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1 IDC Herzliya, Herzliya, Israel
elette.boyle@idc.ac.il
2 MIT, Cambridge, USA

rancohen@mit.edu
3 Northeastern University, Boston, USA

4 UCLA, Los Angeles, USA
deepeshdata@ucla.edu

5 Computer Science Institute, Charles University, Prague, Czech Republic
hubacek@iuuk.mff.cuni.cz

Abstract. Secure multiparty computation (MPC) on incomplete com-
munication networks has been studied within two primary models: (1)
Where a partial network is fixed a priori, and thus corruptions can occur
dependent on its structure, and (2) Where edges in the communication
graph are determined dynamically as part of the protocol. Whereas a rich
literature has succeeded in mapping out the feasibility and limitations of
graph structures supporting secure computation in the fixed-graph model
(including strong classical lower bounds), these bounds do not apply in
the latter dynamic-graph setting, which has recently seen exciting new
results, but remains relatively unexplored.

In this work, we initiate a similar foundational study of MPC within
the dynamic-graph model. As a first step, we investigate the property
of graph expansion. All existing protocols (implicitly or explicitly) yield
communication graphs which are expanders, but it is not clear whether
this is inherent. Our results consist of two types:
– Upper bounds: We demonstrate secure protocols whose induced com-

munication graphs are not expanders, within a wide range of settings
(computational, information theoretic, with low locality, and adap-
tive security), each assuming some form of input-independent setup.

– Lower bounds: In the setting without setup and adaptive corrup-
tions, we demonstrate that for certain functionalities, no proto-
col can maintain a non-expanding communication graph against all
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P. Hubáček—Supported by the project 17-09142S of GA ČR, Charles University
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adversarial strategies. Our lower bound relies only on protocol cor-
rectness (not privacy), and requires a surprisingly delicate argument.

1 Introduction

The field of secure multiparty computation (MPC), and more broadly fault-
tolerant distributed computation, constitutes a deep and rich literature, yielding
a vast assortment of protocols providing strong robustness and even seemingly
paradoxical privacy guarantees. A central setting is that of n parties who jointly
compute a function of their inputs while maintaining correctness (and possibly
privacy) facing adversarial behavior from a constant fraction of corruptions.

Since the original seminal results on secure multiparty computation [2,11,
25,36], the vast majority of MPC solutions to date assume that every party can
(and will) communicate with every other party. That is, the underlying point-
to-point communication network forms a complete graph. Indeed, many MPC
protocols begin directly with every party secret sharing his input across all other
parties (or simply sending his input, in the case of tasks without privacy such
as Byzantine agreement [17,34,35]).

There are two classes of exceptions to this rule, which consider MPC on
incomplete communication graphs.

Fixed-Graph Model. The first corresponds to an area of work investigating
achievable security guarantees in the setting of a fixed partial communication net-
work. In this model, communication is allowed only along edges of a fixed graph,
known a priori, and hence where corruptions can take place as a function of its
structure. This setting is commonly analyzed within the distributed computing
community. In addition to positive results, this is the setting of many fundamen-
tal lower bounds: For example, to achieve secure Byzantine agreement against t
corruptions, the graph must be (t+1)-connected [16,21].1 For graphs with lower
connectivity, the best one can hope for is a form of “almost-everywhere agree-
ment,” where some honest parties are not guaranteed to output correctly, as well
as restricted notions of privacy [10,19,23,26,27]. Note that because of this, one
cannot hope to achieve protocols with standard security in this model with o(n2)
communication, even for simple functionalities such as Byzantine agreement.

Dynamic-Graph Model. The second, more recent approach addresses a model
where all parties have the ability to initiate communication with one another,
but make use of only a subset of these edges as determined dynamically during
the protocol. We refer to this as the “dynamic-graph model.” When allowing for
negligible error (in the number of parties), the above lower bounds do not apply,
opening the door for dramatically different approaches and improvements in
complexity. Indeed, distributed protocols have been shown for Byzantine agree-
ment in this model with as low as Õ(n) bits of communication [6,33], and secure
MPC protocols have been constructed whose communication graphs have degree

1 If no setup assumptions are assumed, the connectivity bound increases to 2t + 1.
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o(n)—and as low as polylog(n) [3,5,9,15].2 However, unlike the deep history of
the model above, the current status is a sprinkling of positive results. Little is
known about what types of communication graphs must be generated from a
secure MPC protocol execution.

Gaining a better understanding of this regime is motivated not only to
address fundamental questions, but also to provide guiding principles for future
protocol design. In this work, we take a foundational look at the dynamic-graph
model, asking:

What properties of induced communication graphs
are necessary to support secure computation?

On the necessity of graph expansion. Classical results tell us that the fully con-
nected graph suffices for secure computation. Protocols achieving low locality
indicate that a variety of significantly sparser graphs, with many low-weight
cuts, can also be used [3,5,9,15]. We thus consider a natural extension of con-
nectivity to the setting of low degree. Although the positive results in this setting
take different approaches and result in different communication graph structures,
we observe that in each case, the resulting sparse graph has high expansion.

Roughly, a graph is an expander if every subset of its nodes that is not “too
large” has a “large” boundary. Expander graphs have good mixing properties and
in a sense “mimic” a fully connected graph. There are various ways of formalizing
expansion; in this work we consider a version of edge expansion, pertaining to
the number of outgoing edges from any subset of nodes. We consider a variant of
the expansion definition which is naturally monotonic: that is, expansion cannot
decrease when extra edges are added (note that such monotonicity also holds for
the capacity of the graph to support secure computation).

Indeed, expander graphs appear explicitly in some works [9,33], and implic-
itly in others (e.g., using random graphs [31], pseudorandom graphs [5], and aver-
aging samplers [6], to convert from almost-everywhere to everywhere agreement).
High connectivity and good mixing intuitively go hand-in-hand with robustness
against corruptions, where adversarial entities may attempt to impede or misdi-
rect information flow.

This raises the natural question: Is this merely an artifact of a convenient
construction, or is high expansion inherent? That is, we investigate the question:
Must the communication graph of a generic MPC protocol, tolerating a linear
number of corruptions, be an expander graph?

1.1 Our Results

More explicitly, we consider the setting of secure multiparty computation with
n parties in the face of a linear number of active corruptions. As common in the
honest-majority setting, we consider protocols that guarantee output delivery.
Communication is modeled via the dynamic-graph setting, where all parties have

2 This metric is also called the communication locality of the protocol [5].
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the ability to initiate communication with one another, and use a subset of edges
as dictated by the protocol. We focus on the synchronous setting.

Our contributions are of the following three kinds:

Formal definitional framework. As a first contribution, we provide a formal
framework for analyzing and studying the evolving communication graph of
MPC protocols. The framework abstracts and refines previous approaches con-
cerning specific properties of protocols implicitly related to the graph structure,
such as the degree [5]. This gives a starting point for studying the relation
between secure computation and further, more general, graph properties.

Upper bounds. We present secure protocols whose induced communication
graphs are decidedly not expander graphs, within a range of settings. This
includes with computational security, with information-theoretic security, with
low locality, even with low locality and adaptive security (in a hidden-channels
model [9]) — but all with the common assumption of some form of input-
independent setup information. The resulting communication graph has a low-
weight cut, splitting the n parties into two equal (linear) size sets with only
poly-logarithmic edges connecting them.

Theorem 1 (MPC with non-expanding communication graph, infor-
mal). For any efficient functionality f and any constant ε > 0, there exists
a protocol in the PKI model, assuming digital signatures, securely realizing f
against (1/4 − ε) · n static corruptions, such that with overwhelming probability
the induced communication graph is non-expanding.

Theorem 1 is stated in the computational setting with static corruptions;
however, this approach extends to various other settings, albeit at the expense
of a lower corruption threshold. (See Sect. 4 for more details.)

Theorem 2 (extensions of Theorem 1, informal). For any efficient func-
tionality f , there exists a protocol securely realizing f , in the settings listed below,
against a linear number of corruptions, such that with overwhelming probability
the induced communication graph is non-expanding:

– In the setting of Theorem1 with poly-logarithmic locality.
– Unconditionally, in the information-theoretic PKI model (with or without low

locality).
– Unconditionally, in the information-theoretic PKI model, facing adaptive

adversaries.
– Under standard cryptographic assumptions, in the PKI model, facing adaptive

adversaries, with poly-logarithmic locality.

As an interesting special case, since our protocols are over point-to-point
channels and do not require a broadcast channel, these results yield the first
Byzantine agreement protocols whose underlying communication graphs are not
expanders.

