
Mutable Checkpoints: A New Checkpointing
Approach for Mobile Computing Systems

Guohong Cao, Member, IEEE, and Mukesh Singhal, Fellow, IEEE

AbstractÐMobile computing raises many new issues such as lack of stable storage, low bandwidth of wireless channel, high mobility,

and limited battery life. These new issues make traditional checkpointing algorithms unsuitable. Coordinated checkpointing is an

attractive approach for transparently adding fault tolerance to distributed applications since it avoids domino effects and minimizes the

stable storage requirement. However, it suffers from high overhead associated with the checkpointing process in mobile computing

systems. Two approaches have been used to reduce the overhead: First is to minimize the number of synchronization messages and

the number of checkpoints; the other is to make the checkpointing process nonblocking. These two approaches were orthogonal

previously until the Prakash-Singhal algorithm [28] combined them. However, we [8] found that this algorithm may result in an

inconsistency in some situations and we proved that there does not exist a nonblocking algorithm which forces only a minimum number

of processes to take their checkpoints. In this paper, we introduce the concept of ªmutable checkpoint,º which is neither a tentative

checkpoint nor a permanent checkpoint, to design efficient checkpointing algorithms for mobile computing systems. Mutable

checkpoints can be saved anywhere, e.g., the main memory or local disk of MHs. In this way, taking a mutable checkpoint avoids the

overhead of transferring large amounts of data to the stable storage at MSSs over the wireless network. We present techniques to

minimize the number of mutable checkpoints. Simulation results show that the overhead of taking mutable checkpoints is negligible.

Based on mutable checkpoints, our nonblocking algorithm avoids the avalanche effect and forces only a minimum number of

processes to take their checkpoints on the stable storage.

Index TermsÐMobile computing, coordinated checkpointing, causal dependency, nonblocking.

æ

1 INTRODUCTION

A distributed system is a collection of processes that
communicate with each other by exchanging mes-

sages. A mobile computing system is a distributed system

where some processes are running on mobile hosts (MHs)

that can move. To communicate with MHs, mobile support

stations (MSSs) are added. An MSS communicates with

other MSSs by wired networks, but it communicates with

MHs by wireless networks. Due to the mobility of MHs and

the constraints of wireless networks, there are some new

issues [1], [20] that complicate the design of checkpointing

algorithms:

. Changes in the location of an MH complicate the

routing of messages. Messages sent by an MH to

another MH may have to be rerouted since the

destination MH may have moved. Although differ-

ent routing protocols [2], [26] apply different

techniques to address the mobility, generally speak-

ing, locating an MH increases the communication

delay and message complexity.

. Due to the vulnerability of mobile computers to
catastrophic failures, e.g., loss, theft, or physical
damage, the disk storage on an MH cannot be
considered as the stable storage. A reasonable
solution [1] is to utilize the stable storage at the
MSSs to store checkpoints of the MHs. Thus, to take
a checkpoint, an MH has to transfer a large amount
of data to its local MSS over the wireless network.
Since the wireless network has low bandwidth and
the MHs have relatively low computation power, the
checkpointing algorithm should only force a mini-
mum number of processes to take checkpoints.

. The battery at the MH has limited life. To save
energy, the MH can power down individual compo-
nents during periods of low activity [14]. This
strategy is referred to as the doze mode operation.
The MH in doze mode is awakened on receiving a
message. Therefore, energy conservation and low
bandwidth constraints require the checkpointing
algorithm to minimize the number of synchroniza-
tion messages.

. MHs may disconnect from the network temporarily
or permanently. The disconnection of MHs should
not prevent the checkpointing process.

Coordinated checkpointing is a commonly used techni-
que to prevent complete loss of computation upon a failure
[7], [13], [19], [28], [34]. In this approach, the state of each
process in the system is periodically saved on the stable
storage, which is called a checkpoint of the process. To
recover from a failure, the system restarts its execution from
a previous consistent global checkpoint saved on the stable
storage. In order to record a consistent global checkpoint,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2001 157

. G. Cao is with the Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16802
E-mail: gcao@cse.psu.edu

. M. Singhal is with the Department of Computer and Information Science,
Ohio State University, Columbus, OH 43210
E-mail: singhal@cis.ohio-state.edu

Manuscript received 1 Mar 2000; revised 1 Aug 2000; accepted 15 Aug 2000.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 112984.

1045-9219/01/$10.00 ß 2001 IEEE

processes must synchronize their checkpointing activities.
In other words, when a process takes a checkpoint, it asks
(by sending checkpoint requests) all relevant processes to
take checkpoints. Therefore, coordinated checkpointing
suffers from high overhead associated with the checkpoint-
ing process.

Much of the previous work [12], [18], [19], [23] in
coordinated checkpointing has focused on minimizing the
number of synchronization messages and the number of
checkpoints during checkpointing. However, these algo-
rithms (called blocking algorithms) force all relevant pro-
cesses in the system to block their computations during the
checkpointing process. Checkpointing includes the time to
trace the dependency tree and to save the states of processes
on the stable storage, which may be long. Moreover, in
mobile computing systems, due to the mobility of MHs, a
message may be routed several times before reaching its
destination. Therefore, blocking algorithms may further
degrade the performance of mobile computing systems [5],
[13].

Recently, nonblocking algorithms [13], [30] have received
considerable attention. In these algorithms, processes need
not block during checkpointing by using a checkpointing
sequence number to avoid inconsistencies. However, these
algorithms [13], [30] require all processes in the computa-
tion to take checkpoints during the checkpointing, even
though many of them may not be necessary. In mobile
computing systems, since checkpoints need to be transfered
to the stable storage at the MSSs over the wireless network,
taking unnecessary checkpoints may waste a large amount
of wireless bandwidth.

The Prakash-Singhal algorithm [28] was the first algo-
rithm to combine these two approaches. More specifically, it
only forces a minimum number of processes to take
checkpoints and does not block the underlying computation
during the checkpointing. However, we found that this
algorithm may result in an inconsistency [7], [8] in some
situations and we proved that there does not exist a
nonblocking algorithm which forces only a minimum
number of processes to take their checkpoints.

In this paper, we introduce the concept of ªmutable
checkpoint,º which is neither a tentative checkpoint nor a
permanent checkpoint, to design efficient checkpointing
algorithms for mobile computing systems. Mutable check-
points need not be saved on the stable storage and can be
saved anywhere, e.g., the main memory or local disk of
MHs. Thus, taking a mutable checkpoint avoids the over-
head of transferring large amounts of data to the stable
storage at MSSs over the wireless network. We present
techniques to minimize the number of mutable checkpoints.
Simulation results show that the overhead of taking
mutable checkpoints is negligible. Based on mutable
checkpoints, our nonblocking algorithm forces only a
minimum number of processes to take their checkpoints
on the stable storage.

The rest of the paper is organized as follows: Section 2
develops the necessary background. In Section 3, we
present a low-cost checkpointing algorithm for mobile
computing systems. The correctness proof is provided in
Section 4. In Section 5, we evaluate the performance of our

algorithm. Related work is provided in Section 6. Section 7
concludes the paper.

2 PRELIMINARIES

2.1 Computation Model

A mobile computing system consists of a large number of
mobile hosts(MHs) [1] and relatively fewer static hosts called
mobile support stations(MSSs). The MSSs are connected by a
static wired network, which provides reliable FIFO
delivery of messages. A cell is a logical or geographical
area covered by an MSS. An MH can directly communicate
with an MSS by a reliable FIFO wireless channel only if it
is present in the cell supported by the MSS.

The distributed computation we consider consists of
N processes denoted by P0, P1, P2, � � � , PN running
concurrently on fail-stop MHs or MSSs in the network.
The processes do not share a common memory or a
common clock. Message passing is the only way for
processes to communicate with each other. The computa-
tion is asynchronous: Each process progresses at its own
speed and messages are exchanged through reliable
communication channels whose transmission delays are
finite but arbitrary. The messages generated by the under-
lying distributed application will be referred to as computa-
tion messages. Messages generated by processes to advance
checkpoints will be referred to as system messages.

Each checkpoint taken by a process is assigned a unique
sequence number. The ith�i � 0� checkpoint of process Pp is
assigned a sequence number i and is denoted by Cp;i. The i

th

checkpoint interval[25] of process Pp denotes all the computa-
tion performed between its ith and �i� 1�th checkpoint,
including the ith checkpoint but not the �i� 1�th checkpoint.

2.2 Handling Mobility and Disconnections

Due to the mobility of MHs, message transmission becomes
complicated. Messages sent by an MH to another MH may
have to be rerouted because the destination MH may be
disconnected from the old MSS and connected to a new
MSS. Many routing protocols for the network layer have
been proposed [2], [26], [33] to handle MH mobility.

It should be noted that disconnection of an MH is a
voluntary operation [1], and frequent disconnections of
MHs is an expected feature of the mobile computing
environment. Unexpected disconnections due to battery
failure, processor failure, or network failure are different
from voluntary disconnection and are discussed in
Section 3.6.

An MH may get disconnected from the network for an
arbitrary period of time. At the application level, the
checkpointing algorithm may generate a request for the
disconnected MH to take a checkpoint. Delaying a response
to such a request until the MH reconnects at someMSS may
significantly increase the completion time of the checkpoint-
ing algorithm. So, we propose the following solution to deal
with disconnections.

Note that only local events can take place at an MH
during the disconnect interval. No message send or receive
event occurs during this interval. Hence, no new depen-
dencies with respect to other processes are created during
this interval. The dependency relation of an MH with the

158 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2001

rest of the system, as reflected by its local checkpoint, is the
same no matter when the local checkpoint is taken during
the disconnect interval.

