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Mutant Huntingtin stalls ribosomes and represses
protein synthesis in a cellular model of Huntington
disease
Mehdi Eshraghi 1, Pabalu P. Karunadharma2, Juliana Blin 3, Neelam Shahani 1, Emiliano P. Ricci 3,

Audrey Michel4, Nicolai T. Urban 5, Nicole Galli1, Manish Sharma1, Uri Nimrod Ramírez-Jarquín1,

Katie Florescu1, Jennifer Hernandez1 & Srinivasa Subramaniam1✉

The polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and

neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes

ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells.

Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal trans-

location, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of

ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein

synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and

translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-

Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5′ and 3′

end and unique single-codon pauses on selected mRNA targets in HD cells, compared to

controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a

mechanistic defect that can be exploited for HD therapeutics.
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R
ibosomes move one codon at a time along mRNA during
protein synthesis, a fundamental process in all living cells.
During this translocation (aka ribosome movement), the

ribosomes pause for a variety of reasons, such as codon usage,
peptide properties, mRNA structure, and tRNA availability, or
solely due to a continuously changing cellular demand1–7. This
pause can be a transient event (e.g., during the insertion of the
signal peptide into the endoplasmic reticulum), or it can be
permanent (e.g., during a wrong codon–anticodon pairing)8.
Regardless, the mechanisms of ribosome pausing (aka ribosome
stalling) or its dysregulation in neurodegenerative disease remain
poorly understood. Elucidation of the mechanisms governing
ribosome stalling should provide an opportunity to develop
effective therapeutic interventions.

Ribosome stalling in neurodegenerative disease is associated
with several different proteins. For example, GTP-binding protein
2 (GTPBP2), identified after an N-ethyl-N-nitrosourea muta-
genesis screen, is known to regulate stalling at the AGA codon,
and GTPBP2 deletion promotes a spontaneous ataxia-like neu-
rodegenerative phenotype9. Similarly, TAR DNA-binding protein
43 (TDP-43), which promotes amyotrophic lateral sclerosis (ALS)
and frontotemporal lobar degeneration (FTLD), interacts with
stalled ribosomes during cellular stress and inhibits protein
synthesis10,11. Mutations in other mRNA-binding proteins
(RBPs), such as SMN, FUS, and Ataxin-2 (proteins that also
regulate protein synthesis but with unclear mechanisms), can also
promote neurodegenerative diseases12–15. The Fmrp, another
RBP, can bind to ribosomes and regulate ribosome stalling16–18.
The depletion of Fmr1, as observed in Fragile X syndrome, results
in increased protein synthesis that is linked to synaptic and
behavioral defects and that can also elicit the neurodegenerative
phenotype in Fragile X-associated tremor/ataxia syndrome19,20.
Deficits in rescuing ribosome stalling may also promote
neurodegeneration2,21. Major unanswered questions include how
ribosome stalling is directly regulated by physiological signals and
how its dysregulation affects neurodegenerative disease processes.

Huntingtin (HTT), a ubiquitously expressed protein found
throughout the nervous system and in non-neural tissues. Mice
with deletion of the Htt gene, Hdh, die around embryonic day
8.5–10.5 before the full emergence of the nervous system, indi-
cating a role for this gene in cell survival and neurogenesis22–25.
Conditional deletion of Htt in the mouse brain results in a defect
in corticostriatal development, as well as induces hyperactivity,
acute pancreatitis, and age-dependent neurodegenerative-like
phenotype26–28. These results indicate that normal HTT plays
essential role in the organism’s developmental and adult brain
functions.

The CAG expansion of HTT gene results in mutant HTT
(mHTT) protein, which causes Huntington’s disease (HD), a
debilitative autosomal-dominant brain disorder with worldwide
distribution29–31. Although mHTT does not appear to perturb
development in mouse models, it has been shown to interfere
with cortical neurogenesis in the human fetal brain32,33.