The results in Theorems 1 and 2 all follow from a central transformation
converting existing secure protocols into ones with low expansion. At a high



Must the Communication Graph of MPC Protocols be an Expander? 247

level, the first n/2 parties will run a secure computation to elect two repre-
sentative committees of poly-logarithmic size: one amongst themselves and the
other from the other n/2 parties. These committees will form a “communica-
tion bridge” across the two halves (see Fig. 1). The setup is used to certify the
identities of the members of both committees to the receiving parties, either
via public-key infrastructure for digital signatures (in the computational set-
ting) or correlated randomness for information-theoretic signatures [37,38] (in
the information-theoretic setting).

Interestingly, this committee-based approach can be extended to the adap-
tive setting (with setup), in the hidden-channels model considered by [9], where
the adversary is not aware which communication channels are utilized between
honest parties.3 Here, care must be taken to not reveal more information than
necessary about the identities of committee members to protect them from being
corrupted.

As a side contribution, we prove the first instantiation of a protocol with poly-
logarithmic locality and information-theoretic security (with setup), by adjusting
the protocol from [5] to the information-theoretic setting.

Theorem 3 (polylog-locality MPC with information-theoretic secu-
rity, informal). For any efficient functionality f and any constant ε > 0, there
exists a protocol with poly-logarithmic locality in the information-theoretic PKI
model, securely realizing f against computationally unbounded adversaries stat-
ically corrupting (1/6 − ε) · n parties.

Lower bounds. On the other hand, we show that in some settings a weak form of
expansion is a necessity. In fact, we prove a stronger statement, that in these set-
tings the graph must have high connectivity.4 Our lower bound is in the setting
of adaptive corruptions, computational (or information-theoretic) security, and
without setup assumptions. Our proof relies only on correctness of the protocol
and not on any privacy guarantees; namely, we consider the parallel broadcast
functionality (aka interactive consistency [35]), where every party distributes
its input to all other parties. We construct an adversarial strategy in this set-
ting such that no protocol can guarantee correctness against this adversary if
its induced communication graph at the end of the protocol has any cut with
sublinear many crossing edges (referred to as a “sublinear cut” from now on).

Theorem 4 (high connectivity is necessary for correct protocols, infor-
mal). Let t ∈ Θ(n). Any t(n)-resilient protocol for parallel broadcast in the com-
putational setting, tolerating an adaptive, malicious adversary cannot maintain
an induced communication graph with a sublinear cut.

Theorem 4 in particular implies that the resulting communication graph must
have a form of expansion. We note that in a weaker communication model, a
3 Sublinear locality is impossible in the adaptive setting if the adversary is aware of
honest-to-honest communication, since it can simply isolate an honest party from
the rest of the protocol.

4 More concretely, the graph should be at least α(n)-connected for every α(n) ∈ o(n).
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weaker form of consensus, namely Byzantine agreement, can be computed in a
way that the underlying graph (while still an expander) has low-weight cuts [32].

It is indeed quite intuitive that if a sublinear cut exists in the communication
graph of the protocol, and the adversary can adaptively corrupt a linear number
of parties t(n), then he could corrupt the parties on the cut and block informa-
tion flow. The challenge, however, stems from the fact that the cut is not known
a priori but is only revealed over time, and by the point at which the cut is
identifiable, all necessary information may have already been transmitted across
the cut. In fact, even the identity of the cut and visible properties of the commu-
nication graph itself can convey information to honest parties about input values
without actual bits being communicated. This results in a surprisingly intricate
final attack, involving multiple indistinguishable adversaries, careful corruption
strategies, and precise analysis of information flow. See below for more detail.

1.2 Our Techniques

We focus on the technical aspects of the lower bound result.

Overview of the attack. Consider an execution of the parallel broadcast protocol
over random inputs. At a high level, our adversarial strategy, denoted Ahonest-i∗

n ,
will select a party Pi∗ at random and attempt to block its input from being
conveyed to honest parties. We are only guaranteed that somewhere in the graph
will remain a sublinear cut. Because the identity of the eventual cut is unknown,
it cannot be attacked directly. We take the following approach:

1. Phase I. Rather, our attack will first “buy time” by corrupting the neighbors
of Pi∗ , and blocking information flow of its input xi∗ to the remaining parties.
Note that this can only continue up to a certain point, since the degree of
Pi∗ will eventually surpass the corruption threshold (as we prove). But, the
benefit of this delay is that in the meantime, the communication graph starts
to fill in, which provides more information about the locations of the potential
cuts.
For this to be the case, it must be that the parties cannot identify that Pi∗ is
under attack (otherwise, the protocol may instruct many parties to quickly
communicate to/from Pi∗ , forcing the adversary to run out of his “corruption
budget” before the remaining graph fills in). The adversary thus needs to fool
all honest parties and make each honest party believe that he participates
in an honest execution of the protocol. This is done by maintaining two
simulated executions: one pretending to be Pi∗ running on a random input,
and another pretending (to Pi∗) to be all other parties running on random
inputs. Note that for this attack strategy to work it is essential that the
parties do not have pre-computed correlated randomness such as PKI.

2. Phase II. We show that with noticeable probability, by the time we run out
of the Phase I corruption threshold (which is a linear number of parties),
all parties in the protocol have high (linear) degree. In turn, we prove that
the current communication graph can have at most a constant number of
sublinear cuts.
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In the remainder of the execution, the adversary will simultaneously attack
all of these cuts. Namely, he will block information flow from Pi∗ across any
of these cuts by corrupting the appropriate “bridge” party, giving up on each
cut one by one when a certain threshold of edges have already crossed it.

If the protocol is guaranteed to maintain a sublinear cut, then necessarily there
will remain at least one cut for which all Phase II communication across the
cut has been blocked by the adversary. Morally, parties on the side of this cut
opposite Pi∗ should not have learned xi∗ , and thus the correctness of the protocol
should be violated. Proving this, on the other hand, requires surmounting two
notable challenges.

1. We must prove that there still remains an uncorrupted party Pj∗ on the
opposite side of the cut. It is not hard to show that each side of the cut is of
linear size, that Pi∗ has a sublinear number of neighbors across the cut (all of
which are corrupted), and that a sublinear number of parties get corrupted in
Phase II. Hence, there exists parties across the cut that are not neighbors of
Pi∗ and that are not corrupted in Phase II. However, by the attack strategy,
all of the neighbors of the virtual Pi∗ are corrupted in Phase I as well, and
this is also a linear size set, which is independent of the real neighbors of Pi∗ .
Therefore, it is not clear that there will actually remain honest parties across
the cut by the end of the protocol execution.

2. More importantly, even though we are guaranteed that no bits of communi-
cation have been passed along any path from Pi∗ to Pj∗ , this does not imply
that no information about xi∗ has been conveyed. For example, since the
graph develops as a function of parties’ inputs, it might be the case that
this situation of Pj∗ being blocked from Pi∗ , only occurs when xi∗ equals a
certain value.

We now discuss how these two challenges are addressed.

Guaranteeing honest parties across the cut. Unexpectedly, we cannot guaran-
tee existence of honest parties across the cut. Instead, we introduce a different
adversarial strategy, which we prove must have honest parties blocked across a
cut from Pi∗ , and for which there exist honest parties who cannot distinguish
which of the two attacks is taking place. More explicitly, we consider the “dual”
version of the original attack, denoted Acorrupt-i∗

n , where party Pi∗ is corrupted
and instead pretends to be under attack as per Ahonest-i∗

n above.
Blocking honest parties from xi∗ in Acorrupt-i∗

n does not contradict correctness
explicitly on its own, as Pi∗ is corrupted in this case. It is the combination of
both of these attacks that will enable us to contradict correctness. Namely, we
prove that:

– Under the attack Acorrupt-i∗
n , there exists a “blocked cut” (S, S̄) with uncor-

rupted parties on both sides. By agreement, all uncorrupted parties output
the same value yi∗ as the i∗’th coordinate of the output vector.

– The view of some of the uncorrupted parties under the attack Acorrupt-i∗
n is

identically distributed as that of uncorrupted parties in the original attack
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Ahonest-i∗
n . Thus, their output distribution must be the same across the two

attacks.
– Since under the attack Ahonest-i∗

n , the party Pi∗ is honest, by completeness, all
uncorrupted parties in Ahonest-i∗

n must output the correct value yi∗ = xi∗ .
– Thus, uncorrupted parties in Acorrupt-i∗

n (who have the same view) must output
the correct value xi∗ as well.

Altogether, this implies all honest parties in interaction with Acorrupt-i∗
n , in par-

ticular Pj∗ who is blocked across the cut from Pi∗ , must output yi∗ = xi∗ .

Bounding information transmission about xi∗ . The final step is to show that this
cannot be the case, since an uncorrupted party Pj∗ across the cut in Acorrupt-i∗

n

does not receive enough information about xi∗ to fully specify the input. This
demands delicate treatment of the specific attack strategy and analysis, as many
“side channel” signals within the protocol can leak information on xi∗ . Corrup-
tion patterns in Phase II, and their timing, can convey information “across” the
isolated cut. In fact, even the event of successfully reaching Phase II may be
correlated with the value of xi∗ .