Suppose a mobile host MHi wants to disconnect from its
local MSSp. MHi takes a local checkpoint and transfers its
local checkpoint to MSSp as disconnect checkpointi. If MHi

is asked to take a checkpoint during the disconnect interval,
MSSp converts disconnect checkpointi into MHi's new
checkpoint and uses the message dependency information
of MHi to propagate the checkpoint request. MHi also
sends a disconnect�sn�message toMSSp on theMH-to-MSS
channel supplying the sequence number sn of the last
message received on the MSS-to-MH channel. On receipt of
MHi's disconnect�sn�, MSSp knows the last message that
MHi received from it and buffers all computation messages
received until the end of the disconnect interval.

Later, suppose MHi reconnects at an MSS, say MSSq. If
MHi knows the identity of its last MSS, say MSSp, it sends
a reconnect�MHi;MSSq� message to MSSp through MSSq.
If MHi lost the identity of its last MSS for some reason,
MHi's reconnect request is broadcast over the network. On
receiving the reconnect request, MSSp transfers all the
support information (the checkpoint, dependency vector,
buffered messages, etc.) of MHi to MSSq and removes all
the information related to the disconnection. Then, MSSq

forwards all the support information to MHi. When the
data sent by MSSp arrives at MHi, MHi processes the
buffered messages. If MSSp has taken a checkpoint for
MHi, MHi clears its message dependency information
before processing the buffered messages. After these
activities, the reconnect routine terminates and the relo-
cated mobile host MHi resumes normal communication
with other MHs (or MSSs) in the system.

2.3 The Basic Idea behind Nonblocking Algorithms

Most existing coordinated checkpointing algorithms [12],
[19], [23] rely on the two-phase commit protocol [15] and
save two kinds of checkpoints on the stable storage: tentative
and permanent. In the first phase, the initiator takes a
tentative checkpoint and forces all relevant processes to
take tentative checkpoints. Each process informs the
initiator whether it succeeded in taking a tentative
checkpoint. A process may refuse to take a checkpoint
depending on its underlying computation. After the
initiator has received positive replies from all relevant
processes, the algorithm enters the second phase. If the
initiator learns that all processes have successfully taken
tentative checkpoints, it asks them to make their tentative
checkpoints permanent; otherwise, it asks them to discard
them. A process, on receiving the message from the
initiator, acts accordingly. Note that, after a process takes
a tentative checkpoint in the first phase, it remains blocked
until it receives the decision from the initiator in the second
phase.

A nonblocking checkpointing algorithm does not require
any process to suspend its underlying computation. When
processes do not suspend their computations, it is possible
for a process to receive a computation message from
another process which is already running in a new
checkpoint interval. If this situation is not properly handled,
it may result in an inconsistency. For example, in Fig. 1, P2

initiates a checkpointing process. After sending checkpoint
requests to P1 and P3, P2 continues its computation. P1

receives the checkpoint request and takes a new checkpoint,
then it sends m1 to P3. Suppose P3 receives the checkpoint
request from P2 after receiving m1. The recorded check-
points are not consistent with each other since m1 is an
orphan message, i.e., a message whose receive event is
recorded in the state of the destination process, but its send
event is lost [19], [32].

Most nonblocking algorithms [13], [24], [30] use a
Checkpoint Sequence Number (csn) to avoid inconsisten-
cies. More specifically, a process is forced to take a
checkpoint if it receives a computation message whose
csn is greater than its local csn. In Fig. 1, P1 increases its csn
after it takes a checkpoint and appends the new csn to m1.
When P3 receives m1, it takes a checkpoint before
processing m1 because the csn appended to m1 is larger
than its local csn.

This scheme works only when every process in the
computation can receive each checkpoint request and
increases its own csn. Since the Prakash-Singhal algorithm
[28] only forces a part of the processes to take checkpoints,
the csn of some processes may be out-of-date, and may not
be able to avoid inconsistencies. The Prakash-Singhal
algorithm attempts to solve this problem by having each
process maintain an array to save the csn, where csni�j�
represents the csn of Pj that Pi expects. Note that Pi's csni�i�
may be different from Pj's csnj�i� if there has been no
communication between Pi and Pj for several checkpoint
intervals. By using csn and the initiator identification
number, they claim that their nonblocking algorithm can
avoid inconsistencies and minimize the number of check-
points during checkpointing. However, we showed that this
algorithm may result in an inconsistency [7], [8], and we
have proven that there does not exist a nonblocking
algorithm which forces only a minimum number of
processes to take their checkpoints [7], [8]. Since the proof
is not the major concern of this paper, we only briefly
mention the basic idea using an example.

2.4 Impossibility of Checkpointing

In Fig. 2, assume messages m6 and m7 do not exist. To
initiate a checkpointing process, P1 takes checkpoint C1;1

and sends checkpoint requests to P3 and P4 (not illustrated
in the figure) since it depends on them. When P4 receives
the checkpoint request, it takes a checkpoint and sends a
checkpoint request to P5. For the same reason, P5 takes a
checkpoint and sends a checkpoint request to P2. P2 must
take this checkpoint before processing m5; otherwise, m5

will become an orphan. Things are complicated if we

CAO AND SINGHAL: MUTABLE CHECKPOINTS: A NEW CHECKPOINTING APPROACH FOR MOBILE COMPUTING SYSTEMS 159

Fig. 1. Inconsistent checkpoints

consider another situation. Suppose m4 does not exist. In
this case, P2 will not receive a checkpoint request associated
with checkpoint C1;1, and it should not take a checkpoint
before processing m5 in order to minimize the number of
checkpoints. Therefore, when P2 receives m5, it has to
decide whether to take a checkpoint before processing m5.
In other words, P2 has to know if it will receive a checkpoint
request associated with C1;1 in the future when it receives
m5. However, if the checkpointing process is nonblocking,
there is not enough information for P2 to look into the
future.

The problem arises due to the dependency created by the
message m4. Because of m4, there is a new dependency
between P1 and P2 such that P2 will receive a checkpoint
request associated with C1;1. There are two possible
approaches for P2 to get the information about this new
dependency (called the z-dependency [7], [8]).

Approach 1 (Tracing the in-coming messages): In this
approach, P2 obtains the new z-dependency information
from P1. Then, P1 has to know the z-dependency informa-
tion before it sends m5 and appends the z-dependency
information to m5. In Fig. 2, P1 cannot get the new
z-dependency information unless P4 notifies P1 of the new
z-dependency information when P4 receives m4. There are
two ways for P4 to notify P1 of the new z-dependency
information: First is to broadcast the z-dependency infor-
mation (not illustrated in the figure); the other is to send the
z-dependency information on an extra message m6 to P3,
which in turn sends it to P1 on m7. Both of them

dramatically increase the message overhead. Since the
algorithm does not block the underlying computation, it is
possible that P1 receives m7 after it sends out m5 (as shown
in the figure) and, hence, P2 is still not guaranteed to get the
z-dependency information when it receives m5.

Approach 2 (Tracing the out-going messages): In this
approach, since P2 sends message m3 to P5, P2 hopes to
obtain the new z-dependency information from P5. P5 has
to know the new z-dependency information and it must
send an extra message (not shown in the figure) to notify P2.
Similarly, P5 needs to get the new z-dependency informa-
tion from P4 which comes from P3 and, finally, from P1.
This requires many more extra messages than Approach 1.
Similar to Approach 1, P2 is still not guaranteed to get the
z-dependency information in time since the computation is
in progress.

In conclusion, there does not exist a nonblocking
algorithm that forces only a minimum number of processes
to take their checkpoints.

3 A CHECKPOINTING ALGORITHM BASED ON

MUTABLE CHECKPOINTS

In this section, we present our checkpointing algorithm,
which neither blocks the underlying computation nor forces
all processes to take checkpoints.

3.1 The Basic Idea

3.1.1 The Basic Schemes

A simple nonblocking scheme for checkpointing is as
follows: When a process Pi sends a message, it piggybacks
the current value of csni�i� (csn was explained in Section
2.3). When a process Pj receives a message m from Pi, Pj

processes the message if m:csn � csnj�i�; otherwise, Pj takes
a checkpoint, updates its csn (csnj�i� � m:csn), and pro-
cesses the message. This method may result in a large
number of checkpoints. Moreover, it may lead to an
avalanche effect in which processes in the system recursively
ask others to take checkpoints.

For example, in Fig. 3, to initiate a checkpointing process,
P2 takes its own checkpoint and sends checkpoint requests
to P1, P3 and P4. When P2's request reaches P4, P4 takes a
checkpoint and sends message m3 to P3. When m3 arrives

160 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2001

Fig. 2. Tracing the dependency

Fig. 3. An example of checkpointing

at P3, P3 takes a checkpoint before processing it since
m3:csn > csn3�4�. For the same reason, P1 takes a checkpoint
before processing m2.

P0 has not communicated with other processes before it
takes a local checkpoint. Later, it sends message m1 to P1.
P1 takes the checkpoint C1;2 before processing m1 since P0

has taken a checkpoint which has a checkpoint sequence
number larger than P1 expected. Then, P1 requires P3 to
take another checkpoint (not shown in the figure) due tom2

and P3 in turn asks P4 to take another checkpoint (not
shown in the figure) due to m3. If P4 had received messages
from other processes after it sent m3, those processes would
have been forced to take checkpoints. This chain may never
end.

We reduce the number of checkpoints based on the
following observation: In Fig. 3, ifm4 does not exist, it is not
necessary for P1 to take C1;2 since checkpoint C1;1 is
consistent with the rest of checkpoints. Based on this
observation, we get the following revised scheme.

When a process Pj receives a message m from Pi, Pj only
takes a checkpoint when m:csn > csnj�i� and Pj has sent at
least one message in the current checkpoint interval.

In Fig. 3, if m4 does not exist, C1;2 is not necessary
according to the revised scheme. However, if m4 exists, the
revised scheme still results in a large number of checkpoints
and may result in an avalanche effect.

3.1.2 The Enhanced Scheme

We now present the basic idea of our scheme that
eliminates avalanche effects during checkpointing. From
Fig. 3, we make two observations:

Observation 1. It is not necessary to take checkpoint C1;2

even though m4 exists since P1 will not receive a
checkpoint request associated with C0;1. Note that m4

will not become an orphan even though it does not take
checkpoint C1;2.