In humans, HD onset and severity of symptoms depend on the
number of CAG repeats in HTT. Brain pathology and magnetic
resonance imaging studies show early severe damage to the
striatum34–36. As the disease progresses, the damage extends to the
cortex and multiple CNS and peripheral regions, leading to motor
dysfunctions, weight loss, and energy deficits37–40. The majority of
HD patients are heterozygous, but some homozygous patients
experience a severe clinical course, such as rapid striatal atrophy
and decline in motor, cognitive, and behavioral skills41,42. These
HD deficits can emanate from one or more effects of mHTT and
its proteolytically cleaved fragments on several functions, such as
vesicle- and microtubule-associated protein/organelle transport,
transcription, autophagy, and sphingosine and cysteine

metabolism, oxidative stress, calcium signaling, as well as effects
on tissue maintenance, secretory and inflammatory pathways, and
cell division43–69. Altered ribosomal functions and association of
HTT and mHTT with translating ribosomes were reported in HD
model systems and HD patient-tissue51,70–78. But the evidence
for the role(s) or the mechanism(s) of HTT in the regulation of
protein synthesis is limited. Here, we report that mHtt suppresses
protein synthesis via mechanisms involving ribosome stalling
potentially occurring during elongation.

Results
Ribosome stalling and suppression of protein synthesis in HD
cells. Protein synthesis is regulated in a cell-type-specific manner;
therefore, we employed homogenous HD knock-in cell models
for our translation studies79,80. We investigated mRNA transla-
tion using genetically precise striatal neuronal cells that express a
targeted insertion of a chimeric human–mouse exon 1 with 7/7
CAG (STHdhQ7/Q7, control), 7/111 CAG (STHdhQ7/Q111, HD-
het), and 111/111 CAG (STHdhQ111/Q111, HD-homo) repeats80.
We used polysome profiling to estimate mRNA loading onto
translating polyribosomes. We identified a high polysome/
monosome (PS/MS) ratio in the HD-homo compared to the HD-
het or control cells (Fig. 1A, B) by integrating the area under the
curve from raw profiles (Supplementary Fig. S1). We hypothe-
sized that the high PS/MS ratio in HD-homo cells reflected a
more actively translating mRNA in the HD-homo cells. We
examined this possibility by measuring protein synthesis with
SUnSET, a nonradioactive puromycin/antibody-based tool81.
However, we found diminished puromycin incorporation,
reflective of reduced mRNA translation (protein synthesis), in the
HD-homo (~40%) and HD-het cells (~20%) compared to the
control cells (Fig. 1C, D). As with puromycin, we found dimin-
ished incorporation of radiolabeled [35S]-methionine into newly
synthesized proteins in the HD-homo cells (~40%) compared to
the control cells (Supplementary Fig. S2). Human HD-het
fibroblasts also showed a significant reduction in protein synth-
esis compared to unaffected controls (Supplementary Fig. S3).

We then hypothesized that the high PS/MS ratio in HD-homo
striatal cells, despite the diminished protein synthesis, could
reflect a pause in ribosome movements, which would lead to a
more diminished rate of translation elongation in the HD-homo
than in the control cells. We tested this hypothesis in ribosome
run-off experiments with harringtonine, a compound that
inhibits the initiation of mRNA translation without affecting
the ribosomes that have cleared the start codon82–85. Analysis of
the ribosome profiling of harringtonine-treated cells, therefore,
allows a determination of whether the cells are experiencing
ribosome stalling. If ribosomes are stalled, then the profile will
show a lower MS peak in cells that are stalled (i.e., cells that have
a high PS/MS ratio) than in cells in which ribosomes are not
stalled86. If ribosomes run faster, then the profile will show an
increased MS peak (i.e., cells that have a low PS/MS ratio) than in
cells in which ribosomes are moving slower.

We found that harringtonine treatment (~2 min) resulted in a
rapid increase in the 80S (MS) peak in control striatal cells
(Fig. 1E, arrow) compared to the HD-homo striatal cells. At this
point, the polysome profile in the HD-homo cells remained high
compared to the control cell profile (Fig. 1E, inset e2; arrowhead).
These data indicated that ribosomes ran slower in HD cells than
in control cells. After 5 min of harringtonine treatment, the
polysome profile still appeared higher in HD cells than in
the control cells (Fig. 1E, inset e3, arrowhead). By 8 min, the
ribosomes appeared to have completed their translation (run-off)
similarly in both the HD-homo and the control cells (Fig. 1E,
inset e4, arrowhead). The PS/MS ratio between control and HD
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cells showed a significant correlation after the harringtonine
treatment (Fig. 1F). Moreover, despite their high PS/MS ratio
(Fig. 1E, F), the HD cells showed diminished protein synthesis
under the harringtonine treatment (Fig. 1G, H), indicative of
stalled and slowly elongating ribosomes in HD.

