
1

MUSTER: Adaptive Energy-Aware Multi-Sink

Routing in Wireless Sensor Networks
Luca Mottola and Gian Pietro Picco

Abstract— Wireless sensor networks (WSNs) are increasingly
proposed for applications characterized by many-to-many com-
munication, where multiple sources report their data to multiple
sinks. Unfortunately, mainstream WSN collection protocols are
generally designed to account for a single sink and, dually, WSN
multicast protocols optimize communication from a single source.

In this paper we present MUSTER, a routing protocol expressly
designed for many-to-many communication. First, we devise
an analytical model to compute, in a centralized manner, the
optimal solution to the problem of simultaneously routing from
multiple sources to multiple sinks. Next, we illustrate heuristics
approximating the optimal solution in a distributed setting, and
their implementation in MUSTER. To increase network lifetime,
MUSTER minimizes the number of nodes involved in many-to-
many routing and balances their forwarding load. We evaluate
MUSTER in emulation and in a real WSN testbed. Results indicate
that our protocol builds near-optimal routing paths, doubles
the WSN lifetime, and overall delivers to the user 2.5 times
the amount of raw data w.r.t. mainstream protocols. Moreover,
MUSTER is intrinsically amenable to in-network aggregation,
pushing the improvements up to a 180% increase in lifetime
and a 4-time increase in data yield.

Index Terms— Wireless sensor networks, multi-sink routing,
analytical model, distributed protocol, performance evaluation.

I. INTRODUCTION

Early deployments of wireless sensor networks (WSNs) fo-

cused on applications such as habitat monitoring [36], where

data is collected at a single sink node for later analysis. Several

works in WSN routing address similar many-to-one scenarios [4].

As WSNs are employed in more sophisticated settings, however,

applications exhibit different communication patterns.

Application scenarios. WSNs can be used to control multiple

actuators dispersed in the environment [3]. In these scenarios,

the application requires that data sensed from multiple sources is

delivered to multiple sinks. Consider for instance a decentralized

building automation system [16] providing functionality such as

heating, ventilation, and air conditioning (HVAC), along with fire

alert. The actuator nodes distributed in the environment include air

conditioning units, water sprinklers, and fire alarms. Sensor nodes

(e.g., for temperature and humidity) are also deployed to feed the

control loop. Often, these lie at the intersection of the operating

range of different actuators, and are thus required to report to

multiple destinations. For instance, the same temperature sensor

may report to multiple air conditioners.

Another example is the management of road tunnels. We are

part of the TRITon project [24], funded by the local government

in Trento (Italy), with the goal to perform adaptive control

of the tunnel lighting system. In conventional tunnels, light is

L. Mottola is with the Swedish Institute of Computer Science (SICS),
Stockholm, Sweden. E-mail: luca@sics.se. G.P. Picco is with the Depart-
ment of Information Engineering and Computer Science (DISI), University of
Trento, Italy. E-mail: gianpietro.picco@unitn.it.

C-rooted collection tree

D-rooted collection tree

sink C sink D

source A source B

(a) Two trees rooted at the two sinks
are built independently.

A-rooted multicast tree

B-rooted multicast tree

sink C sink D

source A source B

(b) Multicast trees for the scenario in
Figure 1(a).

Fig. 1. A sample multi-source to multi-sink scenario.

often regulated based on few parameters (e.g., date and time of

the day) and regardless of the actual environmental conditions.

This potentially causes a waste of energy and a safety hazard.

In TRITon, a WSN deployed in the tunnel is integrated with

light sensors and actuators, adapting light intensity based on the

lighting conditions in each tunnel sector. However, light changes

in a sector may affect neighboring sectors as well. To enable

accurate control, some sensors must report to multiple actuators.

The need for many-to-many communication arises also in sup-

port to in-network data processing. For instance, data mining can

be efficiently implemented in a distributed fashion by collecting

at every node readings from different subsets of sources [45].

Similar communication patterns also emerge when the WSN,

instructed by the programmer with dedicated constructs, reports

data to multiple aggregation points where some application-

specific processing is performed [5], [12]. Finally, many-to-many

communication is also germane to scenarios where the same WSN

serves multiple applications [30]. These typically run on different

sinks gathering data from possibly overlapping subsets of sources.

Problem. Existing WSN routing protocols are ill-suited to the

scenarios above, as they focus on a single sink or source. This

leads to inefficient communication, reducing the network lifetime.

Data collection protocols typically report data to a single sink.

The few cases considering multiple sinks address the problem

by duplicating the routing infrastructure, and consequently the

required resources. For instance, most protocols rely on a sink-

rooted routing tree [25], [28], [54], built by the sink by flooding

a message that establishes a reverse path from every node to

the sink. However, consider the scenario in Figure 1(a). Node A

reports data to both sinks C and D, whereas B only reports to C.

The mechanism above would build two independent trees rooted

at C and D. This may lead sources (e.g., A) to duplicate data

too early along different trees and may involve in routing more

nodes than needed, ultimately reducing the WSN lifetime.

Multicast protocols for WSNs, instead, aim at optimizing the

path from a single source to multiple sinks. When separate

2

multicast trees are used for many-to-many communication, they

are affected by problems similar to collection protocols, as shown

in Figure 1(b). Multicast protocols minimize a given metric

computed on a per-source basis, e.g., the number of links to reach

the target sinks. As sources are not aware of each other, this

approach cannot optimize the routing among intermediate nodes.

Moreover, aggregation mechanisms lose their effectiveness, pre-

cisely because readings from different sources (e.g., A and B)

can be combined only very late along their path to the sinks [27].

Solution. We overcome the drawbacks of independently-built

trees by reusing routing paths across multiple trees. This leads to

significant improvements when traffic flows simultaneously from

different sources to different sinks, as illustrated in Figure 2(a).

Unlike Figure 1(a), here the two parallel paths originating at A

are merged, and reused to serve the other source B. The paths are

split again as late as possible, when the message must inevitably

follow distinct routes to reach the two sinks. This scheme reduces

the number of nodes involved in routing—in this example, from

13 and 11 in Figure 1(a) and 1(b), to 9 in Figure 2(a). In general,

minimizing the number of nodes involved in routing enables:

• a decrease in the amount of redundant information flowing

in the network, as data is duplicated only if and when strictly

necessary, therefore increasing the system lifetime;

• reduced contention on the wireless medium and packet col-

lisions, therefore increasing the reliability of transmissions;

• an increase in the beneficial impact of aggregation, as

readings can be combined much earlier, further reducing the

net amount of data being funneled.

MUSTER. Minimizing the number of nodes involved in routing

is at the heart of MUSTER (MUlti-Source MUlti-Sink Trees for

Energy-efficient Routing), the protocol we present in this paper.

MUSTER starts with independently-built trees. As nearby nodes

simultaneously funnel traffic, it progressively changes the shape of

different trees in a fully decentralized fashion, based on knowl-

edge on paths in the 1-hop neighborhood. This information is

compactly encoded and piggybacked on every outgoing message,

allowing a node to learn about the availability of better routes and

possibly switch parent. Local changes made by a node typically

trigger a ripple effect that causes the nodes ahead on the same

route to change their parent as well. Nevertheless, in absence of

simultaneous traffic in nearby regions of the network, MUSTER

still behaves as standard collection protocols.

An undesirable side-effect of this strategy is uneven energy

consumption: the nodes along merged paths experience an in-

creased routing load. For instance, in Figure 2(a) the nodes on

the vertical “backbone” deplete their energy faster than the other

nodes, potentially disrupting the WSN operation. Therefore, in

MUSTER we complement the minimization of nodes involved

in routing with a scheme to balance the routing load. MUSTER

“juggles” routes whenever it finds alternative paths extending the

system lifetime. For instance, the routing topology of Figure 2(a)

may eventually morph into the one in Figure 2(b). The latter

configuration involves a different set of nodes, yet their number

is the same as in Figure 2(a). As energy is progressively consumed

in the configuration of Figure 2(b), MUSTER may decide to return

to the topology in Figure 2(a), which meanwhile has saved energy.

Contribution and road-map. In Section II, we formalize our

problem using integer linear programming, inspired by the multi-

commodity network design problem [55]. This technique assumes

C-rooted collection tree

D-rooted collection tree

sink C sink D

source A source B

E

merged path

(a) Two paths of the trees in Fig-
ure 1(a) are merged.

C-rooted collection tree

D-rooted collection tree

sink C sink D

source A source B

merged path

(b) The merged path “moves” on dif-
ferent nodes, to balance the load.

Fig. 2. A more efficient solution to the routing problem in Figure 1.

global topology knowledge and is therefore impractical for real

WSN deployments. However, it yields an optimal topology, useful

to compare decentralized solutions against. In Section III we

present our protocol. We illustrate the distributed heuristics opti-

mizing routing over multiple sink-rooted trees, as well as our load

balancing scheme. MUSTER is simple enough to be implemented

on resource-scarce WSN nodes, and provides programmers with

hooks for aggregation, as shown in Section IV.

We evaluate the performance of MUSTER using both time-

accurate emulation and a real-world testbed. The former, illus-

trated in Section V, shows that MUSTER enables up to twice

the lifetime w.r.t. independently-built trees and enables an overall

data yield 2.5 times greater. Moreover, MUSTER amplifies the

effectiveness of even a naı̈ve aggregation scheme, by enabling

a 180% lifetime increase and a data yield 4 times greater than

previous approaches. We also show that the routing topology

generated by MUSTER is very close to the one computed with

the model in Section II: the number of nodes involved is within

10% of the optimum. These results are confirmed, although on a

smaller scale, by experiments in a 40-node WSN deployment,

described in Section VI. These show that our load balancing

scheme is able to consider variations in the battery discharge

induced by temperature changes, an often-overlooked issue that

in practice may lead to significant performance degradation.