Observation 2. From Section 2.4, P1 does not have enough
information to know if it will receive a checkpoint
request associated with C0;1 when P1 receives m1.

These observations imply that C1;2 is unnecessary but
still unavoidable. Thus, there are two kinds of checkpoints
in response to computation messages. In Fig. 3, C1;1 is
different from C1;2. C1;1 is a checkpoint associated with the
initiator P2 and P1 will receive a checkpoint request for the
checkpointing initiated by P2. C1;2 is a checkpoint associated
with the initiator P0, but P1 will not receive a checkpoint
request for the checkpointing initiated by P0 in the future.
To avoid inconsistency, P1 should keep C1;1 when it receives
P2's request. However, P1 can discard C1;2 after the
checkpointing initiated by P0 terminates (C0;1 becomes a
permanent checkpoint) since, at that time, P1 is sure that it
will not receive any checkpoint request associated with P0's
initiation. Moreover, if P0 has finished its checkpointing
process before it sends m1, P1 does not need to take
checkpoint C1;2.

We introduce a new concept, called mutable checkpoint, to
reflect the essence of the checkpoints (like C1;1; C1;2)
triggered by computation messages. A mutable checkpoint
is neither a tentative checkpoint nor a permanent check-

point, but it can be turned into a tentative checkpoint. When
a process takes a mutable checkpoint, it does not send
checkpoint requests to other processes and it does not need
to save the checkpoint on the stable storage. It can save the
mutable checkpoint anywhere, e.g., in the main memory or
the local disk of MHs. Suppose a process Pi has taken a
mutable checkpoint. When Pi receives a checkpoint request,
it transfers the mutable checkpoint to the stable storage and
forces all dependent processes to take tentative checkpoints.
In this way, Pi turns its mutable checkpoint into a tentative
checkpoint. If Pi does not receive the checkpoint request
after the checkpointing activity terminates (implementation
details will be discussed in the next section), it discards the
mutable checkpoint.

In Fig. 3, when m2 arrives at P1, P1 takes a mutable
checkpoint C1;1 before processing it since m2:csn > csn1�3�.
C1;1 is turned into a tentative checkpoint when P1 receives
the checkpoint request sent by P2. If P0 has finished its
checkpointing activity before it sends m1, P1 does not need
to take a mutable checkpoint C1;2. Otherwise, P1 takes a
mutable checkpoint C1;2, which will be discarded when P0's
checkpointing terminates. Since C1;2 is a mutable check-
point, it does not force P3 to take a new checkpoint. Thus,
our scheme avoids the avalanche effect and significantly
reduces the checkpointing overhead. If there is no ambi-
guity, we simply refer to a tentative or permanent
checkpoint as a checkpoint.

3.1.3 Further Reduction in the Number of Checkpoints

In the above scheme, a process may receive unnecessary
checkpoint requests and may take unnecessary checkpoints.
As shown in Fig. 4, P2 initiates a checkpointing process by
taking a checkpoint C2;1 and forces P1 to take a checkpoint
C1;1 (due to m2). Later, to initiate a checkpointing process,
P3 takes a checkpoint C3;1 and sends a request to P2 due to
m1. When P2 receives the request, it takes a checkpoint C2;2

and forces P1 to take a checkpoint C1;2. However, C2;2 and
C1;2 are not necessary since m1 is not an orphan even
though C1;2 and C2;2 do not exist.

These unnecessary checkpoints can be avoided by the
following method: When a process Pi sends a checkpoint
request to Pj, it attaches csni�j� to the request. On receiving
the request, Pj compares the attached csni�j� �req csn� with
its own csnj�j�. If csnj�j� > req csn (i.e., Pj has recorded the
sending of the message which creates the dependency
between Pi and Pj), Pj does not need to take a checkpoint;
otherwise, it takes a checkpoint. In Fig. 4, when P3 sends a
request to P2, it attaches csn3�2� � 0 to the request. When P2

receives the request, csn2�2� has been increased to 1 due to

CAO AND SINGHAL: MUTABLE CHECKPOINTS: A NEW CHECKPOINTING APPROACH FOR MOBILE COMPUTING SYSTEMS 161

Fig. 4. Further reduce the number of checkpoints

C2;1. Thus, P2 ignores this request and does not take

checkpoint C2;2 and, subsequently, P2 does not force P1 to

take checkpoint C1;2.

3.2 Notations and Data Structures

The following notations and data structures are used in our

algorithm:

. Ri: An array of n bits at process Pi. Ri�j� � 1

represents that Pi receives a computation message
from Pj in the current checkpoint interval.

. csni: An array of n checkpoint sequence numbers
(csn) at each process Pi. csni�j� represents the
checkpoint sequence number of Pj that Pi knows.
In other words, Pi expects to receive a message from
Pj with the checkpoint sequence number csni�j�.

. weight: A nonnegative variable of type real with a
maximum value of 1. It is used to detect the
termination of the checkpointing algorithm as in [16].

. triggeri: A tuple (pid, inum) maintained by each
process Pi. pid indicates the checkpointing initiator
that triggered the latest checkpointing process. inum
indicates the csn at process pid when it took its own
local checkpoint on initiating the checkpointing.

. senti: A Boolean which is set to 1 if Pi has sent a
message in the current checkpoint interval.

. cp statei: A Boolean which is set to 1 if Pi is in the
checkpointing process.

. old csn: A variable used to save the csn of the current
tentative (permanent) checkpoint.

. CPi: A record maintained by each process Pi. Each
record has the following fields:

- mutable: the mutable checkpoint of Pi.
- R: Pi's own Boolean vector before it takes the

current mutable checkpoint.
- trigger: the trigger which is associated with the

current mutable checkpoint.
- sent: Pi's own sent before it takes the current

mutable checkpoint.

csn is initialized to an array of 0s at all processes. The

trigger tuple at process Pi is initialized to �i; 0�. The

weight and cp state at a process is initialized to 0. When a

process Pi sends a computation message, it appends its

csni�i� to the message. Also, Pi checks if cp statei is equal

to 1. If so, it appends its trigger to the computation

message.
When a process Pj receives a checkpoint request from Pi,

we say ªPj inherits a request from Piº if and only if

old csnj � req csn (req csn is appended with the request)

and Pj takes a tentative checkpoint. In this definition, we

use old csnj instead of csnj�j� used in Section 3.1 since

csnj�j� is also increased when taking a mutable checkpoint,

but we need to compare req csn with the csn of the current

tentative (permanent) checkpoint.

3.3 The Checkpointing Algorithm

In this section, we present our nonblocking checkpointing

algorithm. To clearly present the algorithm, we assume that,

at any time, at most one checkpointing is in progress. In

Section 3.5, we extend the algorithm for concurrent

invocations.

3.3.1 Checkpointing Initiation

Any process can initiate a checkpointing process. When a

process Pi initiates a checkpointing process, it takes a local

checkpoint, increments its csni�i�, sets weighti to 1, sets

cp statei to 1, and stores its own identifier and the new

csni�i� in its trigger. Then, it sends a checkpoint request to

each process Pj such that Ri�j� � 1 and resumes its

computation. Each request carries the trigger of the

initiator, Ri and a portion of the weight of the initiator,

whose weight is decreased by an equal amount.

3.3.2 Reception of a Checkpoint Request

When a process Pi receives a request from Pj, it first

compares req csn with its old csn to see if it needs to

inherit the request. If Pi does not need to inherit the

request, it sends the appended weight to the initiator and

then exits. Otherwise, it updates its csn and cp state and

compa r e s Pj:trigger (msg trigger) w i t h Pi:trigger

(own trigger). If msg trigger � own trigger (implying that

Pi has already taken a checkpoint for this checkpointing),

Pi checks if there is a mutable checkpoint which has a

trigger identical to msg trigger. If not, Pi sends the

appended weight to the initiator; otherwise, Pi saves the

mutable checkpoint on the stable storage (the mutable

checkpoint is turned into a tentative checkpoint) and then

propagates the request. If Pi propagates the request to all

processes on which it depends, it may result in a large

number of redundant system messages since some

processes on which Pi depends may have received the

request from other processes. The Koo-Toueg algorithm

[19] uses this approach and its system message overhead

can be as large as O�N2�, where N is the number of

processes in the system. On the other hand, only

propagating the request to processes on which Pi

depends, but Pj (the sender) does not, may not work

since receiving a request does not necessarily mean that

the process inherits the request. We solve this problem by

attaching some information (csn and R which are saved

in a structure called MR in the algorithm) to the request.

Pi only propagates the request to each process Pk on

which Pi depends, but Pk may not have inherited the

request; that is, if Pi knows (by MR) some other process

has sent the request to Pk with req csn � csni�k� (req csn

is appended with the request and saved in MR�k�:csn), it

does not need to send the request to Pk; otherwise, it has

to send the request since Pk may inherit the request from

Pi. Also, Pi appends the initiator's trigger and a portion

of the received weight to all those requests. Then, Pi

sends a reply to the initiator with the weight equal to the

remaining weight and resumes its underlying computa-

tion. If msg trigger 6� own trigger, Pi takes a tentative

checkpoint, increases its csni�i�, and propagates the

request as above. At last, Pi clears Ri and senti, sends

a reply to the initiator with the remaining weight, and

then resumes its underlying computation.

162 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2001

3.3.3 Computation Messages Received during

Checkpointing

When Pi receives a computation message from Pj, Pi

compares m:csn with its local csni�j�. If m:csn � csni�j�, the
message is processed and no checkpoint is taken. Other-
wise, it implies that Pj has taken a checkpoint before
sending m. Pi updates its csni�j� to m:csn and checks if the
following conditions are satisfied:

. Condition 1: Pj is in the checkpointing process
before sending m.

. Condition 2: Pi has sent a message since last
checkpoint.

. Condition 3: Pi has not taken a checkpoint associated
with the initiator (in the msg_trigger).