We also found a much slower ribosome runoff in HD cells than
in controls in the presence of puromycin (Supplementary

Fig. S4A, B), another compound that can be employed to assess
the ribosome runoff16,87,88. Thus, the harringtonine and pur-
omycin experiments both showed that polysome depletion from
mRNA occurs much more slowly in HD cells than in control
cells. Collectively, these data indicate that the diminished protein
synthesis in HD striatal cells potentially occurs due to an
inhibition of translational elongation caused by ribosome stalling.
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Depletion of Htt enhances protein synthesis and increases the
speed of ribosome translocation. We then hypothesized that if
mHtt is directly responsible for inhibiting protein synthesis in
striatal neuronal cells, as observed in Fig. 1, then its depletion
should increase protein synthesis. We tested this hypothesis using
CRISPR/Cas9 tools to deplete wtHtt in control cells and mHtt in
HD-homo cells. We found depletions of ~60% wtHtt and ~80%
mHtt in these cells (Fig. 2A, B). Consistent with Fig. 1C, G,
protein synthesis was lower in the CRISPR ctrl HD cells than in
the CRISPR ctrl cells; however, depletion of either wtHtt or mHtt
resulted in a significant increase in protein synthesis, as measured
by puromycin incorporation (Fig. 2A, C). The fold change of the
increase in protein synthesis was similar between the wtHtt or
mHtt-depleted cells (Fig. 2C). These data indicate that both wtHtt
and mHtt inhibit protein synthesis.

We then hypothesized that the enhancement of protein
synthesis by depletion of Htt was accompanied by increased
ribosomal movements. We evaluated this possibility by conduct-
ing ribosome run-off assays in wtHtt-depleted and mHtt-depleted
cells under basal (vehicle) and harringtonine-treated conditions.
Under the basal conditions, we found no apparent differences in
the ribosome profiles, nor did we note any changes in the PS/MS
ratio between the CRISPR ctrl and CRISPR wtHtt-depleted
control cells (Fig. 2D, E). By contrast, in the presence of
harringtonine, the CRISPR wtHtt-depleted cells showed a more
rapid increase in MS peak compared to the wtHtt-intact control
cells, as well as a significant decrease in the PS/MS ratio (Fig. 2D,
F, arrow). Similarly, under basal conditions, the PS/MS ratio was
unaltered in CRISPR ctrl or CRISPR mHtt-depleted HD-homo
cells (Fig. 2G, H), but the presence of harringtonine caused a
significant decrease in the PS/MS ratio in the CRISPR mHtt-
depleted HD-homo cells compared to mHtt-intact HD-homo
cells (Fig. 2G, I). These data indicate that ribosomes run faster
when Htt is depleted.

We next compared the effects of harringtonine treatment on
polysome profiles in CRISPR wtHtt versus CRISPR mHtt-
depleted cells (Fig. 2J). We found a higher PS/MS ratio in
harringtonine-treated CRISPR mHtt-depleted cells compared to
CRISPR wtHtt-depleted cells (Fig. 2J, K). These data further
support the notion that ribosomes run much more slowly in HD
cells. Collectively, these data reveal that mHtt inhibits protein
synthesis most likely at the level of elongation by promoting
ribosome stalling.

Htt directly inhibits protein synthesis in vitro. We investigated
whether Htt can directly modulate protein synthesis. We used
recombinant human full-length (FL)-wtHTT (23Q) and FL-
mHTT (48Q), which were purified from HEK293 cells and
appeared >95% pure on Coomassie gels (Fig. 3A). We tested the