Finally, Section VII presents a brief survey of related efforts,

while Section VIII ends the paper with brief concluding remarks.

II. SYSTEM MODEL AND OPTIMAL SOLUTION

We formulate the many-to-many routing problem as an integer

linear program, later used to compute the optimal topology.

System model. We take inspiration from the multi-commodity

network design problem [55], a formulation already applied to

throughput and capacity problems in wireless networks [29], [33].

We consider a directed graph (e.g., representing a transportation

network) with node set N and arc set A, and a set of commodities

C (e.g., goods). The goal is to route each commodity k ∈ C from

a set of origins O(k) ⊆ N to a set of destinations D(k) ⊆ N by

minimizing a given metric.

We model a WSN as a directed graph where N is composed of

the WSN nodes, and A is obtained by setting an arc (i, j) between

nodes i and j when the latter is within communication range of

the former. Without loss of generality, we assume a commodity

to flow from a single origin to a single destination [55]. Since

commodities flowing from the same origin (source) to the same

3

C-rooted collection tree

D-rooted collection tree

sink C sink D

source A source B

merged path

Fig. 3. A routing topology where all transmissions are pair-wise.

destination (sink) follow the same route, we can state a one-to-

one mapping between the route connecting any source-sink pair

〈o(k), d(k)〉, and any commodity k.

We capture message routing with a set of decision variables:

r
k
i,j =







1 if the route for the source-sink

pair k contains arc (i, j)

0 otherwise

(1)

A value assignment ∀(i, j) ∈ A to these variables represents the

route followed by messages from source o(k) to sink d(k).

Metric. The focus of the multi-commodity network design prob-

lem is usually on the number of arcs exploited, i.e., network

links in our case. This fails to capture the broadcast nature of

the wireless medium. For instance, compare Figure 2(a) and 3.

If the goal is to minimize the number of network links used by

routing, both solutions are optimal. However, the configuration in

Figure 2(a) is preferable in a WSN, since node E can forward

data to different receivers with a single broadcast transmission.

This observation leads to the intuition that efficient many-

to-many routing can be achieved by reducing the number of

nodes involved. Since each node along a route is responsible

for one transmission, minimizing the number of nodes involved

minimizes the total number of transmissions. Therefore, in our

model we take the number of nodes (instead of links) participating

in routing as the main metric. We capture the fact that node i is

involved in at least one source-sink route as

ui =

{

1 if ∃k ∈ C, j ∈ N | rk
i,j = 1

0 otherwise
(2)

and define our objective function as

NodesInvolved(C,A) =
∑

i∈N

ui (3)

MUSTER builds upon the relation between ui and rk
i,j defined in

Equation (2). To minimize NodesInvolved , we reuse nodes along

routes serving other source-sink pairs, that is, nodes for which

the cost ui is already paid. How to achieve this behavior in a

distributed setting is the subject of Section III.

Optimal Solution. Our objective is to identify the optimal set

of routes to deliver messages from sources to sinks. Formally,

we are to find the value assignment of rk
i,j , ∀k ∈ C, ∀(i, j) ∈ A

such that NodesInvolved(C,A) is minimum. The optimal solution

to this problem can be derived using mathematical programming

techniques by specifying proper constraints.

Variable Value

rCA
C,B 1

rCA
D,A 1

Remaining rCA
i,j 0

sink A

source C

B

D

(a) Node B and D do not obey constraint (4).

Variable Value

rCA
C,B 1

rCA
B,A 1

Remaining rCA
i,j 0

sink A

source C

B

D

(b) Constraint (4) holds for every node.

Fig. 4. Sample assignments for rk
i,j

, and corresponding topologies. We label

CA the commodity k flowing from source C to sink A.

First, we require that rk
i,j and ui are integer, binary variables

and that the following relation holds among them:

∀(i, j) ∈ A, ∀k ∈ C, r
k
i,j ≤ ui

The above forbids considering a node as used, unless it is

traversed by at least one source-sink path. This constraint is

satisfied by construction through Equation (1) and (2).

Second, we state that the assignment to rk
i,j must contain a

connected, end-to-end path for each source-sink pair k. This

constraint can be expressed by requiring every node different from

source o(k) and sink d(k) to “preserve” messages, i.e.:

∀i ∈ N , ∀k ∈ C,

∑

m:(i,m)∈A
rk
i,m −

∑

n:(n,i)∈A
rk
n,i =







1 if i = o(k)

−1 if i = d(k)

0 otherwise
(4)

The above imposes the existence of a multi-hop route from source

o(k) to its target sink d(k). Figure 4 illustrates the concept. The

solution in Figure 4(a) is not acceptable: the message originated

at C and directed to A is lost at B and somehow reappears

at D. Constraint (4) does not hold for B and D, its left-hand

side evaluates to −1 for i = B and to 1 for i = D, and neither

node is a source or sink. The constraint holds for the solution in

Figure 4(b), which represents a connected multi-hop route.

III. THE MUSTER PROTOCOL

The formulation we presented in Section II requires global

knowledge of the network topology, impractical in WSNs. In

contrast, MUSTER embodies distributed heuristics that minimize

the number of nodes involved in routing while balancing their

load, and rely only on information available within a node’s

1-hop neighborhood. The optimal solution serves as a baseline for

comparison against these heuristics, as illustrated in Section V.

A. Overview

MUSTER starts from independently-built trees connecting

sources to their sinks. Different subsets of sources may report to

different subsets of sinks. Trees are built using the flooding-and-

reverse-path scheme described in Section I, and are periodically

refreshed to account for node changes and link fluctuations.

The initial trees are mutated over time to optimize the routing

topology. A small control header is piggybacked on all messages,

received during the periodic tree refresh or overheard as data flows

4

R

T

Q

(a) Neighbor n1: high routing
quality and short lifetime.

R

T

Q

(b) Neighbor n2: medium rout-
ing quality and long lifetime.

Fig. 5. Interplay between routing quality and expected lifetime.

towards the sinks. Based on information in the header, each node

maintains, for every neighbor n and sink s, a value

Q(n, s) = R(n, s) · T (n) (5)

denoting the quality of n as a parent towards s. The routing quality

R(n, s), described in Section III-B, is concerned purely with the

optimization of source-sink paths. Instead, T (n), described in

Section III-C, is an estimate of the expected lifetime of n.

Therefore, Q(n, s) is a measure of how long a neighbor n can

provide a given routing quality towards a sink s. This metric

yields better configurations than routing quality R alone, as

illustrated in Figure 5. A decision based solely on R would

privilege neighbor n1 in Figure 5(a) over n2 in Figure 5(b).

However, the expected lifetime T of n1 is small. Routing through

n1 may deplete its battery in the near future, possibly disrupting

connectivity. Conversely, n2 has lower routing quality but longer

expected lifetime, and is therefore preferable.

The metric Q is used at each node to adapt the source-sink paths

by replacing the neighbor n serving as parent towards sink s with

the neighbor enjoying maximum quality Q. As the new parent

performs routing, its expected lifetime T (n) decreases, along with

Q(n, s), and the child node eventually finds another neighbor

n′ with higher Q for sink s. This scheme “juggles” routes of

comparable cost, distributing the routing load among available

nodes. Parent switching does not incur additional costs as it is

realized with a simple timeout and no extra control messages.

B. Routing Quality

In principle, the routing quality R(n, s) can be defined in terms

of various quantities. In this work, we consider the following ones:

• reliability(n, s), an indication of how reliable is the end-to-

end communication from neighbor n to sink s;

• paths(n), the number of source-sink paths passing through

a neighbor n, i.e., using the notation in Section II:

paths(n) =
∑

k∈C

r
k
i,n (i, n) ∈ A

• sinks(n), the number of sinks n is currently sending data to.

source Z

A

B

C

4 overlapping paths

4 sinks served

2 overlapping paths

2 sinks served

4 overlapping paths

2 sinks served

current route

new route

sink S

Fig. 6. Source Z generates data for sink S. The current parent of Z towards
S is B. However, C is a better choice because it serves the highest number
of paths and sinks among Z’s neighbors.

no overlapping

2 overlapping paths

sink C sink D

source A source B

G

E F

(a) Initial configuration.

no overlapping

2 overlapping paths

sink C sink D

source A source B

G

E F

(b) E switches parent from G to F .

Fig. 7. A sample adaptation process.

Several techniques can be used to compute the reliability metric:

we discuss our implementation choices in Section IV. Figure 6

shows an intuition for the other two constituents of R(n, s), i.e.,

paths and sinks . Node Z has three neighbors A, B, and C. B

serves as parent in the tree rooted at sink S, but both A and C

are traversed by more source-sink paths than B. If either were

selected as Z’s new parent, path overlapping would increase.

However, C serves more sinks than A, and is thus more likely1

to be already reporting to S, possibly on behalf of some other

source. Therefore, choosing C may enable reuse of a path towards

S, further increasing path overlapping at no additional cost.

In this work, we define the routing quality R(n, s) as a linear

combination of the three aforementioned quantities:

R(n, s) = δ · reliability(n, s)+α1 · paths(n)+α2 · sinks(n) (6)

where δ, α1, α2 are tuning parameters. The shape of function R

and its constituents can in principle be different. Although the

results we obtained with this formulation are very positive, we

expect that peculiar characteristics of the deployment scenario

(e.g., highly fluctuating network topologies) may require adap-

tations to the expression in (6). Doing so is straightforward in

our implementation of MUSTER, described in Section IV, as the

definition of R is decoupled from the routing logic.