For example, say the cut at the conclusion of the protocol is (S1, S̄1) with
i∗ ∈ S1 and j∗ ∈ S̄1, but at the beginning of Phase II there existed another cut
(S2, S̄2), for which S1 ∩ S2 �= ∅, S1 ∩ S̄2 �= ∅, S̄1 ∩ S2 �= ∅, and S̄1 ∩ S̄2 �= ∅. Since
any “bridge” party in S̄2 that receives a message from S2, gets corrupted and
discards the message, the view of honest parties in S̄1 might change as a result
of the corruption related to the cut (S2, S̄2), which in turn could depend on xi∗ .

Ultimately, we ensure that the final view of Pj∗ in the protocol can be simu-
lated given only “Phase I” information, which is independent of xi∗ , in addition
to the identity of the final cut in the graph, which reveals only a constant amount
of additional entropy.

Additional subtleties. The actual attack and its analysis are even more delicate.
E.g., it is important that the degree of the “simulated Pi∗ ,” by the adversarial
strategy Ahonest-i∗

n , will reach the threshold faster than the real Pi∗ . In addition,
in each of these cases, the threshold, and so the transition to the next phase,
could possibly be reached in a middle of a round, requiring detailed treatment.

1.3 Open Questions

This work leaves open many interesting lines of future study.

– Bridging the gap between upper and lower bounds. This equates to identify-
ing the core properties that necessitate graph expansion versus not. Natural
candidates suggested by our work are existence of setup information and
adaptive corruptions in the hidden or visible (yet private) channels model.

– What other graph properties are necessary (or not) to support secure com-
putation? Our new definitional framework may aid in this direction.

– Our work connects graph theory and secure protocols, giving rise to fur-
ther questions and design principles. For example, can good constructions
of expanders give rise to new communication-efficient MPC? On the other
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hand, can necessity of expansion (in certain settings) be used to argue new
communication complexity lower bounds?

Paper Organization

Basic notations are presented in Sect. 2. In Sect. 3, we provide our formalization
of the communication graph induced by a MPC protocol and related properties.
In Sect. 4, we describe our upper bound results, constructing protocols with
non-expanding graphs. In Sect. 5, we prove our lower bound.

2 Preliminaries

Graph-theoretic notations. Let G = (V,E) be an undirected graph of size n, i.e.,
|V | = n. Given a set S ⊆ V , we denote its complement set by S̄, i.e., S̄ = V \ S.
Given two disjoint subsets U1, U2 ⊆ V define the set of all the edges in G for
which one end point is in U1 and the other end point is in U2 as

edgesG(U1, U2) := {(u1, u2) : u1 ∈ U1, u2 ∈ U2, and (u1, u2) ∈ E} .

We denote by |edgesG(U1, U2)| the total number of edges going across U1 and
U2. For simplicity, we denote edgesG(S) = edgesG(S, S̄). A cut in the graph G is
a partition of the vertices V into two non-empty, disjoint sets {S, S̄}. An α-cut
is a cut {S, S̄} such that |edgesG(S)| ≤ α.

Given a graph G = (V,E) and a node i ∈ V , denote by G \ {i} = (V ′, E′)
the graph obtained by removing node i and all its edges, i.e., V ′ = V \ {i} and
E′ = E \ {(i, j) | j ∈ V ′}.

MPC Model. We consider multiparty protocols in the stand-alone, synchronous
model, and require security with guaranteed output delivery. We refer the reader
to [7,24] for a precise definition of the model. Throughout the paper we assume
malicious adversaries that can deviate from the protocol in an arbitrary manner.
We will consider both static corruptions, where the set of corrupted parties is
fixed at the onset of the protocol, and adaptive corruptions, where the adversary
can dynamically corrupt parties during the protocol execution, In addition, we
will consider both PPT adversaries and computationally unbounded adversaries.

Recall that in the synchronous model protocols proceed in rounds, where
every round consists of a send phase followed by a receive phase. The adversary
is assumed to be rushing, meaning that he can determine the messages for cor-
rupted parties after seeing the messages sent by the honest parties. We assume a
complete network of point-to-point channels (broadcast is not assumed), where
every party has the ability to send a message to every other party. We will
normally consider secure (private) channels where the adversary learns that a
message has been sent between two honest parties, but not its content. If a
public-key encryption is assumed, this assumption can be relaxed to authenti-
cated channels, where the adversary can learn the content of all messages (but
not change them). For our upper bound in the adaptive setting (Sect. 4.2) we
consider hidden channels (as introduced in [9]), where the adversary does not
even know whether two honest parties have communicated or not.
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3 Communication Graphs Induced by MPC Protocols

In this section, we present formal definitions of properties induced by the com-
munication graph of interactive protocols. These definitions are inspired by pre-
vious works in distributed computing [29,30,32,33] and multiparty computa-
tion [3,5,9] that constructed interactive protocols with low locality.

3.1 Ensembles of Protocols and Functionalities

In order to capture certain asymptotic properties of the communication graphs
of generic n-party protocols, such as edge expansion and locality, it is useful
to consider a family of protocols that are parametrized by the number of par-
ties n. This is implicit in many distributed protocols and in generic multiparty
protocols, for example [2,17,25,34,35]. We note that for many large-scale proto-
cols, e.g., protocols with low locality [3,5,29,30,32,33], the security guarantees
increase with the number of parties, and in fact, the number of parties is assumed
to be polynomially related to the security parameter.

Definition 1 (protocol ensemble). Let f = {fn}n∈N be an ensemble of func-
tionalities, where fn is an n-party functionality, let π = {πn}n∈N be an ensemble
of protocols, and let C = {Cn}n∈N be an ensemble of classes of adversaries (e.g.,
Cn is the class of PPT t(n)-adversaries). We say that π securely computes f tol-
erating adversaries in C if for every n that is polynomially related to the security
parameter κ, it holds that πn securely computes fn tolerating adversaries in Cn.

In Sect. 4, we will consider several classes of adversaries. We use the following
notation for clarity and brevity.

Definition 2. Let f = {fn}n∈N be an ensemble of functionalities and let
π = {πn}n∈N be an ensemble of protocols. We say that π securely computes f
tolerating adversaries of the form type (e.g., static PPT t(n)-adversaries, adap-
tive t(n)-adversaries, etc.), if π securely computes f tolerating adversaries in
C = {Cn}n∈N, where for every n, the set Cn is the class of adversaries of the
form type.

3.2 The Communication Graph of a Protocol’s Execution

Intuitively, the communication graph induced by a protocol should include an
edge (i, j) precisely if parties Pi and Pj exchange messages during the proto-
col execution. For instance, consider the property of locality, corresponding to
the maximum degree of the communication graph. When considering malicious
adversaries that can deviate from the protocol using an arbitrary strategy, it is
important to consider only messages that are sent by honest parties and mes-
sages that are received by honest parties. Otherwise, every corrupted party can
send a message to every other corrupted party, yielding a subgraph with degree
Θ(n). We note that restricting the analysis to only consider honest parties is
quite common in the analysis of protocols.
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Another issue that must be taken under consideration is flooding by the
adversary. Indeed, there is no way to prevent the adversary from sending mes-
sages from all corrupted parties to all honest parties; however, we wish to only
count those message which are actually processed by honest parties. To model
this, the receive phase of every communication round5 is composed of two sub-
phases:

1. The filtering sub-phase: Each party inspects the list of messages received
in the previous round, according to specific filtering rules defined by the
protocol, and discards the messages that do not pass the filter. The resulting
list of messages is appended to the local transcript of the protocol.

2. The processing sub-phase: Based on its local transcript, each party computes
the next-message function and obtains the list of messages to be sent in the
current round along with the list of recipients, and sends them to the relevant
parties.

In practice, the filtering procedure should be “lightweight,” such as verifying
validity of a signature. However, we assume only an abstraction and defer the
actual choice of filtering procedure (as well as corresponding discussion) to spe-
cific protocol specifications.

We now turn to define the communication graph of a protocol’s execution,
by which we mean the deterministic instance of the protocol defined by fixing
the adversary and all input values and random coins of the parties and the
adversarial strategy. We consider protocols that are defined in the correlated-
randomness model (e.g., for establishing PKI). This is without loss of generality
since by defining the “empty distribution,” where every party is given an empty
string, we can model also protocols in the plain model. Initially, we focus on the
static setting, where the set of corrupted parties is determined at the onset of
the protocol. We discuss the adaptive setting in the full version [4].