effect of these HTT proteins in a rabbit reticulocyte-based in vitro
translation (IVT) assay system that measured luciferase synthesis
and activity as the relative luciferase unit (RLU). At a 50 nM
concentration, both the FL-wtHTT (23Q) and FL-mHTT (48Q)
proteins caused a ~40% reduction in the RLU, compared to a BSA
control (Fig. 3B). At 200 nM concentration, we found ~95%
reduction in the RLU but a significantly stronger inhibition by
FL-mHTT (48Q) than by FL-wtHTT 23Q (Fig. 3B). This stronger
inhibition at a higher concentration led us to look for a dose-
dependent effect of HTT proteins on protein synthesis. We found
that both FL-wtHTT (23Q) and FL-mHTT (48Q) robustly
blocked the luciferase expression (RLU) in a concentration-
dependent manner (Fig. 3C). Notably, mHTT failed to inhibit
luciferase activity if it was added for 5 min after the IVT reaction
was completed (90 min), suggesting that mHTT actively engages
the protein synthesis machinery to inhibit luciferase synthesis.
We then tracked luciferase activity at different timepoints during
the IVT reaction and found a reduced relative luminescence
signal. This reduction was much stronger in the presence of the
FL-mHTT (48Q) protein than in the presence of FL-wtHTT
(23Q) protein at timepoints of 45 and 75 min during the IVT
assay (Fig. 3D). Collectively, these data consistent with a previous
report75, indicate that both wtHTT and mHTT can directly
inhibit protein synthesis, although the inhibitory effect may be
slightly stronger for mHTT than for wtHTT.

Fmrp, a known inhibitor of stalling, is upregulated in HD.
Given the evidence that ribosomes were apparently stalled in HD
cells, we wanted to identify the nature of the ribosome-bound
translating mRNAs, as this knowledge could help in identifying
the mRNA transcripts that are stalled as well as in understanding
the mechanisms of ribosome stalling in HD. We addressed this by
isolating mRNAs from the slowly translating polysomes in HD-
homo cells and comparing them to mRNAs from control cells
using the harringtonine-based ribosome run-off assay (RRA),
followed by mRNA-Seq (PS-RRA-mRNA-Seq) (Fig. 4A). This
approach identified ~1157 targets (Fig. 4B and Supplementary
Data 1) that showed high mRNA abundance (red dots) and
~1248 targets that showed low mRNA abundance (blue dots) in
the polysome of HD-homo cells (P < 0.05) compared to the
control polysome. Of these targets, we noticed higher levels of
Fmrp (encoded by Fmr1), a known inducer of ribosome stal-
ling18, in the PS-RRA-RNA-Seq from the HD-homo cells than
from the control cells (Padj= 0.01), whereas the levels of Gapdh,
mTOR, Eif2α, and Rps27 were not significantly altered (Fig. 4C,
upper panel). The qPCR analysis of the ribosome fractions (MS
and PS) not treated with harringtonine showed similar levels of
Fmr1, Gapdh, and Rps27 mRNA in both the control and

Fig. 1 Suppression of protein synthesis and ribosome stalling in HD cells. A Representative polysome profile of control, HD-het and HD-homo striatal

cells obtained by using sucrose density gradient fractionation. B Quantification of polysome to monosome (PS/MS) ratio in polysome profiles from A (area

under the curve). Data are mean ± SEM (control, n= 20; HD-Het, n= 8; HD-Homo, n= 20 independent experiments) ****P < 0.0001 by one-way ANOVA

followed by Tukey’s multiple comparison test. C Representative immunoblots of metabolic labeling of protein synthesis, using puromycin, and its

quantification (D) in mouse striatal cells. Ponceau staining of the blots was used to quantify the total protein signal in each lane. Data are mean ± SEM (n=

7, independent experiments) ##P < 0.01 by two-tailed Student’s t test and ****P < 0.0001 by one-way ANOVA followed by Tukey’s multiple comparison

test. E Representative polysome profiles obtained from control and HD-homo striatal cells at basal (0 min) and after ribosome run-off assay with

harringtonine (2 µg/ml, 2, 5, and 8min). Area e1–e4 shows ribosome movement between control (green) and HD-homo (red) cells. F Quantification of

polysome to monosome (PS/MS) ratio in polysome profiles from E (area under the curve). Data are mean ± SEM (at 0min, n= 8; 2 min, n= 8; 3 min, n=

4; 8 min, n= 6 independent experiments), ***P < 0.001 and ****P < 0.0001, by two-way repeated measures ANOVA, Bonferroni’s multiple comparisons

test. G Representative immunoblots of metabolic labeling of protein synthesis, using puromycin, in control and HD-homo striatal cells at basal (0min) and

2, 5, and 8min after harringtonine treatment and quantification (H). Ponceau staining of the blots was used to quantify the total protein signal in each lane.