Figure 7 illustrates a sample adaptation process. We focus on

node E and sink C, and assume δ = α1 = α2 = 1 in (6).

Whenever E has data to send towards C, E evaluates R(n, C)

for its two neighbors F and G. The former is traversed by

2 paths and serves 2 sinks, while G is traversed by only 1 path

and serves 1 sink. Assuming both neighbors report the same

value r for the reliability metric towards sink C and the same

expected lifetime T , E would compute Q(G, C) = (r+2) ·T and

Q(F, C) = (r + 4) · T , thus identifying F as the best next-hop

towards C, as shown in Figure 7(b). This change has immediate

benefits: the topology in Figure 7(a) exploits 12 nodes, whereas

the one in Figure 7(b) only involves 10 nodes.

To break ties between the current parent and a new one, we

always select the latter as this will enjoy a higher value of

R: its value for paths will increase by one. We must however

avoid picking one of the current children, as this would create

a routing loop. This information can be easily derived from the

data messages received within a given time interval.

1As we know only the number of sinks served by n, we do not know if S
is among them. We could propagate the identifiers of sinks instead, but their
number yields good performance and generates much less overhead.

5

Iavg

Operating

Temperature

Battery

Voltage

BATTERY
DISCHARGE PROFILES

DISCHARGE PROFILE
GIVEN (T, R) ENERGY LEFT RESIDUAL LIFETIME

Fig. 8. Computing a node’s residual lifetime.

C. Estimating the Expected Lifetime

Estimating the expected lifetime of battery-operated WSN

nodes is a challenge per se, as it depends on diverse factors

such as network traffic and the non-linear behavior of commercial

batteries [40]. The latter is often overlooked and yet deeply affects

battery performance and therefore lifetime. The discharge profile

captures the relation between battery voltage and service hours

for varying operating temperatures and current draws. In alkaline

batteries, for instance, a drop in the operating temperature from

20oC to 0oC easily determines a 50% lifetime decrease [21].

To provide an accurate estimation of a node’s residual lifetime,

we rely on a lightweight energy model, described in Figure 8,

customized to the operation of MUSTER. Based on average cur-

rent draw Iavg and operating temperature, we select a discharge

profile among those available for the battery employed. Next, the

current battery voltage allows us to identify a point in the profile

indicating the energy left in the battery. Dividing this quantity by

Iavg yields an estimate of the node’s residual lifetime.

Discharge profiles are generally available from battery manu-

facturers. Synthetic models also exist based on the battery physi-

cal characteristics [44]. Voltage and temperature readings are usu-

ally available from on-board sensors. We can estimate the average

current draw Iavg by using external hardware devices [19], energy

accounting [34], or software-based power profilers [17]. Only a

few prototypes of the first exist, none commercially available.

Energy accounting requires platform-dependent instrumentation

of the entire code to monitor changes in the power level of

the MCU. Although this provides very precise measurements, its

applicability across different platforms is quite limited.

MUSTER does not require fine-grained lifetime estimation: the

relative information about whether a node can operate longer

than another is enough for the quality metric Q to distribute the

routing load evenly. Therefore, we opted for a software-based

power profiler based on the following assumptions:

1) radio communication occurs only through MUSTER;

2) MUSTER runs atop a CSMA-like MAC protocol providing

some form of low-power listening [41];

3) the current draw due to processing and sensing is roughly

the same on all the nodes.

Under these assumptions, Iavg can be computed by tracking send

and receive operations at the MAC layer, based on the quantities

in Figure 9. The energy drain of an operation is obtained by multi-

plying the corresponding current draw by the duration of the oper-

Symbol Description Source

Irx Current draw when receiving data (mA) Hardware

Itx Current draw when transmitting data (mA) Hardware

Iidle Current draw during low-power listening (mA) Hardware

b Radio bit-rate (bits/sec) Hardware

pucast , pbcast Size of unicast/broadcast messages (bits) MUSTER

tucast , tbcast Time for MAC-level handshake (e.g., strobing) in

unicast/broadcast transmission (ms)

MAC

Fig. 9. Information used to compute the average current draw.

TreeRefresh Router

Lifetime Estimator

Application/

Interceptor

Message Queue

Application/

Interceptor

Muster

Low-Power Listening Layer

Quality Metric

Fig. 10. MUSTER architecture.

ation. For instance, a sequence senducast , sendbcast , receiveucast
leads to an energy drain of:

E = Itx (tucast +
pucast

b
+ tbcast +

pbcast

b
) + Irx

pucast

b

In MUSTER, the average current draw is re-evaluated with a

period τ , Iavg (τ) = E
τ . Due to routing reconfigurations caused

by changes in physical connectivity, it may happen that the radio

activity in the i-th time interval τi changes from the preceding

interval τi−1. However, these behaviors are generally transient. To

smooth out short-term fluctuations, the N most recent Iavg (τi) are

fed as input to an exponential moving average (EMA), Iavg (τi):

Iavg (τi) = αIavg (τi−1) + (1 − α)Iavg (τi−1) (7)

EMA is a reasonable trade-off between smoothing effectiveness

and reactivity to permanent changes. To account for the limited

memory on WSN nodes, we define α in terms of the N stored

measurements [11] as α = 2
N+1 . Equation (7) is used both to

select a specific battery discharge profile and to estimate the

residual node lifetime given the energy available.

We validated our technique by comparing current consumption

and lifetime against our estimates at a few sample nodes in the

real-world testbed described in Section VI. To measure the former,

we used an Agilent 34411A digital multimeter attached to the

nodes. Our estimate of current consumption was always within

5% of the value reported by the multimeter, and our lifetime

estimate showed a worst-case error of ±9% [43].

IV. IMPLEMENTATION

Figure 10 depicts the architecture of MUSTER, built atop

TinyOS 2.0 [48]. Source and sink functionality, as well as in-

network processing at intermediate nodes, interact with MUSTER

through the Collection interfaces [51], while network com-

munication relies on the Low-Power-Listening (LPL) layer [50].

Our implementation is compact. The state information we store

on a node amounts to 8 B for every neighbor, 4 B for every sink,

and 5 B for every source-sink path traversing the node. In the

configuration we use for the evaluation described later, MUSTER

occupies a total of about 2 KB of data memory and 8 KB of

program space. MUSTER is publicly available as open source [1].

Interfaces and Interceptors. The Collection interfaces are

designed for many-to-one communication. We modified them to

add the identifiers of target sinks as parameters of the send

command [51]. Intermediate nodes process in-transit packets with

the Intercept interface, which contains a single event:

event bool forward(message_t* msg,void* payload,uint8_t len);

MUSTER signals this event upon receiving a packet to be for-

warded. The higher layers may decide to forward immediately

6

by returning TRUE, or to perform some processing and send a

possibly different packet later. In-network processing schemes are

therefore easily integrated. We implemented two examples:

• A packing scheme to include multiple payloads in the same

packet. A packet received is not forwarded immediately: its

payload is inserted in a buffer associated to the neighbor

the packet is addressed to. When the buffer is full, or upon

expiration of a timeout, a new packet containing the entire

buffer content is created and sent.

• An aggregation operator to average sensor readings. Each

node keeps track of the sources funneling data through it, and

computes their time drift based on a timestamp embedded in

the payload. This allows each node to compute the average

of readings at different sources within the same epoch, which

is returned to MUSTER instead of the original reading.

TreeRefresh and Router. The TreeRefresh module coordi-

nates the periodic refresh of topology information. Each sink

periodically floods a “tree construction” message. Upon reception,

every node computes the end-to-end reliability metric. On IEEE

802.15.4 radios we rely on a metric similar to that in Multiho-

pLQI [49]. This is based on the Link Quality Indicator (LQI)

provided by radio chips such as the ChipCon CC2420, which

equips the widely-used TMote Sky [42] nodes. In absence of

LQI, we use the inverse of the hop-count to a sink, a metric po-

tentially inaccurate, yet used successfully in real deployments [6].

Since this functionality is decoupled from the rest of MUSTER,

alternative metrics (e.g., ETX [13]) can be easily integrated.

The Router module determines the parent (i.e., neighbor with

maximum Q) based on the data structure shown in Figure 11 for

a given neighbor. The value of neighborId serves as index. The

value of reliability is retrieved from the TreeRefresh module.

The values of paths , sinks , and lifetime are piggybacked on

incoming messages. The Router module also performs packet

transmissions. These occur in unicast if the packet is addressed

to a single parent, or in broadcast if it is addressed to multiple

next hops, e.g., when previously merged paths split. In the

latter case, the packet includes the list of neighbors that are to

process the message. A packet is retransmitted if the LPL layer

notifies that the receiver did not acknowledge the message. If the

maximum number of retransmissions is reached (e.g., because the

destination died) the Router module defaults to the neighbor

n′ with second maximum Q. This procedure repeats until all

candidate next hops are examined, and the message is dropped.

Lifetime Estimator. This module implements the model in

Section III-C by intercepting incoming/outgoing messages. It

also stores the required discharge profiles, based on the scenario

and batteries employed. We implemented a simple pre-processor

that converts Comma Separated Values (CSV) files—the data

format normally used by battery manufacturers—into static look-

up tables of constant values. This allows most C compilers to store

Field Name Description

neighborId The identifier of the neighbor relative to this entry.

reliability An associative array containing, for each sink in the system, the

corresponding reliability metric when using neighborId as parent.

paths The number of different source-sink paths currently passing through

neighborId.

sinks The number of sinks served through neighborId, possibly along a

multi-hop path.

lifetime The expected lifetime of neighborId.