Definition 3 (protocol execution instance). For n ∈ N, let πn be an n-party
protocol, let κ be the security parameter, let x = (x1, . . . , xn) be an input vector
for the parties, let ρ = (ρ1, . . . , ρn) be correlated randomness for the parties, let
A be an adversary, let z be the auxiliary information of A, let I ⊆ [n] be the set
of indices of corrupted parties controlled by A, and let r = (r1, . . . , rn, rA) be the
vector of random coins for the parties and for the adversary.

Denote by instance(πn) = (πn,A, I, κ,x,ρ, z, r) the list of parameters that
deterministically define an execution instance of the protocol πn.

Note that instance(πn) fully specifies the entire views and transcript of the
protocol execution, including all messages sent to/from honest parties.

Definition 4 (communication graph of protocol execution). For n ∈ N,
let instance(πn) = (πn,A, I, κ,x,ρ, z, r) be an execution instance of the protocol
πn. We now define the following communication graphs induced by this execution
instance. Each graph is defined over the set of n vertices [n].
5 Recall that in the synchronous model, every communication round is composed of a
send phase and a receive phase.
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– Outgoing communication graph. The directed graph Gout(instance(πn)) =
([n], Eout) captures all the communication lines that are used by honest parties
to send messages. That is,

Eout(instance(πn)) = {(i, j) | Pi is honest and sent a message to Pj} .

– Incoming communication graph. The directed graph Gin(instance(πn)) =
([n], Ein) captures all the communication lines in which honest parties received
messages that were processed (i.e., excluding messages that were filtered out).
That is,

Ein(instance(πn))={(i, j) | Pj is honest and processed a message received from Pi} .

– Full communication graph. The undirected graph Gfull(instance(πn)) =
([n], Efull) captures all the communication lines in which honest parties
received messages that were processed, or used by honest parties to send mes-
sages.
That is,

Efull(instance(πn)) = {(i, j) | (i, j) ∈ Eout or (i, j) ∈ Ein} .

We will sometimes consider ensembles of protocol instances (for n ∈ N) and the
corresponding ensembles of graphs they induce.

Looking ahead, in subsequent sections we will consider the full communica-
tion graph Gfull. Apart from making the presentation clear, the graphs Gout and
Gin are used for defining Gfull above, and the locality of a protocol in Definition 5.
Note that Gout and Gin are interesting in their own right, and can be used for a
fine-grained analysis of the communication graph of protocols in various settings,
e.g., when transmitting messages is costly but receiving messages is cheap (or
vice versa). We leave it open as an interesting problem to study various graph
properties exhibited by these two graphs.

3.3 Locality of a Protocol

We now present a definition of communication locality, aligning with that of [5],
with respect to the terminology introduced above.

Definition 5 (locality of a protocol instance). Let instance(πn) =
(πn, κ,x,ρ,A, z, I ⊆ [n], r) be an execution instance as in Definition 4. For every
honest party Pi we define the locality of party Pi to be the number of parties from
which Pi received and processed messages, or sent message to; that is,

�i(instance(πn)) = |{j | (i, j) ∈ Gout} ∪ {j | (j, i) ∈ Gin}| .

The locality of instance(πn) is defined as the maximum locality of an honest party,
i.e.,

�(instance(πn)) = max
i∈[n]\I

{�i(instance(πn))} .
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We proceed by defining locality as a property of a protocol ensemble. The
protocol ensemble is parametrized by the number of parties n. To align with
standard notions of security where asymptotic measurements are with respect
to the security parameter κ, we consider the situation where the growth of n
and κ are polynomially related.

Definition 6 (locality of a protocol). Let π = {πn}n∈N be a family of proto-
cols in the correlated-randomness model with distribution Dπ = {Dπn

}n∈N, and
let C = {Cn}n∈N be a family of adversary classes. We say that π has locality
�(n) facing adversaries in C if for every n that is polynomially related to κ it
holds that for every input vector x = (x1, . . . , xn), every auxiliary information
z, every adversary A ∈ Cn running with z, and every set of corrupted parties
I ⊆ [n], it holds that

Pr [�(πn,A, I, κ,x, z) > �(n)] ≤ negl(κ),

where �(πn,A, I, κ,x, z) is the random variable corresponding to �(πn,
A, I, κ,x,ρ, z, r) when ρ is distributed according to Dπn

and r is uniformly
distributed.

3.4 Edge Expansion of a Protocol

The measure of complexity we study for the communication graph of interactive
protocols will be that of edge expansion (see discussion below). We refer the
reader to [18,28] for more background on expanders. We consider a definition
of edge expansion which satisfies a natural monotonic property, where adding
more edges cannot decrease the graph’s measure of expansion.

Definition 7 (edge expansion of a graph). Given an undirected graph G =
(V,E), the edge expansion ratio of G, denoted h(G), is defined as

h(G) = min
{S⊆V :|S|≤ |V |

2 }

|edges(S)|
|S| , (1)

where edges(S) denotes the set of edges between S and its complement S̄ = V \S.

Definition 8 (family of expander graphs). A sequence {Gn}n∈N of graphs is a
family of expander graphs if there exists a constant ε > 0 such that h(Gn) ≥ ε for
all n.

We now consider the natural extension of graph expansion to the setting of
protocol-induced communication graph.

Definition 9 (bounds on edge expansion of a protocol). Let π = {πn}n∈N, Dπ =
{Dπn

}n∈N, and C = {Cn}n∈N be as in Definition 6.

– A function f(n) is a lower bound of the edge expansion of π facing adversaries
in C, denoted f(n) ≤ hπ,Dπ,C(n), if for every n that is polynomially related
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to κ, for every x = (x1, . . . , xn), every A ∈ Cn running with z, and every
I ⊆ [n], it holds that

Pr [h(Gfull(πn,A, I, κ,x, z)) ≤ f(n)] ≤ negl(κ),

where Gfull(πn,A, I, κ,x, z) is the random variable Gfull(πn,A, I, κ,x,ρ, z, r),
when ρ is distributed according to Dπn

and r is uniformly distributed.
– A function f(n) is a upper bound of the edge expansion of π facing adver-

saries in C, denoted f(n) ≥ hπ,Dπ,C(n), if there exists a polynomial rela-
tion between n and κ such that for infinitely many n it holds that for every
x = (x1, . . . , xn), every A ∈ Cn running with z, and every I ⊆ [n], it holds
that

Pr [h(Gfull(πn,A, I, κ,x, z)) ≥ f(n)] ≤ negl(κ).

Definition 10 (expander protocol). Let π = {πn}n∈N, Dπ = {Dπn
}n∈N, and

C = {Cn}n∈N be as in Definition 6. We say that the communication graph of π is
an expander, facing adversaries in C, if there exists a constant function ε(n) > 0
such that ε(n) ≤ hπ,Dπ,C(n).

We note that most (if not all) secure protocols in the literature are expanders
according to Definition 10, both in the realm of distributed computing [17,20,22,
29,30,32,33] and in the realm of MPC [2,3,5,9,25]. Proving that a protocol is not
an expander according to this definition requires showing an adversary for which
the edge expansion is sub-constant. Looking ahead, both in our constructions of
protocols that are not expanders (Sect. 4) and in our lower bound, showing that
non-expander protocols can be attacked (Sect. 5), we use a stronger definition,
that requires that the edge expansion is sub-constant facing all adversaries, see
Definition 11 below. While it makes our positive results stronger, we leave it as
an interesting open question to attack protocols that do not satisfy Definition 10.

Definition 11 (strongly non-expander protocol). Let π = {πn}n∈N, Dπ =
{Dπn

}n∈N, and C = {Cn}n∈N be as in Definition 6. We say that the communica-
tion graph of π is strongly not an expander, facing adversaries in C, if there exists
a sub-constant function α(n) ∈ o(1) such that α(n) ≥ hπ,Dπ,C(n).

We next state a useful observation (proven in the full version [4]) that will
come into play in Sect. 5, stating that if the communication graph of π is strongly
not an expander, then there must exist a sublinear cut in the graph.

Lemma 1. Let π = {πn}n∈N be a family of protocols in the correlated-
randomness model with distribution Dπ = {Dπn

}n∈N, and let C = {Cn}n∈N

be such that Cn is the class of adversaries corrupting at most β · n parties, for a
constant 0 < β < 1.

Assuming the communication graph of π is strongly non-expanding facing
adversaries in C, there exists a sublinear function α(n) ∈ o(n) such that for
infinitely many n’s the full communication graph of πn has an α(n)-cut with
overwhelming probability.
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4 MPC with Non-Expanding Communication Graph

In this section, we show that in various standard settings, the communication
graph of an MPC protocol is not required to be an expander graph, even when
the communication locality is poly-logarithmic. In Sect. 4.1, we focus on static
corruptions and computational security. In Sect. 4.2, we extend the construction
to the information-theoretic setting and to the adaptive-corruption setting. The
proof for these extensions can be found in the full version [4].