If all of them are satisfied, Pi takes a mutable checkpoint
and updates its data structures such as csn; CP;R, cp_state,
and sent. If only Condition 1 is satisfied, Pi only increases
csni�i� and sets cp statei to 1.

3.3.4 Termination and Garbage Collection

The initiator adds weights received in all reply messages to
its own weight. When its weight becomes equal to 1, it
concludes that all processes involved in the checkpointing
have taken their tentative checkpoints and, hence, it
broadcasts commit messages to all processes in the system.
If a process has taken a tentative checkpoint, on receiving
the commit message, it makes its tentative checkpoint
permanent and clears cp state. Other processes also clear
their cp state and discard mutable checkpoints if there is
any. Note that, when a process discards its mutable
checkpoints, it updates its R and sent.

3.3.5 Instead of Broadcasting commit Messages to All

Processes

In [6], the initiator only sends commit messages to those
processes from which it has received reply messages.
However, to clear cp state, each process needs to maintain
a history of the processes to which it has sent messages
when its cp state is equal to 1. Also, it notifies them to clear
their cp state. There is a trade-off between these two
approaches. If there are many communications among
processes during the last checkpoint interval, the broadcast
approach is better. On the other hand, if there are only a
limited number of message exchanges during the last
checkpoint interval, the update approach [6] is better. To
obtain the advantages of both approaches, the initiator can
use a counter to save the number of processes that have
taken checkpoints. If the counter is larger than a value (a
system tuning parameter), the broadcast approach is used;
otherwise, the update approach is used. Since this paper
concentrates on reducing the overhead of saving check-
points, we simply use the broadcast approach.

Actions taken when Pi sends a computation message to Pj:
if cp statei = 1
then send(Pi, message, csni�i�; own trigger); senti := 1;
else send(Pi, message, csni�i�; NULL); senti := 1;

Actions for the initiator Pj:

increment(csnj�j�); own trigger :� �Pj; csnj�j�);

cp statej := 1; weightj := 0;

for k := 0 to N do MR�k�:csn := 0; MR�k�:R := 0;

MR�j�:csn := csnj�j�; MR�j�:R := 1;

prop_cp(Rj;MR;Pj; own trigger, 1.0);

take a local checkpoint (on the stable storage);

old csnj :� csnj�j�; sentj := 0; reset Rj;

Actions at process, Pi, on receiving a checkpoint request

from Pj:

receive(Pj; request;MR; recv csn;msg trigger;

req csn; recv weight);

csni�j� :� recv csn;

if old csni > req csn

then send(Pi; reply; recv weight) to the initiator; return;

cp statei := 1;

if msg trigger � own trigger

then if CPi:trigger � msg trigger

then prop_cp(CPi:R;MR;Pi;msg trigger; recv weight);

save CPi:mutable on the stable storage;

old csni :� csni�i�; CPi :� NULL;

send(Pi; reply; weighti) to the initiator;

else send(Pi; reply; recv weight) to the initiator;

else increment(csni�i�); own trigger :� msg trigger;

prop_cp(Ri;MR;Pi;msg trigger; recv weight);

take a local checkpoint (on the stable storage);

old csni :� csni�i�;

send(Pi; reply; weighti) to the initiator;

senti := 0; reset Ri;

Actions at process Pi, on receiving a computation message

from Pj:

receive(Pj;m; recv csn;msg trigger);

if recv_csn � csni�j�

then Ri�j� :� 1; process the message;

else if csni�msg trigger:pid� � msg trigger:inum

then csni�j� :� recv csn; Ri�j� :� 1; process the message;

else csni�j� :� recv csn;

if msg_trigger 6� NULL ^ senti � 1 ^

msg trigger 6� own trigger

then take a local checkpoint, save it in CPi:mutable;

CPi:trigger :� msg trigger; CPi:R :� Ri;

CPi:sent :� senti; senti := 0; reset Ri;

if msg trigger 6� NULL ^ cp statei � 0

then cp statei := 1; increment(csni�i�);

own trigger :� msg tigger;

Ri�j� :� 1; process the message;

prop_cp(Ri;MR;Pi;msg trigger; recv weight)

weighti :� recv weighti;

for k := 0 to N do temp[k].csn := max�MR�k�:csn; csni�k��;

temp[k].R := max�MR�k�:R;Ri�k��;

for any Pk, such that �Ri�k� � 1� ^

�max�MR�k�:csn; csni�k�� 6� MR�k�:csn�

weighti :� weighti=2;

send(Pi; request, temp, csni�i�; msg trigger; csni�k�;

weighti);

Actions in the second phase for the initiator Pi:

receive(Pj; reply; recv weight);

CAO AND SINGHAL: MUTABLE CHECKPOINTS: A NEW CHECKPOINTING APPROACH FOR MOBILE COMPUTING SYSTEMS 163

weighti :� weighti � recv weight;
if weighti = 1

then cp statei := 0; broadcast(commit;msg trigger);

Actions at other process Pj on receiving a broadcast

message:

receive(commit;msg trigger);

csnj�msg trigger:pid� � msg trigger:inum;

cp statej := 0;
if CPj:trigger � msg trigger ^ CPj 6� NULL

then sentj :� sentj [CPj:sent; Rj :� Rj [CPj:R;

CPj :� NULL;

if there is a tentative checkpoint associated withmsg trigger,

make it permanent;

3.4 An Example

The basic idea of the algorithm can be better understood by
the example shown in Fig. 3. To initiate a checkpointing
process, P2 takes its own checkpoint and sends checkpoint
requests to P1, P3, and P4 since R2�1� � 1, R2�3� � 1, and
R2�4� � 1. When P2's request reaches P4, P4 takes a
checkpoint and sends message m3 to P3. When m3 arrives
at P3, P3 takes a mutable checkpoint before processing the
message since m3:csn > csn3�4� and P3 has sent a message
during the current checkpoint interval. For the same reason,
P1 takes a mutable checkpoint before processing m2.

P0 did not communicate with another process before it
took the local checkpoint. Later, it sends a message m1 to
P1. If P0 has finished its checkpointing process before it
sends m1, P1 does not need to take the checkpoint C1;2.
Otherwise, P1 takes a mutable checkpoint C1;2 before
processing m1.

When P1 receives the checkpoint request from P2, since
C1;1 is a mutable checkpoint associated with P2, P1 turns
C1;1 into a tentative checkpoint by saving it on the stable
storage. Similarly, P3 converts C3;1 to a tentative checkpoint
when it receives the checkpoint request from P2. Finally, the
checkpointing initiated by P2 terminates when the check-
points C1;1,C2;1,C3;1, and C4;1 are made permanent. P1

discards C1;2 when it makes checkpoint C1;1 permanent or
receives P0's commit, whichever is earlier.

3.5 Multiple Concurrent Initiations

The simplest way to handle concurrent checkpoint initia-
tions is to use the techniques in [19]. When a process Pi

receives a checkpoint request from Pj while executing the
checkpoint algorithm, Pi ignores Pj's checkpoint request or
defers the request until it finishes its current checkpointing.
If Pi's checkpoint request is ignored by a process, Pi has to
abort its checkpointing efforts, which results in poor
performance. A more efficient technique to handle con-
current checkpoint initiations can be found in [27]. As
multiple concurrent checkpoint initiation is orthogonal to
our discussion, we only briefly mention the main features of
[27]. When a process receives its first request for the
checkpointing initiated by another process, it takes a local
checkpoint and propagates the request. All local check-
points taken by the participating processes for a check-
pointing initiation collectively form a global checkpoint.
The state information collected by each independent

checkpointing is combined. The combination is driven by
the fact that the union of consistent global checkpoints is
also a consistent global checkpoint. The checkpoint thus
generated is more recent than each of the checkpoints
collected independently, and also more recent than that
collected by [31]. Therefore, the amount of computation lost
during rollback, after process failures, is minimized.

3.6 Handling Failures during Checkpointing

Since MHs are more prone to failure, there is a possibility
that, during the checkpointing activity, an MH fails and all
processes running on it also fail. We assume that if a process
fails, some processes that try to communicate with it get to
know of the failure. If the failed process is not the
checkpointing initiator, the simplest way to deal with
failures is to use abort messages similar to the approach
in [19], [28]. More specifically, the process detecting the
failures notifies the initiator, which broadcasts abort
messages to all processes participating in the current
checkpointing. These processes discard their checkpoints
(tentative or mutable) and restore some variables such as
sent; old csn;R, etc, on receiving the abort messages. If the
failed process is the coordinator and the failure occurred
before the process sent out commit or abort messages, on
restarting after failure, it broadcasts an abort corresponding
to its checkpoint initiation. If the process had failed after
broadcasting a commit or abort, it does not do anything
more for that checkpoint initiation.

The above approach may not have good performance

since the whole checkpointing aborts even when only one

participating process fails. We would like to use a more

efficient approach proposed by Kim and Park [18]. In their

approach, processes can commit their tentative checkpoints

when none of the processes on which they depend fails.

Then, the consistent recovery line is advanced for those

processes that committed their checkpoints. Certainly, the

initiator and other processes which depend on the failed

process have to abort their checkpointing and discard their

tentative (mutable) checkpoints, as in [19]. In this way, the

checkpoint-commit decision can be made locally so that the

total abort of the checkpointing is avoided. In other words,

when a process involved in a checkpointing coordination

fails, the processes not affected by the failed one can make

their decisions. Note that the protocols in [19] abort the

whole checkpointing activity in case of failure.
In mobile computing systems, since wireless channels

are more likely to suffer from intermittent errors, failure
detection in wireless networks should be different from that
in static networks. More information on how to deal with
process failures can be found in [20], [24], [28]. Since failure
detection and failure recovery are orthogonal to our
discussion, we will not discuss it further.