Fig. 11. Information to compute the quality metric Q(n, s) for a neighbor.

these data structures in the code memory instead of data memory,

the latter being generally more precious on WSN nodes.

V. SIMULATION EXPERIMENTS

We evaluate the performance of the MUSTER implementation

described in Section IV using Avrora [52]. The latter allows for

fine-grained emulation of the popular MICA2 platform [14], and

includes a detailed model to evaluate its energy consumption.

Our evaluation is divided in three parts. In Section V-A, we

assess whether the behavior of MUSTER matches our design

criteria, using a synthetic scenario. In Section V-B we evaluate

the performance of MUSTER against a base protocol that only

optimizes the reliability metric on a per-sink basis, and is there-

fore representative of protocols that build independent trees [25],

[28], [54]. We also examine MUSTER’s performance compared

to the optimal routing topology we identified in Section II. In

these scenarios, all protocols we test employ the multiple-payload

packing scheme described in Section IV. We investigate the

impact of aggregation in Section V-C by running all protocols

with the average operator, also described in Section IV.

General settings. Nodes are initially provided with an energy

budget equivalent to a pair of commercial AA batteries. As it is

not possible to emulate LQI readings in Avrora, in both MUSTER

and the base protocol we consider the inverse of the hop-count to

a sink as reliability metric. We configure Avrora to use two-ray

ground propagation to model wireless transmissions.

We configure LPL with a wake-up period of 1 s. We use a

32-bit integer value to represent a single sensor reading, and use

the maximum message size: considering protocol and application

control overhead, at most 10 readings fit in a message. The

time interval separating two messages from the same source (the

epoch) is set to 60 s. In both protocols, tree refresh is triggered

every 5 min, and the transmission of data packets is retried at most

5 times. As for the packing scheme, we set to 5 s the timeout

after which a (possibly partially-filled) message is sent out.

We set α1 = α2 = 1 and δ = 2 in Equation (5). The combined

contribution of paths and sinks is the most effective in reducing

the number of nodes involved in routing. Moreover, the reliability

metric is key to ensuring message delivery, and is thus given

higher relative importance. Nevertheless, we also analyze the

influence of different combinations of parameter values.

All experiments are repeated 50 times, and the results averaged.

A. Analyzing the Protocol Behavior

To carry out a fine-grained analysis of MUSTER’s behavior,

we run experiments by tracing over time the remaining energy at

every node, and use a custom-built visualization tool to generate

“energy maps” representing the system evolution over time. We

define five classes of nodes based on their remaining energy, as

shown in Figure 12. To better interpret the results, we use a

synthetic scenario with only two sources and two sinks, placed at

the opposite corners of a grid topology where non-border nodes

can communicate with four neighbors. Because of this peculiar

setting, the results obtained are not representative of MUSTER’s

performance, which is analyzed further in Section V-B and V-C.

Results. Figure 13 depicts different snapshots of the WSN run-

ning the base protocol. Two source-sink paths cross in the center

of the grid. Nodes in that area are exploited for routing towards

two sinks, and deplete their energy faster than others. The nodes

7

closest to the two sinks are similarly exploited, as they lie where

two paths leading to the same sink converge. Consequently, nodes

eventually start failing in the middle of the grid and around the

two sinks, until one sink is completely disconnected, as shown in

Figure 13(c). Although the pictures show the case with 225 nodes,

we observed the same behavior with different system scales.

Figure 14 illustrates the behavior of MUSTER’s path merging.

Load balancing is disabled by setting T (n) = 1 in Equation (5).

It is evident how the overlapping of source-sink paths leads to

the formation of a “backbone” in the middle of the network.

Nodes along these merged paths consume energy faster by serving

multiple source-sink pairs. The generation of the backbone, how-

ever, improves the overall performance by delaying the moment

when a sink is disconnected from the network, from 13109

epochs in Figure 13(c) to 15994 in Figure 14(c). The cause for

disconnection is the same as with the base protocol: the nodes

around the sink are the most stressed when a routing tree is

100%-75% energy left

75%-50% energy left

50%-25% energy left

25%-0% energy left

X dead node

Fig. 12. Color codes for nodes in Figure 13-15, denoting remaining energy.

s
o
u
r
c
e

s
o
u
r
c
e

s
in
k

s
in
k

(a) After 5000 epochs.

X

X

X

X

X

(b) After 12500 epochs.

X

X X

X X X X

X

X

X

X X

X X

X

(c) Epoch 13109: one
sink is disconnected.

Fig. 13. Energy consumption with the base protocol (225 nodes).

(a) After 5000 epochs.

X

X

(b) Epoch 13109: sys-
tem still running.

X

X

X X

X

X X X X X

X X X

X

X

X X

X

X

(c) Epoch 15994: one
sink is disconnected.

Fig. 14. Energy consumption using MUSTER without load balancing.

(a) After 5000 epochs. (b) Epoch 13109: no dead node.

(c) Epoch 15994: no dead node.

X X X

X X

(d) Epoch 17002: both sinks are
disconnected.

Fig. 15. Energy consumption using MUSTER with load balancing.

used [54]. However, we verify that MUSTER causes some amount

of path merging to occur also among nodes near the sinks, when

paths come close enough. This reduces the number of packets

these nodes must send, increasing their lifetime.

Figure 15 depicts the dynamics of our complete protocol,

taking into account both routing quality and expected lifetime. A

comparison of these snapshots against Figure 13 and 14 provides

an immediate, visual indication of the effectiveness of our load

balancing scheme. Indeed, the “backbone” effect is much less

evident. Moreover, the number of nodes consuming at least 25%

or 50% of their available energy increases over time, while

in the previous cases there are nodes left with 100% of their

energy. These phenomena are due to the ability of MUSTER

to distribute the routing effort evenly. Specifically, Figure 15(a)

shows that after 5000 epochs no node is yet under 25% of

remaining energy. After 13109 epochs all nodes are still alive, as

shown in Figure 15(b), whereas at the same epoch in Figure 13(c)

the base protocol already caused a sink to disconnect. Similar

considerations holds for Figure 15(c) and Figure 14(c). In the

latter, MUSTER without load balancing experiences a network

partition. Instead, at the same epoch all sinks are still connected

when using the full protocol. The latter eventually experiences

a partition due to some nodes dying around one of the sink,

as shown in Figure 15(d). However, this happens far later in

time, as our solution is able to merge the paths around the sinks

and alternate among these critical nodes. At the time of the first

partition almost all nodes spent at least 50% of their energy.

B. Performance Characterization

We compare the performance of MUSTER against the base

protocol and against multiple optimal sink- and source-rooted

trees. These are computed, using traditional graph algorithms,

by minimizing the number of links exploited to connect a sink

(source) to its sources (sinks). Moreover, we compare MUSTER

against the optimal solution, computed by using GLPK [2] to

solve the integer linear program we specified in Section II.

The performance of routing protocols is generally affected by

topology, especially when peculiar configurations (e.g., “lines” of

nodes connecting two partitions or “holes” without nodes) are

present. However, it is impractical to cover all possible cases.

Therefore, we use randomly-generated topologies with a pre-

specified average number of neighbors per node, as a compro-

mise between generality and control over the topology. In each

scenario, 10% of the nodes are sources. We vary the number of

sinks and nodes to study how MUSTER handles different numbers

of source-sink paths. The location of sources and sinks is decided

randomly, but a node cannot simultaneously operate as source and

sink. These settings are inspired by real deployments [6], [7], [36],

[38]. As performance metrics, we measure:

• the system lifetime, defined as the moment when the last

source-sink path becomes interrupted and the experiment

ends, which coincides with the point in time when the WSN

becomes unusable [31];

• the ratio of readings delivered to the sinks over those sent, to

investigate the amount of data that users successfully receive;

• the end-to-end latency, i.e., the time taken by a sensor

reading to reach the target sink.

The first two metrics are commonly used to evaluate WSN routing

protocols [4]. Both directly affect the data yield, that is, the

8

 50

 60

 70

 80

 90

 100

 110

 120

 130

 100 150 200 250 300 350 400

L
if
e
ti
m

e
 i
n
c
re

a
s
e
 (

%
)

Nodes

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(a) Lifetime increase vs. number of nodes (8 sinks, 4 neighbors).

 50

 60

 70

 80

 90

 100

 110

 120

 130

 2 4 6 8 10

L
if
e

ti
m

e
 i
n
c
re

a
s
e
 (

%
)

Sinks

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(b) Lifetime increase vs. number of sinks (300 nodes, 4 neighbors).

 60

 70

 80

 90

 100

 110

 2 3 4 5 6 7 8

L
if
e
ti
m

e
 i
n
c
re

a
s
e
 (

%
)

Average number of neighbors

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(c) Lifetime increase vs. average number of neighbors (300 nodes, 8 sinks).

Fig. 16. Lifetime increase enabled by MUSTER.

amount of data gathered by the WSN during its operation—the

metric domain experts are ultimately interested in. To obtain a

better understanding of MUSTER’s operation, we also measure:

• the number of active source-sink paths over time, to un-

derstand how the system performance degrades when nodes

start failing because of energy depletion;

• the number of nodes exploited, i.e., the metric we aim to

minimize to obtain more efficient source-sink routes;

• a node’s remaining energy at the end of the experiment, to

study the effectiveness of the load balancing scheme;

• the average length of source-sink paths, in number of hops,

to separate out the latency caused by longer routes from the

one due to the packing scheme;

• the ratio of packets delivered to the sinks, to evaluate directly

the impact of our techniques at the network level.