4.1 Computational Security with Static Corruptions

We start by considering the computational setting with static corruptions.

Theorem 5. Let f = {fn}n∈N be an ensemble of functionalities, let δ > 0, and
assume that one-way functions exist. Then, the following holds in the PKI-hybrid
model with secure channels:

1. Let β < 1/4 − δ and let t(n) = β · n. Then, f can be securely computed by
a protocol ensemble π tolerating static PPT t(n)-adversaries such that the
communication graph of π is strongly not an expander.

2. Let β < 1/6 − δ and let t(n) = β · n. Then, f can be securely computed by a
protocol ensemble π tolerating static PPT t(n)-adversaries such that (1) the
communication graph of π is strongly not an expander, and (2) the locality of
π is poly-logarithmic in n.

3. Let β < 1/4−δ, let t(n) = β ·n, and assume in addition the secret-key infras-
tructure (SKI) model6 and the existence of public-key encryption schemes.
Then, f can be securely computed by a protocol ensemble π tolerating static
PPT t(n)-adversaries such that (1) the communication graph of π is strongly
not an expander, and (2) the locality of π is poly-logarithmic in n.7

Proof. The theorem follows from Lemma 2 (below) by instantiating the hybrid
functionalities using existing MPC protocols from the literature.

– The first part follows using honest-majority MPC protocols that exist assum-
ing one-way functions in the secure-channels model, e.g., the protocol of
Beaver et al. [1] or of Damg̊ard and Ishai [14].

– The second part follows using the low-locality MPC protocol of Boyle et al.
[5] that exists assuming one-way functions in the PKI model with secure
channels and tolerates t = (1/3 − δ)n static corruptions.

– The third part follows using the low-locality MPC protocol of Chandran et al.
[9] that exists assuming public-key encryption in the PKI and SKI model with
authenticated channels and tolerates t < n/2 static corruptions. 
�

6 In the SKI model every pair of parties has a secret random string that is unknown
to other parties.

7 This item hold in the authenticated-channels model, since we assume PKE.
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Ideal Functionalities used in the Construction. The proof to Theorem 5
relies on Lemma 2 (below). We start by defining the notations and the ideal
functionalities that will be used in the protocol considered in Lemma2.

Signature notations. Given a signature scheme (Gen,Sign,Verify) and m pairs
of signing and verification keys (ski, vki) ← Gen(1κ) for i ∈ [m], we use the
following notations for signing and verifying with multiple keys:

– Given a message μ we denote by Signsk1,...,skm
(μ) the vector of m signatures

σ = (σ1, . . . , σm), where σi ← Signski
(μ).

– Given a message μ and a signature σ = (σ1, . . . , σm), we denote by
Verifyvkm+1,...,vk2m

(μ, σ) the verification algorithm that for every i ∈ [m]
computes bi ← Verifyvkm+i

(μ, σi), and accepts the signature σ if and only
if

∑m
i=1 bi ≥ m − t, i.e., even if up to t signatures are invalid.

We note that it is possible to use multi-signatures or aggregated signatures in
order to obtain better communication complexity, however, we use the nota-
tion above both for simplicity and as a step towards the information-theoretic
construction in the following section.

The Elect-and-Share functionality. In the Elect-and-Share m-party functionality,
f
(t′,n′)
elect-share, every party Pi has a pair of inputs (xi, ski), where xi ∈ {0, 1}∗ is

the “actual input” and ski is a private signing key. The functionality starts by
electing two random subsets C1, C2 ⊆ [m] of size n′, and signing each subset using
all signing keys. In addition, every input value xi is secret shared using a (t′, n′)
error-correcting secret-sharing scheme. Every party receives as output the subset
C1, whereas a party Pi, for i ∈ C1, receives an additional output consisting of a
signature on C1, the signed subset C2, along with one share for each one of the
m input values.

The Reconstruct-and-Compute functionality. The Reconstruct-and-Compute
functionality, f

(vk1,...,vkm)
recon-compute, is an m-party functionality. Denote the party-set by

{Pm+1, . . . , P2m}. Every party Pm+i has an input value xm+i ∈ {0, 1}∗, and a
potential additional input value consisting of a signed subset C2 ⊆ [m] and a
vector of m shares. The functionality starts by verifying the signatures, where
every invalid input is ignored. The signed inputs should define a single subset
C2 ⊆ [m] (otherwise the functionality aborts), and the functionality uses the
additional inputs of parties Pm+i, for every i ∈ C2, in order to reconstruct the
m-tuple (x1, . . . , xm). Finally, the functionality computes y = f(x1, . . . , x2m)
and hands y as the output for every party.

The Output-Distribution functionality. The m-party Output-Distribution func-
tionality is parametrized by a subset C1 ⊆ [m]. Every party Pi, with i ∈ C1,
hands in a value, and the functionality distributes the majority of these inputs
to all the parties.
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Constructing Non-Expander Protocols.

High-level overview of the protocol. Having defined the ideal functionalities, we
are ready to present the main lemma. We start by describing the underlying idea
behind the non-expanding MPC protocol πne

n (Fig. 2). At the onset of the protocol,
the party-set is partitioned into two subsets of size m = n/2, a left subset and a
right subset (see Fig. 1). The left subset will invoke the Elect-and-Share function-
ality, that elects two subsets C1, C2 ⊆ [m] of size n′ = log2(n). The parties in the
left subset corresponding to C1 and the parties in the right subset corresponding to
C2 will form a “bridge”. The parties in C1 will receive shares of all inputs values of
parties in the left subset, and transfer them to C2. Next, the right subset of parties
will invoke the Reconstruct-and-Compute functionality, where each party hands
its input value, and parties in C2 additionally provide the shares they received from
C1. The functionality reconstructs the left-subset’s inputs, computes the function
f and hands the output to the right subset. Finally, C2 transfers the output value
to C1, and the left subset invoke the Output-Distribution functionality in order to
distribute the output value to all the parties.

= ,… , = ,… ,
Fig. 1. The non-expanding subsets in the protocol πne. The sets C1 and C2 are of poly-
logarithmic size and the sets P1 and P2 are of linear size. The number of edges between
P1 and P2 is poly-logarithmic.

Lemma 2. Let f = {fn}n∈2N,8 where fn is an n-party functionality for n = 2m,
let δ > 0, and assume that one-way functions exist. Then, in the PKI-hybrid
model with secure channels, where a trusted party additionally computes the
m-party functionality-ensembles (felect-share, frecon-compute, fout-dist) tolerating γ · m
corruptions, there exists a protocol ensemble π that securely computes f toler-
ating static PPT βn-adversaries, for β < min(1/4 − δ, γ/2), with the following
guarantees:

1. The communication graph of π is strongly not an expander.
8 For simplicity, we consider even n’s. Extending the statement to any n is straight-
forward, however, adds more details.
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2. Denote by f1, f2, f3 the functionality-ensembles felect-share, frecon-compute, fout-dist
(resp.). If protocol-ensembles ρ1, ρ2, ρ3 securely compute f1, f2, f3 (resp.) with
locality �ρ = �ρ(m), then πfi→ρi (where every call to fi is replaced by an
execution of ρi) has locality � = 2 · �ρ + log2(n).

Proof. For m ∈ N and n = 2m, we construct the n-party protocol πne
n (see

Fig. 2) in the (felect-share, frecon-compute, fout-dist)-hybrid model. The parameters for
the protocol are n′ = log2(n) and t′ = (1/2 − δ) · n′. We start by proving
in Proposition 1 that the protocol πne

n securely computes fn. Next, in Propo-
sition 2 we prove that the communication graph of πne is strongly not an
expander. Finally, in Proposition 3 we prove that by instantiating the function-
alities (felect-share, frecon-compute, fout-dist) using low-locality protocols, the resulting
protocol has low locality.

Fig. 2. Non-expanding MPC in the (felect-share, frecon-compute, fout-dist)-hybrid model
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Proposition 1. For sufficiently large n, the protocol πne
n securely com-

putes the function fn, tolerating static PPT βn-adversaries, in the
(felect-share, frecon-compute, fout-dist)-hybrid model.

The proof of Proposition 1 can be found in the full version [4].

Proposition 2. The communication graph of the Protocol πne is strongly not
an expander, facing static PPT βn-adversaries.

Proof. For n = 2m, consider the set P1 = {P1, . . . , Pm} and its complement
P2 = P \ P1. For any input vector and for every static PPT βn-adversary it
holds that with overwhelming probability that |P1| = n/2 and edges(P1,P2) =
log2(n) · log2(n). Therefore, considering the function

f(n) =
2 log4(n)

n
,

it holds that f(n) ∈ o(1) and f(n) is an upper bound of the edge expansion
of πne. We conclude that the communication graph of πne is strongly not an
expander. 
�
Proposition 3. Let ρ1, ρ2, ρ3, and πfi→ρi be the protocols defined in Lemma 2,
and let �ρ = �ρ(m) be the upper bound of the locality of ρ1, ρ2, ρ3. Then πfi→ρi

has locality � = 2 · �ρ + log2(n).

