs.technion.ac.il/wp-content/uploads/sites/78/2020/05/
MustFaultLocalizationForProgramRepairCav2020.pdf, May 2020. A full version of
the CAV 2020 paper of the same title

40. Schäf, M., Schwartz-Narbonne, D., Wies, T.: Explaining inconsistent code. In:
ESEC/FSE, pp. 521–531 (2013)

41. Tan, S.H., Yi, J., Yulis, Mechtaev, S., Roychoudhury, A.: Codeflaws: A program-
ming competition benchmark for evaluating automated program repair tools. In:
Proceedings of the 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion, ICSE-C 2017, pp. 180–182 (2017)

42. von Essen, C., Jobstmann, B.: Program repair without regret. Form. Methods Syst.
Des. 47(1), 26–50 (2015). https://doi.org/10.1007/s10703-015-0223-6

43. Wang, Y., Patil, H., Pereira, C., Lueck, G., Gupta, R., Neamtiu, I.: DrDebug:
deterministic replay based cyclic debugging with dynamic slicing. In: Proceedings
of the 12th ACM/IEEE International Symposium on Code Generation and Opti-
mization, CGO 2014, pp. 98–108 (2014)

44. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The DStar method for effective software
fault localization. IEEE Trans. Reliab. 63(1), 290–308 (2014)

45. Wotawa, F.: Fault localization based on dynamic slicing and hitting-set compu-
tation. In: Proceedings of the International Conference on Quality Software, pp.
161–170 (2010)

46. Zhang, X., Gupta, N., Gupta, R.: A study of effectiveness of dynamic slicing in
locating real faults. Empir. Softw. Eng. 12(2), 143–160 (2007)

47. Zhang, X., Gupta, N., Gupta, R.: Locating faulty code by multiple points slicing.
Softw. Pract. Exp. 39(7), 661–699 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-48989-6_36
https://doi.org/10.1007/978-3-319-48989-6_36
https://batg.cswp.cs.technion.ac.il/wp-content/uploads/sites/78/2020/05/MustFaultLocalizationForProgramRepairCav2020.pdf
https://batg.cswp.cs.technion.ac.il/wp-content/uploads/sites/78/2020/05/MustFaultLocalizationForProgramRepairCav2020.pdf
https://doi.org/10.1007/s10703-015-0223-6
http://creativecommons.org/licenses/by/4.0/

	Must Fault Localization for Program Repair
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 Programs and Error Traces
	3.2 From Programs to Program Formulas

	4 Must Fault Localization
	5 Fault Localization Using Program Formula Slicing
	5.1 Program Formula Slicing
	5.2 Computing the Program Formula Slice
	5.3 The Fault Localization Algorithm
	5.4 Incremental Fault Localization

	6 Program Repair with Iterative Fault Localization
	7 Experimental Results
	7.1 Results
	7.2 Comparison with Other Repair Methods

	8 Related Work
	9 Conclusion
	References