Results. MUSTER improves drastically the system lifetime com-

pared to the base protocol, as illustrated in Figure 16. Specif-

ically, Figure 16(a) depicts the additional lifetime allowed by

MUSTER against the system scale. The path merging mechanism

alone increases lifetime from about 50% to 80%, with larger

improvements as the system scale increases. In combination

with load balancing, MUSTER allows for more than twice the

lifetime provided by the base protocol. Load balancing bears

a greater impact as the system scale increases. Indeed, more

nodes correspond to more resources available, providing our load

balancing scheme with a higher total energy budget to exploit.

Similar trends can be observed in Figure 16(b), where we

analyze the lifetime increase enabled by MUSTER by varying the

number of sinks. Comparing this chart with Figure 16(a) shows

how performance is ultimately dictated by the number of source-

sink paths, rather than by the number of sources or sinks alone.

For instance, the additional lifetime in Figure 16(b) with 2 sinks

and 300 nodes (i.e., 60 source-sink paths) is close to the one in

Figure 16(a) for 100 nodes and 8 sinks (i.e., 80 source-sink paths).

The similar performance obtained in different settings indirectly

confirms that the improvements are due to MUSTER’s ability to

overlap different source-sink paths, regardless of the combination

of sources and sinks that form them.

Figure 16(c) analyzes the impact of network density on system

lifetime. In this case, the contribution of path merging increases

 30

 35

 40

 45

 50

 55

 60

 65

 70

 100 150 200 250 300 350 400

P
e
r-

e
p
o
c
h
 p

a
c
k
e
t
o
v
e
rh

e
a
d
 r

e
d
u
c
ti
o
n
 (

%
)

Nodes

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(a) Per-epoch packet overhead reduction vs. number of
nodes (8 sinks, 4 neighbors).

 30

 40

 50

 60

 70

 80

 2 4 6 8 10

P
e

r-
e

p
o

c
h
 p

a
c
k
e
t
o
v
e
rh

e
a
d
 r

e
d
u
c
ti
o
n
 (

%
)

Sinks

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(b) Per-epoch packet overhead reduction vs. number of
sinks (300 nodes, 4 neighbors).

 35

 40

 45

 50

 55

 60

 65

 70

 2 3 4 5 6 7 8

P
e
r-

e
p
o
c
h
 p

a
c
k
e
t

o
v
e

rh
e

a
d

 r
e

d
u

c
ti
o

n
 (

%
)

Average number of neighbors

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(c) Per-epoch packet overhead reduction vs. average num-
ber of neighbors (300 nodes, 8 sinks).

Fig. 17. Per-epoch packet overhead reduction.

9

 0

 20

 40

 60

 80

 100

 17475 17500 17525 17550 17575 17600N
u
m

b
e
r

o
f
s
o
u
rc

e
-s

in
k
 p

a
th

s

Epochs

(a) Base.

 0

 20

 40

 60

 80

 100

 28400 28425 28450 28475 28500 28525N
u
m

b
e
r

o
f
s
o
u
rc

e
-s

in
k
 p

a
th

s

Epochs

(b) Path merging only.

 0

 20

 40

 60

 80

 100

 31800 31825 31850 31875 31900 31925N
u
m

b
e
r

o
f
s
o
u
rc

e
-s

in
k
 p

a
th

s

Epochs

(c) Path merging and load balancing.

Fig. 18. Number of active source-sink paths over time (100 nodes, 8 sinks).

with network density, while the dispersion of the measures we

obtained around the average value decreases. More neighbors

indeed correspond to more choices when selecting a parent. By

inspecting our simulation logs, we verify that as network density

increases, the path merging mechanism alone is sufficient to have

near optimal routes during the early part of the system lifetime.

The load balancing scheme, instead, begins influencing route

selection when the energy left on the nodes is below 50%.

The increased lifetime is enabled mainly by improvements in

transmission efficiency. Throughout all experiments, MUSTER’s

reduced contention on the wireless medium yields, on average,

about 50% less packet retransmissions w.r.t. the base protocol.

Figure 17 shows the reduction in the packet overhead (i.e.,

overall decrease in number of transmissions at the physical layer),

computed on a per-epoch basis. The trends mirror those in

Figure 16, demonstrating that the performance gains enabled by

MUSTER come from reduced transmission costs. As observed

earlier, these are more marked as the number of source-sink paths

increases or more neighbors are available when selecting a parent.

In these charts, the effect of load balancing is instead negligible,

given that they show the performance within a single epoch.

To investigate how the system behaves during the additional

running time allowed by MUSTER, Figure 18 shows the number

of active source-sink paths over time close to the end of the

experiment. Regardless of the solution employed and the system

scale, this metric always decreases abruptly, as soon as the death

of some node around a sink prevents communication towards the

rest of the system. However, our scheme pushes much farther the

moment in time when this occurs, as can be noted by comparing

the values on the x-axis across the three charts in Figure 18.

Therefore, during the extra time allowed by MUSTER w.r.t. the

base protocol, the WSN effectively operates to its full capabilities.

In all experiments, MUSTER delivers to the sinks roughly the

same number of packets as the base protocol. However, these

packets carry more application data, as multiple readings from

merged paths are packed in the same physical packet. In each

epoch, the ratio of readings delivered to the sinks increases of

about 20% w.r.t. the base solution, mostly irrespective of load

balancing. This, combined with the increased lifetime, determines

a significant increase in the overall data yield, which in MUSTER

becomes about 2.5 times the one of the base protocol.

The results above are enabled by the combination of path

merging and load balancing. To study the effectiveness of the

former, we measure the average number of nodes involved in

routing using MUSTER without load balancing, compared to

multiple sink- and source-rooted minimum trees, as well as the

optimal solution based on the model in Section II. Except for

those concerning MUSTER, all results are obtained in a centralized

manner and with global knowledge of the system topology.

As Figure 19 illustrates, in the network configurations we ex-

perimented with, MUSTER is always within 10% of the theoretical

minimum number of nodes to connect sources to sinks, yet our

protocol does not require any a priori knowledge of the system

topology. These results hold both against a variable number of

nodes in the system (Figure 19(a)), and w.r.t. varying network

density (Figure 19(b)). In the latter, the gap from the theoretical

minimum reduces as the network becomes more connected be-

cause, as already observed, MUSTER enjoys more options when

selecting parents, and thus has more chances to approximate

the theoretical optimum. The same charts also demonstrate that

MUSTER reduces the nodes involved in routing compared to

multiple sink- and source-rooted minimum trees. In the latter

cases, the routing topology is naturally biased towards the sinks

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 150 200 250 300 350 400

N
o
d
e
s
 i
n
v
o
lv

e
d

Nodes

Multiple sink-rooted minimum trees
Multiple source-rooted minimum trees

Path merging
Theoretical optimum

(a) Nodes involved vs. system size (4 sinks, 4 neighbors).

 60

 80

 100

 120

 140

 2 3 4 5 6 7 8

N
o
d
e
s
 i
n
v
o
lv

e
d

Average number of neighbors

Multiple sink-rooted minimum trees
Multiple source-rooted minimum trees

Path merging
Theoretical optimum

(b) Nodes involved vs. average number of neighbors (300 nodes, 4 sinks).

Fig. 19. Nodes involved in routing.

 0

 10

 20

 30

 40

 50

 100 150 200 250 300 350 400

P
e
r

n
o
d
e
 r

e
m

a
in

in
g
 e

n
e
rg

y
 (

J
o

u
le

s
)

Nodes

Base (avg)
Base (stdDev)

Path merging only (avg)
Path merging only (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

Fig. 20. Per-node remaining energy at the end of the experiment.

10

(sources) and parallel paths are not necessarily factored out.

To assess the contribution of our load balancing scheme,

Figure 20 illustrates the energy remaining at each node at the end

of an experiment, against the system scale. Using path merging

alone, this quantity is almost the same as in the base protocol.

In contrast, with load balancing this figure becomes much lower,

and the variance of the results also decreases. This confirms that

the contribution to system lifetime brought by this mechanism

comes from spreading the routing load evenly, so that more nodes

eventually participate in routing.

Figure 21 shows that MUSTER has higher delivery latency w.r.t.

the base protocol, as expected. The absolute values at stake are,

however, within the tolerance of popular WSN applications. For

instance, in environmental monitoring [6] the time constants of the

monitored phenomena are usually in the order of tens of minutes.

As an example of stricter requirements in closed-loop control,

in the adaptive tunnel lighting we are developing, mentioned in

Section I, the reporting period for light samples is between 30 s

and 5 min. Therefore, reporting sensed data within tens of seconds

is still acceptable. Nevertheless, applications requiring real-time

delivery should leverage different techniques [57].

To further investigate latency, we run experiments by disabling

the packet merging scheme in MUSTER only. The results, also

shown in Figure 21, reveal that MUSTER without packet merging

performs almost like the base protocol, which is instead running

with packet merging. In the latter protocol, packet merging has

limited impact because paths rarely overlap, and thus almost never

split towards different sinks. Therefore, a packet is frequently

filled up close to the source: packet merging rarely intervenes—

there is no room to pack more data—and the packet is always

immediately forwarded, travelling unaltered up to the sink.