Proof. Every party in P1 communicates with �ρ parties when executing ρ1, and
with at most another �ρ parties when executing ρ3. In addition, every party in
C1 communicates with all n′ = log2(n) parties in C2. Similarly, every party in P2

communicates with �ρ parties when executing ρ2, and parties in C2 communicates
with all n′ parties in C1. It follows that maximal number of parties that a party
communicates with during the protocol is 2 · �ρ + log2(n). 
�
This concludes the proof of Lemma 2. 
�

4.2 Additional Results

Information-Theoretic Security. The protocol in Sect. 4.1 relies on digital
signatures, hence, security is guaranteed only in the presence of computationally
bounded adversaries. Next, we gain security facing all-powerful adversaries by
using information-theoretic signatures. We prove the following theorem in the
full version [4].

Theorem 6. Let f = {fn}n∈N be an ensemble of functionalities and let δ > 0.
Then, the following holds in the IT-PKI-hybrid model with secure channels:

1. Let β < 1/4 − δ and let t = β · n. Then, f can be t-securely computed by a
protocol ensemble π tolerating static t(n)-adversaries such that the communi-
cation graph of π is strongly not an expander.

2. Let β < 1/12 − δ and let t = β · n. Then, f can be t-securely computed
by a protocol ensemble π tolerating static t(n)-adversaries such that (1) the
communication graph of π is strongly not an expander, and (2) the locality of
π is poly-logarithmic in n.
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Adaptive Corruptions. In this section, we focus on the adaptive setting,
where the adversary can corrupt parties dynamically, based on information gath-
ered during the course of the protocol.

Adjusting Lemma 2 to the adaptive setting is not straightforward, since once
the subsets C1 and C2 are known to the adversary he can completely corrupt
them. A first attempt to get around this problem, is not to reveal the entire sub-
sets in the output of the Elect-and-Share functionality, but rather, let each party
in C1 learn the identity of a single party in C2 with which he will communicate.
This way, if a party in C1 (resp. C2) gets corrupted, only one additional party in
C2 (resp. C1) is revealed to the adversary. This solution comes with the price of
tolerating a smaller fraction of corrupted parties, namely, (1/8 − δ) fraction.

This solution, however, is still problematic in the adaptive setting if the
adversary can monitor the communication lines, even when they are completely
private (as in the secure-channels setting). The reason is that once the adversary
sees the communication that is sent between C1 and C2 he can completely corrupt
both subsets. This problem is inherent when the communication lines are visible
to the adversary, therefore, we turn to the hidden-channels setting that was used
by Chandran et al. [9], where the adversary does not learn whether a message is
sent between two honest parties.

Theorem 7. Let f = {fn}n∈N be an ensemble of functionalities, let δ > 0, let
β < 1/8 − δ, and let t = β · n. Then, the following holds in the hidden-channels
model:

1. Assuming the existence of one-way functions, f can be securely computed
by a protocol ensemble π in the PKI model tolerating adaptive PPT t(n)-
adversaries such that the communication graph of π is strongly not an
expander.

2. Assume in addition the SKI model and non-committing encryption. Then, f
can be securely computed by a protocol ensemble π in the PKI model tolerating
adaptive PPT t(n)-adversaries such that (1) the communication graph of π
is strongly not an expander, and (2) the locality of π is poly-logarithmic in n.

3. f can be securely computed by a protocol ensemble π in the IT-PKI model
tolerating adaptive t(n)-adversaries such that the communication graph of π
is strongly not an expander.

5 Expansion is Necessary for Correct Computation

In this section, we show that in certain natural settings there exist functionalities
such that the final communication graph of any MPC protocol that securely
computes them must be an expander. In fact, we prove a stronger statement,
that removing a sublinear number of edges from such graphs will not disconnect
them. We consider the plain model, in which parties do not have any trusted
setup assumptions, a PPT adaptive adversary, and focus on parallel multi-valued
broadcast (also known as interactive consistency [35]), where every party has an
input value, and all honest parties agree on a common output vector, such that
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if Pi is honest then the i’th coordinate equals Pi’s input. In particular, our proof
does not rely on any privacy guarantees of the protocol, merely its correctness.

For simplicity, and without loss of generality, we assume the security param-
eter is the number of parties n.

Definition 12 (parallel broadcast). A protocol ensemble π = {πn}n∈N is a
t(n)-resilient, parallel broadcast protocol with respect to input space {{0, 1}n}n∈N,
if there exists a negligible function μ(n), such that for every n ∈ N, every party
Pi in πn has input xi ∈ {0, 1}n and outputs a vector of n values yi = (yi

1, . . . , y
i
n)

such that the following is satisfied, except for probability μ(n). Facing any adap-
tive, malicious PPT adversary that dynamically corrupts and controls a subset
of parties {Pj}j∈I , with I ⊆ [n] of size |I| ≤ t(n), it holds that:

– Agreement. There exists a vector y = (y1, . . . , yn) such that for every party
Pi that is honest at the conclusion of the protocol it holds that yi = y.

– Validity. For every party Pi that is honest at the conclusion of the protocol
it holds that the i’th coordinate of the common output equals his input value,
i.e., yi = xi.

Recall that a connected graph is k-edge-connected if it remains connected
whenever fewer than k edges are removed. We are now ready to state the main
result of this section. We note that as opposed to Sect. 4.2, where we considered
adaptive corruptions in the hidden-channels model, this section considers the
parallel secure message transmission (SMT) model, formally defined in Sect. 5.1,
where the adversary is aware of communication between honest parties, but not
of the message content.

Theorem 8. Let β > 0 be a fixed constant, let t(n) = β · n, and let π =
{πn}n∈N be a t(n)-resilient, parallel broadcast protocol with respect to input space
{{0, 1}n}n∈N, in the parallel SMT hybrid model (in the computational setting,
tolerating an adaptive, malicious PPT adversary). Then, the communication
graph of π must be α(n)-edge-connected, for every α(n) ∈ o(n).

From Theorem 8 and Lemma 1 (stating that if π is strongly not an expander
then there must exist a sublinear cut in the graph) we get the following corollary.

Corollary 1. Consider the setting of Theorem8. If the communication graph of
π is strongly not an expander (as per Definition 11), then π is not a t(n)-resilient
parallel broadcast protocol.

The remainder of this section goes towards proving Theorem8. We start
by presenting the communication model in Sect. 5.1. In Sect. 5.2, we prove a
graph-theoretic theorem that will be used in the core of our proof and may be
of independent interest. Then, in Sect. 5.3 we present the proof of Theorem 8.
Some of the proofs are deferred to the full version [4].
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5.1 The Communication Model

We consider secure communication channels, where the adversary can see that
a message has been sent but not its content (in contrast to the hidden-
communication model, used in Sect. 4.2, where the communication between hon-
est parties was hidden from the eyes of the adversary). A standard assumption
when considering adaptive corruptions is that in addition to being notified that
an honest party sent a message, the adversary can corrupt the sender before the
receiver obtained the message, learn the content of the message, and replace it
with another message of its choice that will be delivered to the receiver. Although
the original modular composition framework [7] does not give the adversary such
power, this ability became standard after the introduction of the secure message
transmission (SMT) functionality in the UC framework [8]. As we consider syn-
chronous protocols, we use the parallel SMT functionality that was formalized
in [12,13].9

Definition 13 (parallel SMT). The parallel secure message transmission func-
tionality fpsmt is a two-phase functionality. For every i, j ∈ [n], the functionality
initializes a value xi

j to be the empty string ε (the value xi
j is the message to be

sent from Pi to Pj).

– The input phase. Every party Pi sends a vector of n messages (vi
1, . . . , v

i
n).

The functionality sets xi
j = vi

j, and provides the adversary with leakage infor-
mation on the input values. As we consider rushing adversaries, who can
determine the messages to be sent by the corrupted parties after receiving
the messages sent by the honest parties, the leakage function should leak the
messages that are to be delivered from honest parties to corrupted parties.
Therefore, the leakage function is

lpsmt

(
(x1

1, . . . , x
1
n), . . . , (xn

1 , . . . , xn
n)

)
=

(
y1
1 , y

1
2 , . . . , y

n
n−1, y

n
n

)
,

where yi
j = |xi

j | in case Pj is honest and yi
j = xi

j in case Pj is corrupted.
We consider adaptive corruptions, and so, the adversary can corrupt an hon-
est party during the input phase based on this leakage information, and send
a new input on behalf of the corrupted party (note that the message are not
delivered yet to the honest parties).