4 CORRECTNESS PROOF

In Section 3.2, Ri represents all dependency relations in the
current checkpointing period. Due to the introduction of
mutable checkpoints, Ri may represent the dependency
relations after the last mutable checkpoint. To simplify the
proof, in the following, Ri means the first parameter of

164 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2001

subroutine prop cp in our algorithm. More specifically, Ri

should be CPi:R if there is a mutable checkpoint.

Theorem 1. The algorithm creates a consistent global checkpoint.

Proof. We prove this by contradiction. Assume that the

global state of the system is inconsistent at a time

instance. Then, there must be a pair of processes Pi and

Pj such that at least one messagem has been sent from Pj

after Pj's last checkpoint and has been received by Pi

before Pi's last checkpoint. Since Ri�j� � 1 when Pi takes

its checkpoint, Pi sends a checkpoint request to Pj or a

process Pk has sent the reques t to Pj i f

MR�j�:csn � csni�j�. Thus, at least one checkpoint request

has been sent to Pj. If Pj runs on an MSS, the underlying

network routes the request to it. If Pj runs on an MHi,

which is inMSSp's cell, there are three possibilities when

the request reaches MSSp:
Case 1: If MHi is still connected to MSSp, the request

is forwarded to MHi and then to Pj.
Case 2: MHi has moved to MSSq (handoff). MSSp

forwards the request to MSSq, which forwards it to MHi

and then to Pj by the underlying routing protocol.
Case 3: MHi is disconnected from the network. MSSp

takes a checkpoint on behalf of Pj by converting
disconnect checkpointj into Pj's new checkpoint (as
explained in Section 2.2). Since Pj cannot send any
message after disconnection, it must have sent m before
its disconnection. Thus, the sending of m is recorded in
disconnect checkpointj. A contradiction.

In Case 1 and Case 2, when Pj receives the request, if
req csn < old csnj, no matter whether the request comes
from Pi or Pk (if the request comes from Pk:

�csni�j� � MR�j�:csn� ^ �MR�j�:csn � req csn�

^ �req csn < old csnj��)csni�j� < old csnj�;

Pj has already taken a checkpoint after sending m. Thus,

the sending of m is recorded at Pj. If req csn � old csnj

(the request may come from Pi or Pk), there are two

possibilities:
Case 1: own trigger 6� msg:trigger. There are two

possibilities for Pj to take a checkpoint:

1.1. The checkpoint is taken after the sending of m.
Then:

- send(m) at Pjÿ!
1 receive(m) at Pi

- receive(m) at Piÿ! checkpoint taken at Pi

- checkpoint taken at Piÿ!request sent by Pi

to Pj

- request sent by Pi to Pjÿ! checkpoint taken
at Pj

Using the transitivity property of ÿ!, we have:

send(m) at Pj ÿ! checkpoint taken at Pj. Thus,

the sending of m is recorded at Pj

1.2. The checkpoint is taken before the sending of m.
As a result, Pj increases csnj�j� before it sends m
to Pi and, hence, m:csn > csni�j�. There are two
possible situations:

1.2.1.

Pj has finished its checkpointing process (the last
checkpoint) before it sends m. Hence, Pi does not
need to take a checkpoint when it receives m and
then the reception of m is not recorded in the last
checkpoint of Pi.
1.2.2.

Pj has not finished its checkpointing process

before it sends m. If Pi does not need to take a

mutable checkpoint before processing m, the

reception of m cannot be recorded in the last

checkpoint of Pi. If Pi takes a mutable checkpoint

before processing m, when Pi receives the request

for this checkpoint initiation, Pi turns the mutable

checkpoint into a tentative checkpoint. Certainly,
the reception of m is still not recorded in the last

checkpoint of Pi.

Case 2: own trigger � msg:trigger. In this case, Pj has
taken a mutable checkpoint or a tentative checkpoint.
There are two possibilities:

2.1. The checkpoint is taken after the sending of m. If
the checkpoint is a mutable checkpoint, on receipt
of the request, it is changed to a tentative
checkpoint. Thus, the sending of m is recorded.

2.2. The checkpoint is taken before the sending of m.
Similar to Case 1.2, we get contradictions. tu

Lemma 1. Every process inherits at most one checkpoint request

to take a checkpoint.

Proof. After a process Pi inherits a checkpoint request, it

changes its own trigger to the trigger attached with the

request and takes a checkpoint (or make a mutable

checkpoint permanent). Later, when it receives other

checkpoint requests corresponding to this checkpoint

initiation, own trigger � msg trigger and Pi cannot take a

mutable checkpoint, i.e., CPi:trigger 6� own trigger.

Thus, Pi cannot take a checkpoint on receipt of other

requests corresponding to the same checkpoint initiation,

that is, it does not inherit any request other than the first

one. tu

In order to prove that our nonblocking checkpointing

algorithm terminates, we introduce the following notations:

. W�request�: the weight carried by a request message.

. W�reply�: the weight carried by a reply message.

. W�Pinit�: the weight at the initiator.

. W�Pother�: the weight at a process other than the
initiator.

Lemma 2. During a checkpointing process, the following

invariant holds:

W�Pinit� �
X

8request

W�request� �
X

8reply

W�reply�2

�
X

8Pother

W �Pother� � 1:

CAO AND SINGHAL: MUTABLE CHECKPOINTS: A NEW CHECKPOINTING APPROACH FOR MOBILE COMPUTING SYSTEMS 165

1. ÿ! is the ªhappened beforeº relation described in [22]

Proof. When Pinit initiates a checkpointing process,

W�Pinit� � 1, no weight is associated with other pro-

cesses, and no request or reply messages are in transit.

Hence, the invariant holds. During the checkpointing

process, the initiator sends out a portion of its weight in

each outgoing request message. Therefore,

X

8request

W �request� �W�Pinit� � 1:

When a process Pi receives a checkpoint request, there

are two possibilities:
Case 1: If Pi needs to take a tentative checkpoint or to

turn a mutable checkpoint into a tentative checkpoint, a
part of the received weight is propagated to other
processes in the request messages and the rest of the
weight is sent to the initiator in a reply.

Case 2: If Pi does not need to take a tentative
checkpoint or turn a mutable checkpoint into a tentative
checkpoint, the entire received weight is sent back to the
initiator in a reply.

Therefore, no portion of the weight in a request is
retained by Pi. At any instant of time during the
checkpointing process, request and reply messages may
be in transit and some noninitiator processes may have
nonzero weights. However, no extra weight is created or
deleted at any noninitiator process. Thus, the invariant
holds. tu

Theorem 2. The proposed checkpointing algorithm terminates

within a finite time.

Proof. In our algorithm, a process only propagates request

messages when it inherits a request. Based on Lemma 1,

every process inherits at most one request to take a

checkpoint and then each process propagates the

received request at most once. Since the number of

processes in the system is finite, the number of request

messages generated are finite. As message propagation

delay is bounded, within a finite time after the

checkpoint initiation, no new request messages will be

generated and all such messages generated in the past

have been delivered by the receivers. After this point of

time, say T , the following assertion is true:

X

8request

W�request� � 0: �1�

On the receipt of a request, a noninitiator process
immediately sends out the weight received in the request
on the outgoing request messages or reply messages.
Thus, within a finite time after T , the weight of all
noninitiator processes becomes zero. As there are no
more request messages in the system, noninitiator
processes cannot acquire any weight in the future. After
this point of time, say T 0 > T , the following assertion is
true:

X

8Pother

W�Pother� � 0: �2�

As message propagation delay is finite, all reply
messages will be received by the initiator within a finite
time after T 0. As there are no more request messages, no
new reply will be generated. Hence, after time, say
T 00 > T 0, the following assertion is true:

X

8reply

W�reply� � 0: �3�

Based on Lemma 2:

W �Pinit� �
X

8request

W�request�

�
X

8reply

W�reply� �
X

8Pother

W �Pother� � 1:

After time T 00, since T 00 > T 0 > T , assertions (1), (2), and
(3) are all true. Thus, W�Pinit� = 1. At this point, the
initiator sends commit messages to the processes that
took checkpoints. A noninitiator process receives the
commit message within a finite time. Therefore, the
checkpointing algorithm terminates within a finite
time. tu

We now show that the number of processes that take
new tentative (permanent) checkpoints during the execu-
tion of our algorithm is minimal. Based on Lemma 1, a
process takes at most one checkpoint corresponding to a
checkpointing process. Let P � fP0; P1; � � � ; Pkg be the set of
processes that take new checkpoints during the execution of
our algorithm, where P0 is the initiator. Let C�P� �
fC�P0�; C�P1�; � � � ; C�Pk�g be the new checkpoints taken by
processes in P.

When a process receives a checkpoint request, it asks all
processes on which it depends to take checkpoints. The
process receiving the request should take a checkpoint as
soon as possible since the longer it waits, the more
processes will have a dependency relation with it and then
more processes need to take checkpoints. If the initiator
knows all processes on which it depends, it can send
checkpoint requests to them at once and then save the time
of tracing the dependency tree. Some techniques [6], [28]
exist to approximate this approach. However, it increases
run time overhead since extra information has to be
appended with the computation messages. Since the
message delay is far less than the time between two
checkpoint intervals, we do not consider the extra check-
points resulting from the checkpoint request delay. Our
algorithm can also use the techniques in [6], [28] to reduce
the number of extra checkpoints, but, as we discussed, it is
not valuable due to increased run time overhead.

We define an alternate set of checkpoints :
C0�P� � fC0�P0�; C

0�P1�; � � � ; C
0�Pk�g, where C0�P0� � C�P0�

and C0�Pi� (1 � i � k) is either C�Pi� or the checkpoint Pi

had taken before executing our algorithm. If C0�Pi� is a new
checkpoint, as we discussed, it should be taken as soon as
possible and then it is equal to C�Pi� without considering
the checkpoint request delay.

Theroem 3. C0�P� is consistent if and only if C0�P� � C�P�.