On the other hand, MUSTER boosts the effect of the packet

merging scheme. The overlapping paths eventually split towards

different sinks. In this case, the packet is also split, with parts of

 0

 5

 10

 15

 20

 25

 30

 35

 100 150 200 250 300 350 400

L
a

te
n
c
y
 (

s
e
c
s
)

Nodes

Base (avg)
Base (stdDev)

Muster (avg)
Muster (stdDev)

Muster - no packet merging (avg)
Muster - no packet merging (stdDev)

(a) Latency against system size (4 sinks, 4 neighbors).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 3 4 5 6 7 8

L
a
te

n
c
y
 (

s
e
c
s
)

Average number of neighbors

Base (avg)
Base (stdDev)

Muster (avg)
Muster (stdDev)

Muster - no packet merging (avg)
Muster - no packet merging (stdDev)

(b) Latency against average number of neighbors (300 nodes, 4 sinks).

Fig. 21. Average end-to-end latency.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
p
a
re

n
t
c
h
a
n
g
e
s

Epochs

100 Nodes
200 Nodes
300 Nodes
400 Nodes

Fig. 22. Convergence time at system start-up (8 sinks, 4 neighbors).

the payload forwarded in different directions. There is now room

to pack more data in the resulting packets, and so the nodes wait

for more data before forwarding further. This causes the increase

in latency for MUSTER: the price we pay for increased lifetime

and reliability. Nevertheless, programmers can trade latency for

lifetime or reliability by modifying the packing scheme or setting

a smaller timeout.

To gain a deeper insight into MUSTER’s operation, we analyze

the time required to converge to a stable configuration at system

start-up. Based on a sample execution, Figure 22 depicts the

average number of parent changes at all nodes against the epoch

number. In the largest configuration we tested, it takes at most

12 epochs to stabilize the routes. This is essentially because

our EMA-based lifetime estimator needs to accumulate enough

samples before stabilizing, causing changes that ultimately affect

the entire network. After this initial phase, however, routes tend

to remain stable until energy begins to drop significantly at some

nodes and the load balancing scheme intervenes.

As the operation of MUSTER can be controlled by the param-

eters δ, α1, α2 defined in Section III-B, we analyze their impact

on performance. The trends in Figure 23(a) demonstrate that α1

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 100 150 200 250 300 350 400

L
if
e
ti
m

e
 i
n
c
re

a
s
e
 (

%
)

Nodes

α1=1, α2=1, δ=2
α1=0.5, α2=0.5, δ=2

α1=2, α2=2, δ=2
α1=2, α2=1, δ=2
α1=1, α2=2, δ=2

(a) Lifetime increase vs. number of nodes (8 sinks, 4 neighbors).

 0

 20

 40

 60

 80

 100

 120

 140

 160

(1,1,2) (0.5,0.5,2) (2,2,2) (2,1,2) (1,2,2)

D
a
ta

 y
ie

ld
 i
n

c
re

a
s
e

 (
%

)

Parameter setting (α1, α2, δ)

(b) Data yield increase vs. parameter setting (300 nodes, 8 sinks, 4
neighbors).

Fig. 23. MUSTER performance with varying parameters.

11

and α2 are key to increase lifetime. The less weight they have,

the more routes degenerate in multiple non-overlapping trees,

approaching the base protocol. On the other hand, increasing their

importance w.r.t. δ beyond a certain threshold does not enable fur-

ther improvements. Reliability also suffers in these configurations,

as shown in Figure 23(b). By inspecting the simulations logs we

verified that when δ has less influence routes tend to stretch too

much w.r.t. the shortest path, and the probability to lose a packet

increases. These results confirm that the configuration we used

throughout the paper is the best trade-off among those tested.

In the experiments hitherto discussed, lifetime is determined by

the nodes around the sinks. An alternative is to make the network

denser around sinks, to compensate for the higher load [54]. To

investigate how MUSTER behaves in this scenario, we run a set

of experiments where node location is decided semi-randomly,

by partially controlling the density of nodes around a sink. We

divide the physical space in square sub-areas with a 200 m side.

In each sub-area A, we deploy a set of nodes N (A) such that:

|N (A)| =
∑

s∈S

K

distance(center(A), s)2
(8)

where S is the set of sinks used in the experiment,

distance(center(A), s) returns the physical distance between the

center of A and sink s, and K is a constant large enough to yield

a connected topology. Intuitively, (8) deploys more nodes around

the sinks, and decreases their density away from them.

This scenario amplifies the improvements of MUSTER w.r.t.

the base protocol, as shown by comparing Figure 24 against

Figure 16(a). The more regular topology yields a smaller variance

but the gains due to load balancing are larger, because MUSTER

can juggle among the many nodes around sinks and further delay

their disconnection. This occurs without protocol modifications,

as MUSTER automatically adapts to the given topology.

C. Impact of Aggregation

The path merging in MUSTER causes data from different

sources travel together as early as possible. This amplifies the

beneficial effect of aggregation, further reducing the amount of

data flowing in the network. To quantify this aspect, we re-run the

experiments discussed so far by employing the average operator

described in Section IV in both MUSTER and the base solution.

Results. The trends obtained using aggregation are essentially the

same as in Section V-B, as shown by comparing Figure 16 and 25.

The absolute values, however, change in favor of MUSTER. The

use of even a naı̈ve aggregation operator like ours boosts the

improvements of MUSTER over the base protocol up to 180%.

 60

 80

 100

 120

 140

 160

 100 150 200 250 300 350 400

L
if
e
ti
m

e
 i
n
c
re

a
s
e

 (
%

)

Nodes

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging (stdDev)

Fig. 24. Semi-random topology: lifetime increase vs. number of nodes
(8 sinks).

 80

 100

 120

 140

 160

 180

 200

 100 150 200 250 300 350 400

Li
fe

tim
e

in
cr

ea
se

 (
%

)

Nodes

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(a) Lifetime increase vs. number of nodes (8 sinks, 4 neighbors).

 80

 100

 120

 140

 160

 180

 200

 2 4 6 8 10

Li
fe

tim
e

in
cr

ea
se

 (
%

)

Sinks

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(b) Lifetime increase vs. number of sinks (300 nodes, 4 neighbors).

 120

 130

 140

 150

 160

 170

 180

 190

 200

 2 3 4 5 6 7 8

L
if
e
ti
m

e
 i
n
c
re

a
s
e
 (

%
)

Average number of neighbors

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(c) Lifetime increase vs. average number of neighbors (300 nodes, 8 sinks)

Fig. 25. Lifetime increase enabled by MUSTER when data aggregation is
used both in MUSTER and the base protocol.

Path merging is mostly responsible for this improvement, as the

relative contribution of load balancing in Figure 16 and 25 is

comparable. Moreover, packet delivery increases by 15% using

MUSTER, and the ratio of (aggregated) readings delivered to sinks

now improves of about 45% over the base solution. Again, this

is mainly due to path merging, which lets nodes aggregate data

closer to the sources w.r.t. the base solution. This corresponds to

less data being funneled through intermediate nodes, and hence

fewer contention on the wireless medium and reduced packet

collisions. As for data yield, MUSTER provides the final users

with 4 times the amount of raw data gathered by the base protocol.

As expected, the other metrics we examined in Section V-B are

not affected by aggregation. In particular, the average end-to-end

latency is comparable since—at least in the case of the average

operator—data generated by the same source in different epochs

contribute to different averages, and the latency we previously

observed was relative to a single data epoch.

12

12

1
2

3

4
5

6

9

11
10

17

19

18

20

13

14

8

7

15

16

Sink

Outdoor

32

21

22

23

24 25

26

29

31

3037

39

38

40

33

34

28

27

35

36

Fig. 26. Testbed deployment. (Dashed lines represent communication links
active for at least 80% of the duration of all experiments).

VI. REAL-WORLD EXPERIMENTS

The goal of this section is to confirm in a real setting the

results described in Section V, and to assess the effectiveness of

load balancing when using real battery discharge profiles in the

presence of temperature changes.

We use 40 TMote Sky nodes deployed in two adjacent office

floors, as shown in Figure 26, running the IEEE 802.15.4-specific

implementation described in Section IV. Some nodes are placed

outdoor, therefore directly subject to temperature changes. The

sinks, whose location is fixed, are hooked via USB to 4 GumStix

embedded PCs (www.gumstix.com) to enable remote control

and collection of the experiments’ results. The USB connection

also powers the sink nodes. All other nodes are powered using

a single Duracell CR2016 battery, for which we use discharge

profiles at 20oC, 25oC, 30oC, and 35oC [18]. These batteries have

about 4% of the capacity of two AA batteries, which allows us to

run multiple repetitions of the experiments in reasonable time2.

Ten nodes are randomly chosen as sources at the beginning of

every experiment. All other settings are as in Section V.

We compute a subset of the metrics in Section V-B. We verified

that a temperature drop may cause a node transient failure even

with leftover energy. The node may become available again if

the temperature raises. Therefore, we declare an experiment over

when the last source-sink path is interrupted for at least 30

consecutive epochs. To factor out fluctuations of wireless links

and compute the optimal routing topologies with the model in

Section II, we consider a link between two nodes when they are

listed in each other’s neighbor set for at least 80% of the exper-

iment duration. We cannot measure the exact end-to-end latency,

as this would require time-synchronizing the nodes, creating

further network traffic that may affect the experiments. Moreover,

considered the small capacity of the batteries employed, it is very

difficult to measure directly the energy left at the end of the

experiment—as we did in Figure 20—without sophisticated tools.

Therefore, we report instead the number of nodes still running at

the end of experiment, as an indirect measure of the energy left.

The results below are averages over 15 repetitions carried out

2A TMote Sky with LPL runs for up to 1 month on 2 standard AA batteries.