– The output phase. In the second phase, the messages are delivered to the
parties, i.e., party Pi receives the vector of messages (x1

i , . . . , x
n
i ).

In addition, we assume that the parties do not have any trusted-setup assump-
tion.

9 We note that by considering secure channels, that hide the content of the messages
from the adversary, we obtain a stronger lower bound than, for example, authenti-
cated channels.
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5.2 A Graph-Theoretic Theorem

Our lower-bound proof is based on the following graph-theoretic theorem, which
we believe may be of independent interest. We show that every graph in which
every node has a linear degree, can be partitioned into a constant number of
linear-size sets that are pairwise connected by sublinear many edges. These sub-
sets are “minimal cuts” in the sense that every sublinear cut in the graph is
a union of some of these subsets. The proof of the theorem given in the full
version [4].

Definition 14 ((α, d)-partition). Let G = (V,E) be a graph of size n. An
(α, d)-partition of G is a partition Γ = (U1, . . . , U�) of V that satisfies the fol-
lowing properties:

1. For every i ∈ [�] it holds that |Ui| ≥ d.
2. For every i �= j, there are at most α edges between Ui and Uj, i.e.,

|edgesG(Ui, Uj)| ≤ α.
3. For every S ⊆ V such that {S, S̄} is an α-cut, i.e., |edgesG(S)| ≤ α, it holds

that there exists a subset J � [�] for which S =
⋃

j∈J Uj and S̄ =
⋃

j∈[�]\J Uj.

In Theorem 9 we first show that if every node in the graph has a linear
degree d(n), and α(n) is sublinear, then for sufficiently large n there exists an
(α(n), d(n))-partition of the graph, and moreover, the partition can be found in
polynomial time.

Theorem 9. Let c > 1 be a constant integer, let α(n) ∈ o(n) be a fixed sublinear
function in n, and let {Gn}n∈N be a family of graphs, where Gn = ([n], En) is
defined on n vertices, and every vertex of Gn has degree at least n

c − 1. Then,
for sufficiently large n it holds that:

1. There exists a (α(n), n/c)-partition of Gn, denoted Γ ; it holds that |Γ | ≤ c.
2. A (α(n), n/c)-partition Γ of Gn can be found in (deterministic) polynomial

time, given the n × n adjacency matrix of Gn.

Note that if for every n there exists an α(n)-cut in Gn, then it immediately
follows that |Γ | > 1, i.e., the partition is not the trivial partition of the set of all
nodes.

5.3 Proof of Main Theorem (Theorem 8)

High-level overview of the attack. For n ∈ N, consider an execution of the alleged
parallel broadcast protocol πn over uniformly distributed n-bit input values for
the parties (x1, . . . , xn) ∈R ({0, 1}n)n. We define two ensembles of adversarial
strategies {Ahonest-i∗

n }n∈N and {Acorrupt-i∗
n }n∈N (described in full in Sect. 5.3).

The adversary Acorrupt-i∗
n corrupts a random party Pi∗ , and simulates an hon-

est execution on a random input x̃i∗ until Pi∗ has degree β/4. Next, Acorrupt-i∗
n
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switches the internal state of Pi∗ with a view that is consistent with an hon-
est execution over the initial input xi∗ , where all other parties have ran-
dom inputs. The adversary Acorrupt-i∗

n continues by computing the (α(n), n/c)-
partition {U1, . . . , U�} of the communication graph, (where c is a constant
depending only on β – this is possible due to Theorem 9), and blocking every
message that is sent between every pair of Ui’s. In Lemma 3, we show that
there exist honest parties that at the conclusion of the protocol have received a
bounded amount of information on the initial input value xi∗ .

The second adversary, Ahonest-i∗
n , is used for showing that under the previous

attack, every honest party will eventually output the initial input value xi∗

(Lemma 4). This is done by having Ahonest-i∗
n corrupt all the neighbors of Pi∗ ,

while keeping Pi∗ honest, and simulate the previous attack to the remaining
honest parties.

We show that there exist honest parties whose view is identically distributed
under both attacks, and since they output xi∗ in the latter, they must also
output xi∗ in the former. By combining both of these lemmata, we then derive
a contradiction.

Proof (Proof of Theorem 8). First, since we consider the plain model, without
any trusted setup assumptions, known lower bounds [21,34,35] state that parallel
broadcast cannot be computed for t(n) ≥ n/3, therefore, we can focus on 0 <
β < 1/3, i.e., the case where t(n) = β · n < n/3.

Assume toward a contradiction that π is t(n)-resilient parallel broadcast pro-
tocol in the above setting, and that there exists a sublinear function α(n) ∈ o(n)
such that the communication graph of π is not α(n)-edge-connected, i.e., for
sufficiently large n there exists a cut {Sn, S̄n} of weight at most α(n).

Notations. We start by defining a few notations. For a fixed n,10 consider the
following independently distributed random variables

InputsAndCoins =
(
X1, . . . , Xn, R1, . . . , Rn, X̃1, . . . , X̃n, R̃1, . . . , R̃n, I∗

)
,

where for every i ∈ [n], each Xi and X̃i take values uniformly at random
in the input space {0, 1}n, each Ri and R̃i take values uniformly at random
in {0, 1}∗, and I∗ takes values uniformly at random in [n]. During the proof,
(Xi, Ri) represent the pair of input and private randomness of party Pi, whereas
(X̃1, . . . , X̃n, R̃1, . . . , R̃n, I∗) correspond to the random coins of the adversary
(used in simulating the two executions towards the honest parties). Unless stated
otherwise, all probabilities are taken over these random variables.

Let RedExec be a random variable defined as

RedExec :=
(
X−I∗ , X̃I∗ , R−I∗ , R̃I∗

)
.

That is, RedExec contains Xi and Ri for i ∈ [n]\{I∗}, along with X̃I∗ and R̃I∗ .
We denote by the “red execution” an honest protocol execution when the inputs
10 For clarity, we denote the random variables without the notation n.
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and private randomness of the parties are (X−I∗ , X̃I∗ , R−I∗ , R̃I∗). We denote by
the “blue execution” an honest protocol execution when the inputs and private
randomness of the parties are (X̃−I∗ ,XI∗ , R̃−I∗ , RI∗). Note that such a sample
fully determines the view and transcript of all parties in an honest simulated
execution of πn.

Let FinalCutcorrupt be a random variable defined over 2[n] ∪ {⊥}. The dis-
tribution of FinalCutcorrupt is defined by running protocol π until its conclu-
sion with adversary Acorrupt-i∗

n (defined in Sect. 5.3) on inputs and coins sampled
according to InputsAndCoins. If at the conclusion of the protocol there is no
α(n)-cut in the graph, then set the value of FinalCutcorrupt to be ⊥; otherwise,
set the value to be the identity of the smallest α(n)-cut {S, S̄} in the commu-
nication graph according to some canonical ordering on the α(n)-cuts. We will
prove that conditioned on the value of RedExec, then FinalCutcorrupt can only
take one of a constant number of values depending only on β (and not on n).

Let E1 denote the event that PI∗ is the last among all the parties to reach
degree βn/4 in both the red and the blue honest executions of the protocol. More
precisely, the event that PI∗ reaches degree βn/4 in both executions, and if it
has reached this degree in round ρ in the red (blue) execution, then all parties
in the red (blue) execution have degree at least βn/4 in round ρ.

Let E2 denote the event that the degree of PI∗ reaches βn/4 in the red execu-
tion before, or at the same round as, in the blue execution. Note that E1 and E2

are events with respect to two honest executions of the protocol (the red execu-
tion and the blue execution) that are defined according to InputsAndCoins. In
the adversarial stategies that are used in the proof, the corrupted parties operate
in a way that indeed induces the red and blue executions, and so, the events E1

and E2 are well defined in an execution of the protocol with those adversarial
strategies.

In Sect. 5.3, we formally describe two adversarial strategies, Ahonest-i∗
n and

Acorrupt-i∗
n . We denote by Y corrupt

I∗ , respectively Y honest
I∗ , the random variable that

corresponds to the I∗’th coordinate of the common output of honest parties,
when running over random inputs with adversarial strategy Acorrupt-i∗

n , respec-
tively Ahonest-i∗

n .

Proof structure. Our proof follows from two main steps. In Lemma 3, stated in
Sect. 5.3, we show that in an execution of πn on random inputs with adversary
Acorrupt-i∗

n , it holds that (1) Pr [E1 ∩ E2] ≥ 1/2n2 − negl(n), and that (2) condi-
tioned on the event E1 ∩ E2, there exists an honest party Pj∗ such that XI∗ ,
conditioned on E1 ∩ E2 and on the view of Pj∗ at the conclusion of the protocol,
still retains at least n/4 bits of entropy. This means, in particular, that Pj∗ will
output the value XI∗ only with negligible probability. Hence, by agreement, the
probability for any of the honest parties to output XI∗ in an execution with
Acorrupt-i∗

n is negligible. In particular,

Pr
[
Y corrupt

I∗ = XI∗ | E1 ∩ E2

]
= negl(κ).