Data are mean ± SEM (n= 7, independent experiments), *P < 0.05 and ****P < 0.0001 by two-way repeated measures ANOVA, Bonferroni’s multiple

comparisons test. Exact P values are reported in the Source Data file. Source data are provided as a Source Data file.
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HD-homo cells. These results indicate that Fmr1 mRNA strongly
binds to ribosomes in HD (Fig. 4C, lower panel).

Because Fmr1 mRNA is associated with polysomes in HD cells,
we hypothesized that Fmr1 mRNA is stalled in HD and that its
protein levels should be low. However, contrary to this
assumption, we found that Fmrp protein levels were significantly
upregulated in the HD-homo cells, as well as in human HD
patient striatum, whereas the total Fmr1 mRNA was differentially
altered (Fig. 4D, E). Collectively, PS-RRA-mRNA-Seq data
suggested that Fmrp is upregulated in HD.

Fmrp does not affect mHtt-mediated protein synthesis or
ribosome stalling in HD cells. As Fmrp is upregulated in HD
and is a known inducer of ribosome stalling, we hypothesized that
Fmrp is likely involved in ribosome stalling in HD cells. We
examined the role of Fmrp using CRISPR-Fmr1 to deplete Fmr1
in control and HD-homo cells; this resulted in ~80% reduction in
the Fmrp protein levels (Fig. 5A, B). We found that Fmrp
depletion in control cells increased protein synthesis, as measured

by enhanced puromycin incorporation, whereas, surprisingly, it
had no discernable effect on protein synthesis in the HD-homo
cells (Fig. 5A, C).

We further dissected the Fmrp role in HD cells by generating a
double knockout of mHtt/Fmrp, using CRISPR/Cas9. We found
that cells in which mHtt alone were depleted showed a
significantly increased protein synthesis, whereas cells in which
Fmrp alone was depleted or in which both mHtt and Fmrp were
depleted showed protein synthesis levels similar to those of cells
in which mHtt alone was depleted (Fig. 5D, E). We then used
harringtonine to examine whether Fmrp depletion had any effect
on ribosome stalling in HD cells. The mHtt depletion enhanced
the ribosome runoff (Fig. 5F, G), as before (Fig. 2G, I). However,
Fmrp depletion did not significantly alter the ribosome runoff
(Fig. 5F, G). These data indicated that (i) Fmrp upregulation
might not impact overall protein synthesis inhibition in the
cultured HD cells, and (ii) mHtt acts upstream or independently
of Fmrp to promote ribosome stalling and inhibit protein
synthesis in HD cells.
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after ribosome run-off assay using harringtonine (2min, I) and their corresponding quantification of polysome to monosome (PS/MS) ratios (area under

the curve). Data are mean ± SEM (H, n= 3; I, n= 4 independent experiments), **P < 0.01 by two-tailed Student’s t test, n.s not significant. J, K

Representative polysome profiles (J) obtained from wtHtt- and mHtt-depleted mouse striatal cells after ribosome run-off assay using harringtonine (2 min),

and their corresponding quantification of polysome to monosome (PS/MS) ratios (K). Data are mean ± SEM (wtHtt depleted, n= 5; mHtt depleted, n= 6

independent experiments), **P < 0.01 by two-tailed Student’s t test. n.s not significant. Exact P values are reported in the Source Data file. Source data are

provided as a Source Data file.
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mHtt interacts with ribosomes. We next determined whether
mHtt associates directly with ribosomes to regulate stalling by
using multiple approaches. We isolated fractions from the ribo-
some profiles of control and HD-homo cells treated with vehicle
or harringtonine (Fig. 6A). We found that wtHtt and mHtt both
co-sedimented with the 40S, 60S, and 80S (MS) ribosomal sub-
units and with polysomes in sucrose gradients (Fig. 6A). Simi-
larly, Fmrp, Rpl7, and Rpl35A (which are all known ribosome-
binding proteins) also sedimented with the ribosomal subunits
and polysome fractions (Fig. 6A). In the presence of harringto-
nine, which disassembles the polysomes82,85, we found a clear
increase in the monosome fraction in the ribosome profiling
(Fig. 6A, arrowhead). Both wtHtt and mHtt re-sedimented from
the higher-density polysome fractions (# 6, 7, or 8) to lower-
density fractions (# 3, 4, or 5, asterisk) after harringtonine
treatment. The known polysome-associated proteins, such as
Fmrp, Rpl7, and Rpl35A, also re-sedimented to lower-density
fractions (# 4, 5, or 6) after harringtonine treatment (Fig. 6A).
The enhanced band intensity in fraction # 5 of harringtonine-