 0

 10

 20

 30

 40

 50

 2 4 6 8 10 12 14
 0

 5

 10

 15

 20

 25

 30

 35

 40

L
if
e
ti
m

e
 i
n
c
re

a
s
e
 (

%
)

T
e
m

p
e
ra

tu
re

 (
C

)

Experiment id

Average outside temperature
MUSTER lifetime increase

Fig. 27. Lifetime and average outdoor temperature.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14N
o

d
e

s
 a

liv
e

 a
t
th

e
 e

n
d
 o

f
th

e
 e

x
p
e
ri
m

e
n
t

Experiment id

Base
MUSTER

Fig. 28. Nodes still running at the end of the experiments.

by running MUSTER first, and then the base protocol with the

same source nodes, for a total of about 35 days of experiments.

Results. Figure 27 illustrates the lifetime improvement enabled by

MUSTER in our testbed. The simulation results in Section V are

confirmed, although absolute values are smaller here because of

the fewer source-sink paths. The improvement is consistent across

all experiments, despite the different placement of the sources.

These results are again mainly due to the improved transmission

efficiency enabled by MUSTER that, throughout the experiments,

reduces the packet overhead of about 40% w.r.t. the base protocol.

Figure 27 also shows the average temperature sensed by out-

door nodes during each experiment. Interestingly, higher outdoor

temperatures correspond to higher improvements in MUSTER,

whereas we observe no clear correspondence between the base

protocol performance and outdoor temperature. Although the

batteries we used provide more service hours at higher tempera-

tures, the base protocol is oblivious to such behavior: outdoor

nodes may even be left unused. Instead, MUSTER’s leverages

this information through battery discharge profiles, balancing the

routing load and thus pushing farther in time the moment where

the network becomes permanently partitioned.

The reasoning above is confirmed in Figure 28, where we plot

the number of nodes still running when an experiment ends. With

the base protocol about 23% of the nodes, on average, are still

running when the WSN becomes partitioned. This ratio drops to

about 7% with MUSTER, confirming the effectiveness of its load

balancing. Furthermore, although we cannot precisely measure

the energy left, our logs show that the base protocol almost never

uses some of these nodes because, unlike MUSTER, it is unable to

recognize that exploiting them may extend the network lifetime.

Figure 29 evaluates MUSTER’s path merging in our testbed

experiments, showing the number of nodes it involves in routing

w.r.t. the theoretical minimum and multiple sink- and source-

rooted minimum trees, similarly to the analysis in Section V-B.

Because of the smaller scale of our testbed, the figures are fairly

13

close to each other. Nevertheless, MUSTER constantly exploits

fewer nodes than sink-(source-) rooted trees, confirming that, even

in a relatively small network, our path merging technique provides

significant benefits over a blind replication of routing trees.

VII. RELATED WORK

Routing in WSNs has been studied extensively [4]. In the

following, we survey the state of the art focusing on solutions

closest to our scenarios, goals, and approach.

Many-to-many communication. Yuen et al. [56] present a multi-

sink collection protocol where sources gather correlated data, and

adjust the sensing rate at different nodes to eliminate redundant

information. On the contrary, we do not make assumptions on the

nature of data at different sources. Yuen et al. also leverage integer

linear programming to design a distributed algorithm. They do not

report, however, the performance in terms of processing overhead

and memory consumption. Instead, we use the model described

in Section II for comparison against a distributed heuristics easily

implementable on WSN nodes, as described in Section IV.

Some solutions exist to route from multiple sources to mobile

sinks. In the TTDD protocol [35], nodes are organized in a two-

level hierarchy that determines a subset of nodes responsible to

track the sinks’ position. Kim et al. [32] use stationary nodes

as anchors to build routing trees on behalf of mobile sinks.

In-network aggregation may also be employed, e.g., using one

mobile sink to build a primary tree opportunistically shared with

other mobile sinks [26]. Although MUSTER was designed with

static sinks in mind, there are synergies worth exploring. For in-

stance, in principle, a variation of our path merging strategy could

be used to build energy-efficient trees at the anchor nodes [32].

Whether this is practical, however, depends on the sink mobility.

A treatment of this topic is outside of the scope of this paper.

Single-sink and single-source communication. A few works

rely on multiple sinks as cluster-heads, where however each

source reports to only one sink. Some models study the optimal

placement of sinks w.r.t. given metrics. Oyman and Ersoy [39]

target a pre-specified minimum lifetime. Vincze et al. [53] study

how to minimize the average source-sink distance. Das and

Dutta [15] define optimal policies to select, at each source, the

sink minimizing energy consumption. These scenarios differ from

ours in that we require sinks to simultaneously collect data from

possibly overlapping subsets of sources.

A wealth of work exists on single-sink scenarios. Existing

approaches mainly focus on metrics to build efficient routing

trees [25], [28], [54] and reliability mechanisms [47]. The former

require accurate link quality estimators, an issue orthogonal to

our approach. Although in Section IV we describe simple and

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14

N
o
d
e
s
 i
n
v
o
lv

e
d

Experiment id

Theoretical optimum
MUSTER

Multiple sink−rooted minimum trees
Multiple source−rooted minimum trees

Fig. 29. Nodes involved in routing.

efficient solutions, more sophisticated metrics may be embedded

in MUSTER. Similarly, further reliability mechanisms may be

integrated, increasing delivery but also overhead.

Intanagonwiwat et al. [27] present a protocol to build routing

trees exploiting in-network aggregation. They build a single

source-sink path first, then shared by other sources. The resulting

tree likely shows a “backbone” effect, which makes nodes ag-

gregate data earlier. Although this resembles our path merging

scheme, their solution is not directly applicable in multi-sink

scenarios and, unlike MUSTER, it does not provide load balancing.

Moreover, they study the performance of their protocol only

through simulations based on a IEEE 802.11 MAC layer, which

makes their results difficult to compare with ours.

As for one-to-many communication, Cao et al. [9] observe that

most existing WSN multicast protocols address specific settings.

Their uCast protocol targets scenarios where destinations are

physically co-located. Egorova and Murphy [20] rely on a rein-

forcement learning approach that requires the network topology to

be sufficiently stable for the protocol to converge. VLM2 [46] and

TinyADMR [10] focus on multicasting to a small set of mobile

targets. A number of solutions are also based on the geographical

position of nodes [22]. Common to all these approaches is the

optimization of routes at each source independently of the others,

whereas in MUSTER these collaborate by merging parallel paths

towards multiple sinks.

Solutions providing one-to-one communication in WSNs also

exist [8], [23], [37]. In these cases, the protocols optimize the

source-sink paths individually, typically by reducing the stretch

over the shortest path. In a sense, this represents the extreme

opposite to MUSTER. Indeed, our goal is to exploit the spatial

and temporal co-location of multiple source-sink paths to prolong

the system lifetime. Our load balancing scheme takes advantage

of the available resources in exchange for slightly longer paths.

VIII. CONCLUSION

We presented MUSTER, a protocol expressly conceived for

many-to-many communication in WSNs. We studied the problem

from an analytical standpoint, by devising a model inspired to the

multi-commodity network design problem, used to compute the

optimal routing topology in a centralized fashion. The distributed

path merging and load balancing techniques implemented in

MUSTER allow us to obtain routing paths whose cost is within

10% of the optimum, and evenly distribute the routing effort. By

combining these techniques, MUSTER enjoys 2.5 times the data

yield of mainstream protocols under the same settings. Moreover,

it amplifies the beneficial effects of in-network data aggregation,

yielding the user 4 times the amount of data delivered by other

protocols. MUSTER is publicly available as open source [1].

Acknowledgements. The authors wish to thank Roberto Cordone

and Marco Trubian for their suggestions on modeling the multiple

sources to multiple sinks routing problem, Pietro Ciciriello and

Flavio Pompermaier for their work on the implementation of

MUSTER, and Renato Lo Cigno for his comments on an early

draft of this paper. This work is partially supported by the Au-

tonomous Province of Trentino, Italy, under the TRITon project,

by the EU Cooperating Objects Network of Excellence (CONET),

by the Swedish Foundation for Strategic Research (SSF), and by

the Swedish Agency for Innovation Systems (VINNOVA).

14

REFERENCES

[1] http://d3s.disi.unitn.it/software/muster.

[2] www.gnu.org/software/glpk.

[3] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks:
Research challenges. Ad Hoc Networks Journal, 2(4), 2004.

[4] J.N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor
networks: A survey. IEEE Wireless Communications, 11(6), 2004.

[5] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. The Abstract
Task Graph: A methodology for architecture-independent programming
of networked sensor systems. In Workshop on End-to-end Sense-and-

respond Systems (EESR), 2005.

[6] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and
M. Parlange. Sensorscope: Out-of-the-box environmental monitoring. In
Proc. of the 7th Int. Conf. on Information Processing in Sensor Networks

(IPSN), 2008.

[7] J. Burrell, T. Brooke, and R. Beckwith. Vineyard computing: sensor
networks in agricultural production. IEEE Pervasive Comp., 3(1), 2004.

[8] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron.
Virtual ring routing: network routing inspired by dhts. SIGCOMM

Comput. Commun. Rev., 36(4), 2006.

[9] Q. Cao, T. He, and T. Abdelzaher. uCast: Unified connectionless
multicast for energy efficient content distribution in sensor networks.
IEEE Trans. Parallel Distrib. Syst., 18(2), 2007.