In Lemma 4, stated in Sect. 5.3, we show that in an execution of π on random
inputs with adversary Ahonest-i∗

n , it holds that (1) with overwhelming probability
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all honest parties output Xi∗ (this holds by correctness, since PI∗ remains hon-
est), i.e.,

Pr
[
Y honest

I∗ = XI∗
] ≥ 1 − negl(κ),

and that (2) conditioned on the event E1∩E2, there exists an honest party whose
view is identically distributed as in an execution with Acorrupt-i∗

n , therefore,

Pr
[
Y corrupt

I∗ = Y honest
I∗ | E1 ∩ E2

] ≥ 1 − negl(κ).

From the combination of the two lemmata, we derive a contradiction. 
�

Defining Adversarial Strategies. As discussed above, the main idea behind
the proof is to construct two dual adversarial strategies that will show that on
the one hand, the output of all honest parties must contain the initial value of a
randomly chosen corrupted party, and on the other hand, there exist parties that
only receive a bounded amount of information on this value during the coarse
of the protocol.

We use the following notation for defining the adversarial strategies. Virtual
parties that only exist in the head of the adversary are denoted with “tilde”. In
particular, for a random i∗ ∈ [n], we denote by P̃i∗ a virtual party that emulates
the role of Pi∗ playing with the real parties using a random input in the so-called
“red execution,” and by {Q̃i}i	=i∗ virtual parties that emulate an execution over
random inputs towards Pi∗ .11

The adversary Ahonest-i∗
n . At a high level, the adversary Ahonest-i∗

n chooses a random
i∗ ∈ [n] and isolates the honest party Pi∗ . The adversary Ahonest-i∗

n consists of three
phases. In Phase I, Ahonest-i∗

n induces two honestly distributed executions.

– The first (red) execution is set by simulating an honest execution of a virtual
party P̃i∗ over a random input x̃i∗ towards all other parties. The adversary
corrupts any party that sends a message to Pi∗ , blocks its message, and
simulates P̃i∗ receiving this message. Whenever P̃i∗ should send a message to
some Pj , the adversary corrupts the Pj , and instructs him to proceed as if he
received the intended message from P̃i∗ .

– For the second (blue) execution, Ahonest-i∗
n emulates a virtual execution with

virtual parties (Q̃1, . . . , Q̃n) \ {Q̃i∗} on random inputs towards the honest
party Pi∗ . To do so, whenever Pi∗ sends a message to Pj in the real execu-
tion, the adversary corrupts Pj , instructing him to ignore this message, and
simulates this message from Pi∗ to Q̃j in the virtual execution (that is run-
ning in the head of the adversary). Whenever a party Q̃j sends a message
to Pi∗ in the virtual execution, the adversary corrupts the real party Pj and
instructs him to send this message to Pi∗ in the real execution.

11 Following the red pill blue pill paradigm, in the adversarial strategy Ahonest-i∗
n , the

chosen party Pi∗ is participating (without knowing it) in the blue execution, which
is a fake execution that does not happen in the real world. The real honest parties
participate in the red execution, where the adversary simulates Pi∗ by running a
virtual party.
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Phase II begins when the degree of Pi∗ in the red execution is at least (β/4)·n;
if Pi∗ reaches this threshold faster in the blue execution, the attack fails. Phase III
begins when the degree of Pi∗ in the real execution is at least (β/4) · n.

Ideally, Phase I will continue until all parties in the real execution have a
linear degree, and before the adversary will use half of his “corruption budget”,
i.e., (β/2) · n. This would be the case if we were to consider a single honest
execution of the protocol, since we show that there always exists a party that
will be the last to reach the linear-degree threshold with a noticeable probability.
However, as the attack induces two independent executions, in which the degree
of the parties can grow at different rates, care must be taken. We ensure that even
though Pi∗ runs in the blue execution, by the time Pi∗ will reach the threshold,
all other parties (that participate in the red execution) will already have reached
the threshold, and can be partitioned into “minimal” α(n)-cuts, as follows.

The adversary allocates (β/4)·n corruptions for the red execution and (β/4)·n
corruptions for the blue execution. We show that with a noticeable probability,
once P̃i∗ has degree (β/4) · n in the red execution, all other parties in the red
execution also have high degree. Consider the communication graph of the red
execution without the virtual party P̃i∗ (i.e., after removing the node i∗ and
its edges); by Theorem 9 there exists an (α(n), (β/4)n − 1) partition of this
graph into a constant number of linear-size subsets that are connected with
sublinear many edges, denoted Γ = {U1, . . . , U�} (in particular, this partition
is independent of xi∗). In Phase II, the adversary continues blocking outgoing
messages from Pi∗ towards the real honest parties, until the degree of Pi∗ in the
real execution is βn/4. In addition, Ahonest-i∗

n blocks any message that is sent
between two subsets in the partition, by corrupting the recipient and instructing
him to ignore messages from outside of his subset.

In Phase III, which begins when Pi∗ has high degree in the real execution,
the adversary adds Pi∗ to one of the subsets in the partition, in which Pi∗ has
many neighbors, and continues to block messages between different subsets in
the partition until the conclusion of the protocol.

We note that special care must be taken in the transition between the phases,
since such a transition can happen in a middle of a round, after processing some
of the messages, but not all. Indeed, if the transition to the next phase will
happen at the end of the round, the adversary may need to corrupt too many
parties. For this reason, in Phases I and II, we analyze the messages to and from
Pi∗ one by one, and check whether the threshold has been met after each such
message.

The adversary Acorrupt-i∗
n . The adversary Acorrupt-i∗

n corrupts the randomly chosen
party Pi∗ , and emulates the operations of an honest Pi∗ that is being attacked
by Ahonest-i∗

n .
In Phase I, the adversary Acorrupt-i∗

n induces two honestly distributed execu-
tions, by simulating an honest execution of a virtual party P̃i∗ over a random
input x̃i∗ towards all other honest parties (the red execution), and furthermore,
runs in its mind a virtual execution over the initial input xi∗ and random inputs
x̃i for i �= i∗ (the blue execution). This phase continues until P̃i∗ has degree
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βn/4 in the red execution (no parties other than Pi∗ are being corrupted). If all
other parties in the red execution have high degree, then the adversary finds the
partition of the red graph as in the previous attack (the partition is guaranteed
by Theorem 9).

In Phase II, the adversary continues simulating the corrupted Pi∗ towards
the real honest parties until the degree of Pi∗ in the real execution is βn/4;
however, his communication is based on the view in the blue execution at the
end of Phase I (this is no longer an honest-looking execution). During this phase,
Acorrupt-i∗

n blocks any message that is sent between two subsets in the partition.
In Phase III, that begins when Pi∗ has high degree (in the real execution),

Acorrupt-i∗
n adds Pi∗ to one of the subsets in the partition, in which Pi∗ has many

neighbors, and continues to block messages between different subsets in the
partition until the conclusion of the protocol.

The Core Lemmata. In the full version [4] we prove the following core lemmata
that conclude the proof of the theorem.

Lemma 3. Consider an execution of πn on random inputs (X1, . . . , Xn) for the
parties with adversary Acorrupt-i∗

n , and the events E1 and E2 as defined in Sect. 5.3.
Then, it holds that:

1. Pr [E1 ∩ E2] ≥ 1/2n2 − negl(n).
2. Conditioned on the event E1 ∩ E2, there exists an honest party PJ∗ such that

H(XI∗ | E1 ∩ E2,view
corrupt
J∗ ) ≥ n/4,

where viewcorrupt
J∗ is the random variable representing the view of PJ∗ at the

end of the protocol.

Lemma 4. Consider an execution of πn on random inputs (X1, . . . , Xn) for the
parties with adversary Ahonest-i∗

n . Then, conditioned on the event E1 ∩ E2 it holds
that:

1. The I∗’th coordinate of the common output Y honest
I∗ equals the initial input

XI∗ of PI∗ , except for negligible probability, i.e.,

Pr
[
Y honest

I∗ = XI∗ | E1 ∩ E2

] ≥ 1 − negl(n).

2. The I∗’th coordinate of the common output Y honest
I∗ in an execution with

Ahonest-i∗
n equals the I∗’th coordinate of the common output Y corrupt

I∗ in an
execution with Acorrupt-i∗

n , except for negligible probability, i.e.,

Pr
[
Y honest

I∗ = Y corrupt
I∗ | E1 ∩ E2

] ≥ 1 − negl(n).
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