treated controls cells may be due to the overloading of
monosome-accumulated proteins from the collected fractions.
Besides, the shifting of ribosomal proteins Rpl7 and Rpl35A to
the lower-density fractions appears very slight compared to Htt,
which may be because Htt is less abundant on polysomes than
ribosomal proteins. These results suggest that wtHtt and mHtt
bind to translating polysomes.

Super-resolution stimulated emission depletion (STED) micro-
scopy studies revealed that ~25–35% of wtHtt and mHtt clusters
were in proximity (<300 nm) to the Rpl7 (Fig. 6B, the full image
in Supplementary Fig. S5). We saw clear differences between the
control and HD-homo cells when calculating the Manders
colocalization coefficients (Fig. 6C). We also immunoprecipitated
(IP) Htt using MAB2166 antibody and found that Rps6 and
Rpl7 showed a stronger co-immunoprecipitation in Htt from
HD-het and HD-homo cells than from control cells (Fig. 6D). As
a positive control, we detected Caprin1, a previously known
interactor of mHtt (Fig. 6D)75,89. Thus, the interaction with
ribosomal proteins is stronger for mHtt than for wtHtt.
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We asked whether mHtt could directly interact with translating
ribosomes. We incubated purified recombinant human HTT
proteins (GST-Exon 1-23Q or GST-Exon 1-51Q)90 with poly-
somes isolated from Htt-depleted striatal cells (CRISPR/Cas9-Htt
cells, Fig. 2A), and reran the isolated polysomes on a sucrose
gradient (flow chart in Supplementary Fig. S6). We found
stronger binding to the extracted polysomes with mHTT-51Q
than with wtHTT-23Q (Fig. 6E), indicating that poly-Q
expansion of HTT may increase HTT avidity toward ribosomes.
However, we cannot rule out the possibility that the interaction of
HTT with ribosomes may be enhanced in vivo by additional
interactors and/or post-translational modifications.

To test this, we carried out whether mHTT bind to ribosomes
in human HD-het fibroblasts, under acute amino acid starvation,

which produces substantial transcriptional and translational
changes. Human HD and healthy fibroblasts were either starved
for amino acids (Krebs buffer) or starved and then stimulated
with L-leucine (Leu), followed by immunoprecipitation with HTT
IgG and control IgG and subjected to mass spectrometry (IP–LC-
MS/MS) analysis. We found that HTT and mHTT both
interacted with several 40S and 60S ribosomal proteins both in
the starved and amino acid-stimulated conditions (Fig. 6F) in
healthy and HD fibroblasts. STRING analysis found an enrich-
ment of the biological process and components related to the
translation and ribosome/RNA binding (Supplementary Fig. S7A,
B). Full interactome data can be found in Supplementary Data 2
(see “Data availability” for protein database). Collectively, the
above data demonstrate that Htt binds to translating ribosomes
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and ribosomal proteins in HD mouse striatal neuronal cells as
well as human HD fibroblasts.

Global ribosome profiling reveals diverse 5′ and 3′ ribosome
occupancy on mRNA transcripts in HD cells. The indications
that mHtt binds and stalls ribosomes led us to posit that overall
global ribosome occupancy may be altered in HD. We investigated
this using a global ribosome profiling approach91–94. We treated cells
with cycloheximide, as described previously95,96, and isolated poly-
somes from three biological replicates of wild-type control striatal
cells and HD-het and HD-homo mutant striatal cells. We conducted
ribosome profiling to prepare ribosome footprints (Ribo-Seq) and