[10] B. Chen, K. K. Muniswamy-Reddy, and M. Welsh. Ad-hoc multicast
routing on resource-limited sensor nodes. In Proc. of the 2nd Int. Wkshp.

on Multi-hop Ad-hoc Networks: From Theory to Reality, 2006.

[11] Y. Chou. Statistical Analysis. Holt International, 1975.

[12] P. Ciciriello, L. Mottola, and G.P. Picco. Building virtual sensors and
actuator over Logical Neighborhoods. In Proc. of the 1st ACM Int.

Wkshp. on Middleware for Sensor Networks (MidSens), 2006.

[13] D.S.J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-
throughput path metric for multi-hop wireless routing. Wirel. Netw.,
11(4), 2005.

[14] Crossbow Tech. www.xbow.com.

[15] A. Das and D. Dutta. Data acquisition in multiple-sink sensor networks.
Mobile Computing and Communications Review, 9(3), 2005.

[16] A. Deshpande, C. Guestrin, and S. Madden. Resource-aware wireless
sensor-actuator networks. IEEE Data Engineering, 28(1), 2005.

[17] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He. Software-based on-line
energy estimation for sensor nodes. In Proc. of the 4th Wrkshp. on

Embedded Networked Sensors (Emnets IV), June 2007.

[18] Duracell Technical OEM. www.duracell.com/oem/

productdata/default.asp.

[19] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler. Energy metering
for free: Augmenting switching regulators for real-time monitoring. In
Proc. of the 7th Int. Conf. on Information Processing in Sensor Networks

(IPSN), 2008.

[20] A. Egorova-Förster and A. L. Murphy. A feedback enhanced learning
approach for routing in wireless sensor networks. In Proc. of the 4th

Workshop on Mobile Ad-Hoc Networks (WMAN), 2007.

[21] Energizer Technical Information. http://data.energizer.com/
DataSheets.aspx.

[22] C.-H. Feng and W. Heinzelman. RBMulticast: Receiver based multicast
for wireless sensor networks. In Proc. of the Int. Conf. on Wireless

Communications and Networking (WCNC), 2009.

[23] R. Fonseca, S. Ratnasamy, J. Zhao, C. Tien Ee, D. Culler, S. Shenker,
and I. Stoica. Beacon-Vector Routing: Scalable point-to-point routing in
wireless sensor networks. In Proc. of the 2nd Symposium on Networked

Systems Design and Implementation (NSDI), 2005.

[24] Trentino Research & Innovation for Tunnel Monitoring. http://

triton.disi.unitn.it.

[25] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
tree protocol. In Proc. of the 7th Int. Conf. on Embedded Networked

Sensor Systems (SENSYS), 2009.

[26] K. Hwang, J. In, and D. Eom. Distributed dynamic shared tree for
minimum energy data aggregation of multiple mobile sinks in wireless
sensor networks. In Proc. of 3rd European Wkshp. on Wireless Sensor

Networks (EWSN), 2006.

[27] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact
of network density on data aggregation in wireless sensor networks. In
Proc. of the 22th Int. Conf. on Distributed Computing Systems, 2002.

[28] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.
Directed Diffusion for wireless sensor networking. IEEE/ACM Trans.

Networking, 11(1), 2003.

[29] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu. Impact of interference
on multi-hop wireless network performance. Wirel. Netw., 11(4), 2005.

[30] A. P. Jayasumana, Q. Han, and T. H. Illangasekare. Virtual sensor
networks - a resource efficient approach for concurrent applications. In
Proc. of the 1st Int. Conf. on Information Technology, 2007.

[31] D. Jung, T. Teixeira, and A. Savvides. Sensor node lifetime analysis:
Models and tools. ACM Trans. Sensor Networks (TOSN), 5(1), 2009.

[32] H. S. Kim, T. F. Abdelzaher, and W. H. Kwon. Minimum-energy
asynchronous dissemination to mobile sinks in wireless sensor networks.
In Proc. of the 1st Int. Conf. on Embedded Networked Sensor Systems

(SENSYS), 2003.
[33] M. Kodialam and T. Nandagopal. Characterizing achievable rates in

multi-hop wireless networks: the joint routing and scheduling problem.
In Proc. of the 9th Int. Conf. on Mobile computing and networking

(MOBICOM), 2003.
[34] O. Landsiedel, K. Wehrle, and S. Gotz. Accurate prediction of power

consumption in sensor networks. In Proc. of the 2nd IEEE Wkshp. on

Embedded Networked Sensors (EmNets), 2005.
[35] H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang. TTDD: Two-tier

data dissemination in large-scale wireless sensor networks. Wireless

Networks, 5(11), 2005.
[36] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson.

Wireless sensor networks for habitat monitoring. In Proc. of the 1st Int.

Wkshp. on Wireless Sensor Networks and Applications (WSNA), 2002.
[37] Y. Mao, F. Wang, L. Qiu, S. Lam, and J.M. Smith. S4: Small state

and small stretch routing protocol for large wireless sensor networks.
In Proc. of the 4nd Symposium on Networked Systems Design and

Implementation (NSDI), 2007.
[38] K. Martinez, J. K. Hart, and R. Ong. Environmental sensor networks.

Computer, 37(8), 2004.
[39] E. I. Oyman and C. Ersoy. Multiple sink network design problem in

large scale wireless sensor networks. In Proc. of 1st Int. Conf. on

Communications (ICC), 2004.
[40] C. Park, K. Lahiri, and A. Raghunathan. Battery discharge characteristics

of wireless sensor nodes: An experimental analysis. In Proc. of the Int.

Conf. on Sensor and Ad-hoc Comm. and Networks (SECON), 2005.
[41] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for

wireless sensor networks. In Proc. of the 2nd Int. Conf. on Embedded

Networked Sensor Systems (SENSYS), 2004.
[42] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low

power wireless research. In Proc. of the 5th Int. Conf. on Information

Processing in Sensor Networks (IPSN), 2005.
[43] F. Pompermaier. Accurate estimation of residual lifetime in wireless

sensor networks. Master’s thesis, University of Trento, Italy, 2008.
[44] R. Rao, S. Vrudhula, and D.-N. Rakhmatov. Battery modeling for

energy-aware system design. Computer, 36(12), 2003.
[45] K. Römer. Distributed mining of spatio-temporal event patterns in sensor

networks. In Proc. of the 1st Euro-American Wkshp. on Middleware

for Sensor Networks (EAWMS), 2006.
[46] A. Sheth, B. Shucker, and R. Han. VLM2: A very lightweight mobile

multicast system for wireless sensor networks. In Proc. of the 4th Int.

Conf. on Wireless Communications and Networking, 2003.
[47] F. Stann and J. Hiedemann. RMST: Reliable data transport in sensor

networks. In Proc. of the 1st Int. Wkshp. on Sensor Network Protocols

and Applications (WSNA), 2003.
[48] TinyOS Web Site. www.tinyos.net.
[49] TinyOS. Multi-hop Routing. www.tinyos.net/tinyos-1.x/

doc/multihop/multihop_routing.html.
[50] TinyOS. TEP 105 - Low Power Listening. www.tinyos.net/

tinyos-2.x/doc/html/tep105.html.
[51] TinyOS. TEP 119 - Collection. www.tinyos.net/tinyos-2.x/

doc/html/tep119.html.
[52] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable sensor network

simulation with precise timing. In Proc. of the 4th Int. Symp. on

Information Processing in Sensor Networks (IPSN), 2005.
[53] Z. Vincze, V. Rolland, and A. Vidacs. Deploying multiple sinks in

multi-hop wireless sensor networks. In Proc. of Int. Conf. on Pervasive

Services, 2007.
[54] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of

reliable multihop routing in sensor networks. In Proc. of the 1st Int.

Conf. on Embedded Networked Sensor Systems (SENSYS), 2003.
[55] B. Y. Wu and K.-M. Chao. Spanning Trees and Optimization Problems.

Chapman & Hall, 2004.
[56] K. Yuen, B. Li, and B. Liang. Distributed data gathering in multi-sink

sensor networks with correlated sources. In Proc. of 5th Int. IFIP-TC6

Networking Conf., 2006.
[57] H. Zhang, A. Arora, Y. Choi, and M. G. Gouda. Reliable bursty

convergecast in wireless sensor networks. In Proc. of the 6th Int. Symp.

on Mobile Ad-hoc Networking and Computing (MOBIHOC), 2005.

15

Luca Mottola Luca Mottola is a Senior Researcher
at the Swedish Institute of Computer Science (SICS).
Previously, he has been a post-doctoral researcher
at the University of Trento (Italy), and a research
scholar at the University of Southern California
(USA). He carried out his Ph.D. studies at Po-
litecnico di Milano (Italy), completing in 2008. His
research interests include the design, implementa-
tion, and validation of modern distributed systems,
with particular attention to wireless sensor networks
and automatic verification of distributed software

architectures. He is a member of ACM and IEEE. More information are
available at http://www.sics.se/˜luca/.

Gian Pietro Picco Gian Pietro Picco is an Associate
Professor in the Department of Information Engi-
neering and Computer Science (DISI) at University
of Trento, Italy. Previously, he has been on the
faculty of Washington University in St. Louis, MO,
USA (1998-1999) and Politecnico di Milano, Italy
(1999- 2006). The goal of his current research is to
ease the development of modern distributed systems
through the design and implementation of appropri-
ate programming abstractions and of communica-
tion protocols efficiently supporting them. His work

spans the research fields of software engineering, middleware, and network-
ing, and is oriented in particular towards wireless sensor networks, mobile
computing, and large-scale distributed systems. He is a member of ACM and
IEEE. More information at http://disi.unitn.it/˜picco.