Proof. The if part directly comes from Theorem 1. We now
prove the only if part. The execution of our algorithm

166 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2001

imposes a ªPi inherits a request from Pjº (defined in
Section 3.2) relation on the set of processes. Since this
relation is noncircular (based on Lemma 1) and there is
only one initiator, it can be represented as a tree T : The
root of T is the initiator and Pj is a child of Pi if and only
if Pj inherits a request from Pi. If Pj 2 T , it must take a
new checkpoint during the execution of the algorithm;
hence, Pj 2 P. If Pj 2 P, either Pj is the initiator or it
inherits a request; hence, Pj 2 T . Therefore, Pj 2 T if and
only if Pj 2 P.

Our proof is by contradiction. Suppose C0�P� 6�
C�P� and C0�P� is consistent. Let Pj 2 P such that
C0�Pj� 6� C�Pj�. Note that Pj 6� P0 and there exists a
path from P0 to Pk in T . Since C0�P0� � C�P0�, there is
an edge �Pi; Pj� on this path such that C0�Pi� �
C�Pi� ^ C0�Pj� 6� C�Pj�. Let m be the last message Pi

receives from Pj. Since Pj inherits Pi's request, we
have req csn � old csnj (req csn is appended with the
request) and the receipt of m is recorded in C�Pi� (or
C0�Pi��. Also, the sending of m is recorded in C�Pj�.
If C�Pj� 6� C0�Pj�, C0�Pj� is the checkpoint Pj had
before executing the algorithm and then the sending
of m is not recorded in C0�Pj�. Thus, C0�P� is not a
consistent set of checkpoints. A contradiction. tu

5 A PERFORMANCE EVALUATION

A mutable checkpoint is redundant if it is not turned into a
tentative checkpoint. In this section, to evaluate the
performance of our algorithm, we first use simulations to
measure the number of redundant mutable checkpoints
taken during the checkpointing time, which is the duration of
a checkpointing process, from the initiation to the termina-
tion. Then, we compare our algorithm with other algo-
rithms in the literature.

5.1 Simulation Model

A system with N MHs connected through a wireless LAN is
simulated. Each MH has one process running on it and N is
equal to 16. The wireless LAN has a bandwidth of 2Mbps,
which follows IEEE 802.11 standard [11]. The length of each
computation message is 1KB; Thus, the transmission delay
of each computation message is 8 � 1=2 � 4ms. The length
of each system message is 50 Bytes. Thus, the transmission
delay of each system message is 0:05 � 8=2 � 0:2ms. The
size of a checkpoint is 1MB [13]. We can use incremental
checkpointing [13] to reduce the amount of data that must
be written on the stable storage; that is, only the pages of the
address space that have been modified since the previous
checkpoint are transferred to the MSS. As a result, we
assume that only 512KB are transmitted over the wireless
link in order to take a tentative checkpoint which needs
0:5 � 8=2 � 2s (disk access time is not counted). In today's
technology, Pentium 600MHz laptops with 128MB mem-
ory are becoming popular. Thus, we assume mutable
checkpoints are saved in the main memory. Since processor
speed is much faster, the main memory is the bottleneck.
Suppose a 64bit wide memory bus with 100MHz bus speed
is used. Thus, it needs about 1�2

100�8 � 2:5ms to save a mutable
checkpoint. (If memory block copy is supported, the time
can be further reduced.) A checkpoint is scheduled at each

process with an interval of 900 seconds. If a process takes a
checkpoint before its scheduled checkpoint time, the next
checkpoint will be scheduled 900s after that time. For
simplicity, concurrent initiation, handoff, and failures are
not considered.

Each process sends out computation messages with the
time interval following an exponential distribution. The
message receiving pattern is considered in two computation
environments: point-to-point communication and group com-
munication. In the point-to-point communication, the desti-
nation of each message is uniformly distributed among all
processes. In the group communication, processes are
arranged into four groups and each group has a group
leader. For intragroup communication, the destination of
each message is a uniformly distributed random variable
among all group members. Only group leaders can have
intergroup communication, where the destination of each
message is a uniformly distributed random variable among
all group leaders.

5.2 Simulation Results

Since saving checkpoints takes a long time, in order not to
block the process's execution, we use precopying [17], that is,
the pages are copied to a separate area in the main memory
and are then written from there to the stable storage. This is
similar to saving a mutable checkpoint first and then
turning it into a tentative checkpoint. Thus, we do not
measure the number of mutable checkpoints that will be
turned into tentative checkpoints. We measure the number
of tentative checkpoints and the number of redundant
mutable checkpoints for each checkpoint initiation under
various message sending rates. The mean value of a
measured parameter is obtained by collecting a large
number of samples such that the confidence interval is
reasonably small. In most cases, the 95 percent confidence
interval for the measured data is less than 10 percenet of the
sample mean.

5.2.1 Point-to-Point Communication

As shown in Fig. 5, the number of tentative checkpoints for
each checkpoint initiation increases as the message sending
rate increases. Since the message receiving event is
uniformly distributed, a process is more likely to receive a
message from other processes when the message sending
rate increases. Thus, it is more likely to have a dependency
relationship with the initiator and thus is more likely to take
a tentative checkpoint.

In Fig. 5, when the message sending rate increases, the
number of redundant mutable checkpoints for each
checkpoint initiation increases at first and then decreases
and it is always less than 4 percent of the number of
tentative checkpoints. This can be explained as follows: A
process takes a mutable checkpoint only when it receives a
computation message before it receives the checkpoint
request during the checkpointing time. It takes a tentative
checkpoint if it has received messages that created
dependency relationships with the initiator during the
checkpoint interval. Since the checkpointing time (at most
2 � 16 � 32s long) is much less than the checkpoint interval
(900s), in general, a process takes much fewer redundant
mutable checkpoints than tentative checkpoints. If the

CAO AND SINGHAL: MUTABLE CHECKPOINTS: A NEW CHECKPOINTING APPROACH FOR MOBILE COMPUTING SYSTEMS 167

message sending rate is low, processes have low probability
of sending messages and they have low probability of
receiving messages during the checkpointing time. Thus,
they have low probability of taking mutable checkpoints. If
the message sending rate is high, it is more likely for a
process to receive a message and take a mutable checkpoint
during the checkpointing time. The mutable checkpoint is
also more likely to be turned into a tentative checkpoint and
then it is not a redundant mutable checkpoint. According to
our algorithm, the initiator quickly propagates the check-
point request; thus, a process is less likely to receive a
computation message before the checkpoint request during
the checkpointing time and it is less likely to take a mutable
checkpoint.

5.2.2 Group Communication

Fig. 6 shows the number of checkpoints in a group
communication environment. Besides changing the
intragroup message sending rate, a group leader also
changes its intergroup message sending rate. On the left
side of Fig. 6, for a group leader, the intragroup message

sending rate is 1,000 times faster than the intergroup

message sending rate; while on the right side of Fig. 6, the

intragroup message sending rate is 10,000 times faster. As

can be seen, with group communication, the number of

tentative checkpoints and redundant mutable checkpoints

on the right graph is less than that on the left graph and

they are smaller than those in the point-to-point commu-

nication. In a group communication, when a process

initiates a checkpointing process, processes in other groups

have low probability of receiving messages from any

process in the initiator's group. Thus, they are less likely

to have dependency relationships with the initiator; that is,

they have low probability of taking tentative checkpoints or

redundant mutable checkpoints.

5.3 Comparison with Other Algorithms

The following notations are used to compare our algorithm

with other algorithms.
Notations:

- Cair: cost of sending a message from one process to
another process.

- Cbroad: cost of broadcasting a message to all
processes.

- Tdisk: delay incurred in saving a checkpoint on the
stable storage in an MSS.

- Tdata: delay incurred in transferring a checkpoint
from an MH to its MSS.

- Tmsg: delay incurred by system messages during a
checkpointing process.

- Tch: the checkpointing time. Tch � Tmsg � Tdata � Tdisk.
- Nmin, N , Nmuta, Ndep: Nmin is the number of processes

that need to take checkpoints using the Koo-Toueg
algorithm [19]. N is the total number of processes in
the system. Nmuta is the number of redundant
mutable checkpoints during a checkpointing pro-
cess. Ndep is the average number of processes on
which a process depends. Note that 1 � Ndep �
N ÿ 1.

168 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2001

Fig. 5. The number of checkpoints in a point-to-point communication

environment

Fig. 6. The number of checkpoints in a group communication environment. On the left figure, for a group leader, the intragroup message sending rate

is 1000 times faster than the intergroup message sending rate. On the right figure, the intragroup message sending rate is 10000 times faster than

the intergroup message sending rate.

We use five parameters to evaluate the performance of a
checkpointing algorithm: the number of tentative check-
points required during a checkpointing process, the block-
ing time (in the worst case), the system message overhead,
whether the algorithm is distributed or not, and the output
commit delay, which is the delay incurred before the system
commits to the outside world. The outside world consists of
everything with which processes can communicate that
does not participate in the system's rollback-recovery, such
as the user's workstation display or even the file system if
no special support is available for rolling back the contents
of files. Messages sent to the outside world must be delayed
until the system can guarantee that the message will never
be ªunsentº as a result of processes rolling back to recover
from any possible future failure. If the sender is forced to
roll back to a state before the message was sent, recovery to
a consistent system state may be impossible since the
outside world cannot, in general, be rolled back. Once the
system can meet this guarantee, the message may be
committed by releasing it to the outside world. Generally,
if a process needs output commit, it initiates a checkpoint-
ing process. Thus, the output commit delay equals the
duration of the checkpointing process.

5.3.1 Performance of Our Algorithm

It is easy to see that our algorithm is distributed and the
blocking time is 0.

The number of tentative checkpoints: Based on the
result of Theorem 3, our algorithm forces only a minimum
number of processes to save checkpoints on the stable
storage.