matching RNA (RNA-Seq) (Supplementary Fig. S8). Multiple quality
control measures, such as principal component analysis (Fig. 7A)
and Euclidian distance analyses (Supplementary Fig. S9A), showed
that the replicates were very similar, with genotype as the principal
source of differences between the control and the HD cells. Most of
the differential ribosome occupancies (ribosome-protected frag-
ments, RPF) were mapped to annotated protein-coding open-read-
ing frames, with a 29-nt expected triplet nucleotide periodicity and
ribosome occupancy at the start and stop codon for control, HD-het,
and HD-homo (Fig. 7B and Supplementary Fig. S9B, C). Thus, we
generated a high-quality Ribo-Seq library of control, HD-het, and
HD-homo striatal cells for subsequent bioinformatics analysis.
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Because the data indicate ribosomes were stalled in HD cells,
our goal was to identify mRNA targets with high RPF in HD. For
this, we used Anota2Seq bioinformatics software97, which applies
partial and random variance models to allow the analysis of
differential RPF (a.k.a. translation efficiency) between control and
HD cells and estimation of the changes within each RNA source
(RPF or mRNA)98. The following six categories of RPF/mRNA
groups showing differential ribosome occupancy between control,
HD-het, and HD-homo, striatal cells, were expected in our

analysis: (a) high RPF/similar mRNA (↑RPF/•mRNA), (b) similar
RPF/low RNA (•RPF/↓mRNA), (c) low RPF/similar mRNA
(↓RPF/•mRNA), (d) similar RPF/high mRNA (•RPF/↑mRNA),
(e) high RPF/high mRNA (↑RPF/↑mRNA), and (f) low RPF/low
mRNA (↓RPF/↓mRNA) (Supplementary Fig. S10A).

We first confirmed that the Anota2Seq algorithms were able to
separate the ribosome occupancy of each category from HD-het
and HD-homo cells versus controls (Fig. 7C and Supplementary
Data 3). As shown in the scatterplot (Fig. 7D), we found that the
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36,411 genes included 3840 mRNA targets in the HD-homo cells
and 6670 mRNA targets in the HD-het cells, with significantly
changed ribosome occupancy (RPF/mRNA) compared to the
controls (P value <0.05) (Supplementary Data 4 and 5). This
differential RPF change in HD could also be due to transcript-
level changes consistent with the transcriptional role of mHtt99.
Gene ontology (GO), using the Ingenuity Pathway Analysis (IPA)
for each category, showed that the genes belong to diverse
signaling pathways, including IL-10 signaling, Alzheimer’s disease
signaling, AMPK signaling, cAMP signaling, Rho GTPase
signaling, and the matrix metalloprotease, EIF2, and mTOR
pathways (Supplementary Fig. S10B). Therefore, we were able to
ensure our Ribo-Seq data to detect robust differences in the RPF
in HD cells compared to the control.

We next sought to identify the overall ribosome pauses on
mRNA transcripts in HD using PausePred software100. Linear
regression analysis using the mean of triplicates allowed a
determination of the number of cases with a 5′ ribosomal shift
and a 3′ ribosomal shift in the HD and control cells. The HD-
homo cells showed more genes with 5′ ribosome occupancy (5′=

790; 3′= 138), whereas HD-het cells showed more genes with 3′

occupancy (5′= 74; 3′= 1685) (Fig. 8A, Supplementary Data 6
and 7). For example, the mRNA of B-myc, a brain-expressed
myelocytomatosis oncogene101, showed high ribosome occu-
pancy toward the 5′ end in HD-homo (Fig. 8B, arrow). By
contrast, mt-Nd4I mRNA, a subunit of NADH dehydrogenase
(ubiquinone), displayed high ribosome occupancy toward the 3′

end (Fig. 8B, arrowhead). These data indicate that the center of
the ribosome density is significantly shifted on selected targets in
HD cells compared to normal cells.

The PausePred software can also be used to analyze the global
single-codon pauses100. However, although we observed numer-
ous single-codon pauses between control and HD cells (Supple-
mentary Fig. S11), the high level of variation within the replicates
(Supplementary Fig. S12) precluded any comparison of pauses
across groups. These variations within the replicates may also
indicate that a ribosomal pause on a given codon is not a static
but a dynamic event in striatal neuronal cells. We therefore
selected the codons that showed HD-exclusive pauses compared
to control cells. This approach identified ~165 targets in the HD-
homo cells and ~125 targets in the HD-het cells that showed one
or more codon-specific pauses (Supplementary Data 8 and 9).
Most of the targets showed ribosome pauses toward the 5′ end as
well as the 3′ end of the coding mRNA in HD cells compared to
controls (Fig. 8C). Although we can draw no clear conclusion
whether the observed pause signal was a result of pausing or
simply due to differences in the transcript, we found that most of
the single-codon paused transcripts (~130) were enriched in the
top PS-bound mRNA list in PS-RRA-mRNA-Seq of the HD-
homo cells (Fig. 8D) (Supplementary Data 10).