The output commit delay: From the simulation results,
the number of redundant mutable checkpoints is less than
4 percent of the number of tentative checkpoints. Based on
the simulation parameters, the delay of taking a mutable
checkpoint is almost 1,000 times shorter than that of taking
a tentative checkpoint. Thus, the output commit delay of
our algorithm is approximately Nmin � Tch. Note that, for
some applications, the checkpoint size is pretty small and
the wireless network may have high bandwidth in the
future, but, at that time, the memory bus bandwidth also
becomes larger. Moreover, at that time, the disk access
delay, which is difficult to reduce, may dominate the
checkpointing time. Thus, the delay of taking a mutable
checkpoint is still significantly shorter than that of taking a
tentative checkpoint.

The system message overhead: In the first phase, a
process taking a tentative checkpoint needs two system
messages: request and reply. A process may receive more
than one request for the same checkpoint initiation from
different processes. However, we have used some

techniques to reduce the occurence of this kind of
situation. Thus, the system message overhead is approxi-
mately 2 �Nmin � Cair in the first phase. In the second
phase, we hope to get the advantages of the update
approach and the broadcast approach by system tuning.
Thus, the system message overhead is approximately
min�Nmin � Cair; Cbroad) in the second phase.

5.3.2 Comparison to Other Algorithms

Table 1 compares our algorithm with two representative
approaches for coordinated checkpointing. The Koo-Toueg
algorithm [19] has the lowest overhead (based on our five
parameters) among the blocking algorithms [3], [10], [12],
[18], [19], [23], [29] which try to minimize the number of
synchronization messages and the number of checkpoints.
The algorithm in [13] has the lowest overhead (based on our
five parameters) among the nonblocking algorithms [9],
[13], [21], [30]. We do not compare our algorithm with the
Prakash-Singhal algorithm since it may result in incon-
sistencies and there is no easy solution to fix it without
increasing overhead.

As shown in Table 1, when compared to the Koo-Toueg
algorithm, our algorithm reduces the message overhead
from 3 �Nmin �Ndep � Cair (1 � Ndep � N ÿ 1) to 2 �Nmin

�Cair �min�Nmin � Cair; Cbroad�. When Nmin � N , the mes-
sage reduction can be from O�N2� to O�N�. Our algorithm
reduces the blocking time from Nmin � Tch to 0. In the worst
case, Nmin � N . Consider our simulation parameters: N �
16 and Tch � 2s, the blocking time will be 32s, i.e., all
processes cannot do anything for half a minute in the Koo-
Toueg algorithm, which significantly reduces the system
performance. Compared to [13], our algorithm forces only a
minimum number of processes to take their checkpoints on
stable storage. Note that there may be many applications
running in the system: Some of them have higher reliability
requirement and others do not. In a heterogeneous
environment, some MHs may be more prone to failures
than others. Moreover, different processes may run at their
own speed and they may only communicate with a group of
processes. As a result, some processes may need to take
checkpoints more frequently than others. However, the
algorithm in [13] forces all processes in the system to take
checkpoints for each checkpoint initiation. Thus, our
algorithm significantly reduces the message overhead and
checkpointing overhead compared to [13]. Furthermore, in
the case of output commit, our algorithm has much shorter
delay compared to [13] since our algorithm requires fewer
processes to take checkpoints before committing to the
outside world. It seems that our algorithm needs more
system messages than [13]. However, the algorithm in [13]
is a centralized algorithm and there is no easy way to make

CAO AND SINGHAL: MUTABLE CHECKPOINTS: A NEW CHECKPOINTING APPROACH FOR MOBILE COMPUTING SYSTEMS 169

TABLE 1
A Comparison of System Performance.

it distributed without significantly increasing message
overhead. Since some processes may be in the doze mode,
broadcast may waste their energy and processor power.
More importantly, the system message is relatively small
and the overhead of system messages is much smaller
compared to the overhead of saving checkpoints on the
stable storage.

6 RELATED WORK

The first coordinated checkpointing algorithm was pre-
sented in [3]. However, it assumes that all communications
between processes are atomic, which is too restrictive. The
Koo-Toueg algorithm [19] relaxes this assumption. In this
algorithm, only those processes that have communicated
with the checkpoint initiator either directly or indirectly
since the last checkpoint need to take new checkpoints.
Thus, it reduces the number of synchronization messages
and the number of checkpoints. Later, Leu and Bhargava
[23] presented an algorithm which is resilient to multiple
process failures and does not assume that the channel is
FIFO, which is necessary in [19]. However, these two
algorithms [19], [23] assume a complex scheme (such as
slide window) to deal with the message loss problem and
do not consider lost messages in checkpointing and
recovery. Deng and Park [12] proposed an algorithm to
address both orphan messages and lost messages.

In Koo and Toueg's algorithm [19], if any of the involved
processes is not able to or not willing to take a checkpoint,
the entire checkpointing process is aborted. Kim and Park
[18] proposed an improved scheme that allows the new
checkpoints in some subtrees to be committed, while the
others are aborted.

To further reduce the system messages needed to
synchronize the checkpointing, loosely synchronous clocks
[10], [29] are used. More specifically, loosely synchronized
checkpoint clocks can trigger the local checkpointing
actions of all participating processes at approximately the
same time without the need of broadcasting the checkpoint
request by the initiator. However, a process taking a
checkpoint needs to wait for a period that equals the sum
of the maximum deviation between clocks and the max-
imum time to detect a failure in another process in the
system.

All the above coordinated checkpointing algorithms [3],
[10], [12], [18], [19], [23], [29] require processes to be blocked
during checkpointing. Checkpointing includes the time to
trace the dependency tree and to save the state of processes
on the stable storage, which may be long. Therefore,
blocking algorithms may dramatically reduce the perfor-
mance of the system [5], [13].

The Chandy-Lamport algorithm [9] is the earliest
nonblocking algorithm for coordinated checkpointing.
However, in their algorithm, system messages (markers)
are sent along all channels in the network during
checkpointing. This leads to a message complexity of
O�N2�. Moreover, it requires all processes to take check-
points and the channel must be FIFO. To relax the FIFO
assumption, Lai and Yang [21] proposed another algorithm.
In their algorithm, when a process takes a checkpoint, it
piggybacks a checkpoint request (a flag) to the messages it

sends out from each channel. The receiver checks the
piggybacked message flag to see if there is a need to take a
checkpoint before processing the message. If so, it takes a
checkpoint before processing the message to avoid an
inconsistency. To record the channel information, each
process needs to maintain the entire message history on
each channel as part of the local checkpoint. Thus, the space
requirements of the algorithm may be large. Moreover, it
requires all processes to take checkpoints, even though
many of them are unnecessary.

The Elnozahy-Johnson-Zwaenepoel algorithm [13] uses
the checkpoint sequence number to identify orphan
messages, thus avoiding the need for processes to be
blocked during checkpointing. However, this approach
requires the initiator to communicate with all processes in
the computation. The algorithm proposed by Silva and Silva
[30] uses a similar idea as [13] except that the processes
which did not communicate with others during the
previous checkpoint interval do not need to take new
checkpoints. Both algorithms [13], [30] assume that a
distinguished initiator decides when to take a checkpoint.
Therefore, they suffer from the disadvantages of centralized
algorithms, such as one-site failure, traffic bottle-neck, etc.
Moreover, their algorithms require almost all processes to
take checkpoints, even though many of them are unneces-
sary. If they are modified to permit more processes to
initiate checkpointing, which makes them distributed, the
new algorithm suffers from another problem; in order to
keep the checkpoint sequence number updated, any time a
process takes a checkpoint, it has to notify all processes in
the system. If each process can initiate a checkpointing
process, the network would be flooded with control
messages and processes might waste their time taking
unnecessary checkpoints.

All the above algorithms follow two approaches to

reduce the overhead associated with coordinated check-

pointing algorithms: One is to minimize the number of

synchronization messages and the number of checkpoints

[3], [10], [12], [18], [19], [23], [29]; the other is to make

checkpointing nonblocking [9], [13], [21], [30]. These two

approaches were orthogonal in previous years until the

Prakash-Singhal algorithm [28] combined them. However,

their algorithm may result in an inconsistency in some

situations [7], [8].

Acharya and Badrinath [1] were the first to present a

checkpointing algorithm for mobile computing systems. In

their uncoordinated checkpointing algorithm, an MH takes

a local checkpoint whenever a message reception is

preceded by a message sent at that MH. If the send and

receive of messages are interleaved, the number of local

checkpoints will be equal to half of the number of

computation messages, which may degrade the system

performance.

For other uncoordinated checkpointing algorithms, as

described in [4], [32], every process may accumulate

multiple local checkpoints and logs on the stable storage

during normal operation. A checkpoint can be discarded if

it is determined that it will no longer be needed for

recovery. For this purpose, processes have to periodically

170 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2001

broadcast the status of their logs on the stable storage. The

number of local checkpoints depends on the frequency with

which such checkpoints are taken and is an algorithm

tuning parameter. An uncoordinated checkpointing ap-

proach is not suitable for mobile computing for a number of

reasons. If the frequency of local checkpointing is high, each

process will have multiple checkpoints, which requires a

large amount of stable storage and introduces a lot of

communication overhead in mobile computing systems.

The stable storage and communication overheads can be

reduced by taking local checkpoints less frequently. How-

ever, this will increase the recovery time as greater rollback

and reply will be needed. Even though some algorithms

[24], [35] were proposed to reduce the number of

checkpoints to be saved on the stable storage, to ensure

correctness, a process still needs to keep many more

checkpoints in uncoordinated checkpointing algorithms

than those in coordinated checkpointing algorithms. In the

coordinated checkpointing algorithm presented in this

paper, most of the time, each process needs to store only

one permanent checkpoint on the stable storage and at most

two checkpoints: a permanent and a tentative (or mutable)

checkpoint only for the duration of the checkpointing.

Generally speaking, uncoordinated checkpointing ap-

proaches suffer from the complexities of finding a consis-

tent recovery line after the failure, the susceptibility to the

domino effect, the high stable storage overhead of saving

multiple checkpoints of each process, and the overhead of

garbage collection. Thus, our coordinated checkpointing

algorithm has many advantages over uncoordinated check-

pointing algorithms.

7 CONCLUSIONS

Mobile computing is a rapidly emerging trend in

distributed computing. A mobile computing system

consists of mobile hosts (MHs) and mobile support

stations (MSSs), connected by a communication network.

The mobility of MHs in mobile computing systems

generates many new constraints, such as handoffs, lack

of stable storage, low communication bandwidth of a

wireless channel, and energy conservation, which make

the traditional checkpointing algorithm unsuitable. These

new constraints require that the checkpointing algorithm

should be nonblocking and only forces a minimum

number of processes to take checkpoints. However,

according to our previous result [7], [8], there does not

exist a nonblocking algorithm which forces only a

minimum number of processes to take their checkpoints.

In order to design an efficient checkpointing algorithm for

mobile computing systems, we introduced a new concept

called ªmutable checkpoint,º which is neither a tentative

checkpoint nor a permanent checkpoint, but it can be

turned into a tentative checkpoint. Mutable checkpoints

can be saved anywhere, e.g., the main memory or local

disk of MHs. In this way, taking a mutable checkpoint

avoids the overhead of transferring a large amount of

data to the stable storage at MSSs over the wireless

network. We also presented techniques to minimize the

number of mutable checkpoints. Simulation results show

that the overhead of taking mutable checkpoints is

negligible. Based on mutable checkpoints, our nonblock-

ing algorithm avoids the avalanche effect and forces only

a minimum number of processes to take their checkpoints

on the stable storage.

REFERENCES

[1] A. Acharya and B.R. Badrinath, ªCheckpointing Distributed
Applications on Mobil Computers,º Proc. Third Int'l Conf. Parallel
and Distributed Information Systems, Sept. 1994.

[2] I. Akyildiz, J. Mcnair, J. Ho, H. Uzunalioglu, and W. Wang,
ªMobility Management in Next-Generation Wireless Systems,º
IEEE, vol. 87, no. 8. pp. 1347-1384, Aug. 1999.

[3] G. Barigazzi and L. Strigini, ªApplication-Transparent Setting of
Recovery Points,º Digest of Papers Fault-Tolerant Computing
Systems-13, pp. 48-55, 1983.

[4] B. Bhargava and S. Lian, ªIndependent Checkpointing and
Concurrent Rollback for Recovery in Distributed Systems,º Proc.
Seventh IEEE Symposium Reliable Distributed System, pp. 3-12, Oct.
1988.

[5] B. Bhargava, S.R. Lian, and P.J. Leu, ªExperimental Evaluation of
Concurrent Checkpointing and Rollback-Recovery Algorithms,º
Proc. Int'l Conf. Data Eng., pp. 182-189, 1990.

[6] G. Cao and M. Singhal, ªLow-Cost Checkpointing with Mutable
Checkpoints in Mobile Computing Systems,º Proc. 18th Int'l Conf.
Distributed Computing Systems, pp. 464-471, May 1998.

[7] G. Cao and M. Singhal, ªOn Coordinated Checkpointing in
Distributed Systems,º IEEE Trans. Parallel and Distributed System
pp. 1213-1225, Dec. 1998.

[8] G. Cao and M. Singhal, ªOn the Impossibility of Min-Process Non-
Blocking Checkpointing and an Efficient Checkpointing Algo-
rithm for Mobile Computing Systems,º Proc. 27th Int'l Conf. on
Parallel Processing, pp. 37-44, Aug. 1998.

[9] K.M. Chandy and L. Lamport, ªDistributed Snapshots: Determin-
ing Global States of Distributed Systems,º ACM Trans. Computer
Systems, Feb. 1985.

[10] F. Cristian and F. Jahanian, ªA Timestamp-Based Checkpointing
Protocol for Long-Lived Distributed Computations,º Proc. IEEE
Symp. Reliable Distributed Systems, pp. 12-20, 1991.

[11] B. Crow, I. Widjaja, J. Kim, and P. Sakai, ªIEEE 802. 11 Wireless
Local Area Networks,º IEEE Comm. Magazine, pp. 116-126, Sept.
1997.

[12] Y. Deng and E.K. Park, ªCheckpointing and Rollback-Recovery
Algorithms in Distributed Systems,º J. Systems and Software, pp. 59-
71, Apr. 1994.

[13] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel, ªThe Perfor-
mance of Consistent Checkpointing,º Proc. 11th Symp. Reliable
Distributed Systems, pp. 86-95, Oct. 1992.

[14] G.H. Forman and J. Zahorjan, ªThe Challenges of Mobile
Computing,º Computer, pp. 38-47, Apr. 1994.

[15] J. Gray, Notes on Data Base Operating Systems, pp. 393-481,
Springer-Verlag, 1979.

[16] S.T. Huang, ªDetecting Termination of Distributed Computations
by External Agents,º Proc. Ninth Int'l Conf. Distributed Computing
Systems, pp. 79-84, 1989.

[17] D. Johnson, ªDistributed System Fault Tolerance Using Message
Logging and Checkpointing,º PhD Thesis, Rice Univ., Dec. 1989.

[18] J.L. Kim and T. Park, ªAn Efficient Protocol for Checkpointing
Recovery in Distributed Systems,º IEEE Trans. Parallel and
Distributed Systems, pp. 955-960, Aug. 1993.

[19] R. Koo and S. Toueg, ªCheckpointing and Rollback-Recovery for
Distributed Systems,º IEEE Trans. Software Eng., pp. 23-31, Jan.
1987.

[20] P. Krishna, N.H. Vaidya, and D.K. Pradhan, ªRecovery in
Distributed Mobile Environments,º Proc. IEEE Workshop Advances
in Parallel and Distributed System, Oct. 1993.

[21] T.H. Lai and T.H. Yang, ªOn Distributed Snapshots,º Information
Processing Letters, pp. 153-158, May 1987.

[22] L. Lamport, ªTime, Clocks and Ordering of Events in Distributed
Systems,º Comm. of the ACM, July 1978.

CAO AND SINGHAL: MUTABLE CHECKPOINTS: A NEW CHECKPOINTING APPROACH FOR MOBILE COMPUTING SYSTEMS 171

[23] P.Y. Leu and B. Bhargava, ªConcurrent Robust Checkpointing and
Recovery in Distributed Systems,º Proc. Fourth IEEE Int'l. Conf.
Data Eng., pp. 154-163, 1988.

[24] D. Manivannan and M. Singhal, ªA Low-Overhead Recovery
Technique Using Quasi-Synchronous Checkpointing,º Proc. 16th
Int'l Conf. Distributed Computing Systems, pp. 100-107, May 1996.

[25] R. Netzer and J. Xu, ªNecessary and Sufficient Conditions for
Consistent Global Snapshots,º IEEE Trans. Parallel and Distributed
Systems, pp. 165-169, Feb. 1995.

[26] C. Perkins, ªMobile IP,º IEEE Comm. Magazine, vol. 35, pp. 84-99,
May 1997.

[27] R. Prakash and M. Singhal, ªMaximal Global Snapshot with
Concurrent Initiators,º Proc. Sixth IEEE Symp. Parallel and
Distributed Processing, pp. 344-351, Oct. 1994.

[28] R. Prakash and M. Singhal, ªLow-Cost Checkpointing and Failure
Recovery in Mobile Computing Systems,º IEEE Trans. Parallel and
Distributed Systems, pp. 1035-1048, Oct. 1996.

[29] P. Ramanathan and K.G. Shin, ªUse of Common Time Base for
Checkpointing and Rollback Recovery in a Distributed System,º
IEEE Trans. Software Eng., pp. 571-583, June 1993.

[30] L.M. Silva and J.G. Silva, ªGlobal Checkpointing for Distributed
Programs,º Proc. 11th Symp. Reliable Distributed Systems, pp. 155-
162, Oct. 1992.

[31] M. Spezialetti and P. Kearns, ªEfficient Distributed Snapshots,º
Proc. Sixth Int'l Conf. Distributed Computing Systems, pp. 382-388,
1986.

[32] R.E. Strom and S.A. Yemini, ªOptimistic Recovery In Distributed
Systems,º ACM Trans. Computer Systems, pp. 204-226, Aug. 1985.

[33] F. Teraoka, Y. Yokote, and M. Tokoro, ªA Network Architecture
Providing Host Migration Transparency,º Proc. ACM SIGCOMM
'91, Sept. 1991.

[34] N. Vaidya, ªStaggered Consistent Checkpointing,º IEEE Trans.
Parallel and Distributed Systems, vol. 10, no. 7, pp.694-702, July 1999.

[35] Y. Wang and W.K. Fuchs, ªLazy Checkpoint Coordination for
Bounding Rollback Propagation,º Proc. 12th Symp. Reliable
Distributed Systems, pp. 78-85, Oct. 1993.

Guohong Cao received the BS degree from
Xian Jiaotong University, Xian, China. He
received the MS and PhD degrees in computer
science from Ohio State University in 1997 and
1999, respectively. He was a recipient of the
Presidential Fellowship at The Ohio State Uni-
versity. Since Fall 1999, he has been an
assistant professor of computer science and
engineering at Pennsylvania State University.
His research interests include distributed fault-

tolerant computing, mobile computing, and wireless networks. He is a
member of the IEEE.

Mukesh Singhal received a B. Eng. degree in
electronics and communication engineering with
high distinction from the University of Roorkee,
Roorkee, India, in 1980 and a PhD degree in
computer science from the University of Mary-
land, College Park, in May 1986. He is a full
professor of computer and information science
at Ohio State University, Columbus. His current
research interests include operating systems,
database systems, distributed systems, mobile

computing, high-speed networks, computer security, and performance
modeling. He has published more than 100 refereed articles in these
areas. He has coauthored two books titled Advanced Concepts in
Operating Systems (McGraw-Hill, 1994) and Readings in Distributed
Computing Systems (IEEE Press, 1993) He is currently the program
director of the Operating Systems and Compilers Program at the
National Science Foundation, US. He is a Fellow of the IEEE.

172 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2001