We next examined the ribosome profiles of some of the targets
identified in both Ribo-Seq and PS-RRA-mRNA-Seq and their
protein expressions (depending on the availability of antibodies).
We combined the uploaded profiles, as a track hub in the
University of California Santa Cruz (UCSC) Genome Browser 42,
from the triplicate experiments and overlaid selected RPF (green)
normalized to corresponding mRNA (orange). We also estimated
the ribosome occupancy as the ratio between CDS RPF
abundance and mRNA abundance and for the indicated gene
(RPF/mRNA) from the raw read counts from the UCSC browser
(Fig. 9A–F, bar graphs). For example, Mfsd10, an ion transporter,
showed a single-codon pause at position 1673 (GAG) and
enhanced RPF/mRNA reads in the HD-het and HD-homo cells
(Fig. 9A, arrow). By contrast, Acan, a proteoglycan consisting of
seventeen exons, showed more or less uniformly distributed
ribosome occupancy in control and HD-het cells. Its single-codon
pause was at 2515 (TGG), and its RPF was concentrated
predominantly toward the 5′ of the mRNA transcript in HD-
homo cells (Fig. 9B, arrow). Ppbp, platelet-derived growth factor,
which belongs to the CXC chemokine family, consists of three
exons and showed high RPF concentrated on exon 2 in HD-het
and HD-homo compared to control (Fig. 9C, arrow). Mgp,
N-methylpurine-DNA glycosylase, showed a single-codon pause
at 100 (AGC) and high RPF reads in HD-het and HD-homo
cells compared to control cells, with RPF tilted more toward 3′ in
the HD-het cells (Fig. 9D, arrow). Phf11d, a protein containing a
PHD (plant homeodomain) type zinc finger, has 11 exons and
showed high RPF in HD-homo (18-fold) compared to control
cells (Fig. 9E, arrow). mTOR, a widely studied kinase, shows a
high RPF at the 5′ end of the mRNAs but it gradually tapered
down along the 58 exons in all groups (Fig. 9F).

Therefore, RPF/mRNA analysis showed overall high RPF in
Mfsd10, Ppbp, Mgp, and Phf11d targets in HD cells compared to
control cells. Apart from Acan, the rest of the targets showed
diminished protein levels by western blotting in HD cells
compared to control, but the mTOR protein levels were not
significantly altered (Fig. 9G). Thus, despite a high RPF density,
certain selected targets showed diminished or unaltered protein
levels in HD cells compared to control cells, suggesting a possible
translational regulation including ribosome stalling and/or post-
translational mechanisms of protein stability in HD.

We have recently evaluated whether paused targets play any
role in HD. We reported that cGAS, a DNA sensor102 (Fig. 8D,
arrow), showed high ribosome occupancy at its exon 1 and a
pause at 171 (CCG) and 172 (CGT) in HD cells103 and that the
cGAS protein is highly upregulated in HD cells, HD mouse
models, and human patient tissues. We also showed that cGAS
promotes an inflammatory and autophagic response in HD
cells103. A full UCSC genome browser link for the global RPF
averaged for all three replicates for control, HD-het, and HD-

Fig. 6 Huntingtin interacts with ribosomes. A Representative polysome profile and immunoblots with indicated proteins in the fractions from the

gradients of control and HD-homo cells treated with vehicle or Harringtonine (2 µg/ml, 30min) (n= 3 independent experiments). B Representative images

of STED microscopy on mouse striatal cells using antibodies against Rpl7 (green) and Htt (magenta) counterstained with the nuclear marker DAPI (see the

full image in Supplementary Fig. S5) Scale bar= 500 nm, n= 4 for control cells, n= 3 for HD-homo cells. C The Manders‘ colocalization coefficients were

calculated for the ratio of FarRed-label colocalizing with Red-label, for both control and homo conditions, using background subtracted (thresholded) and

binarized STED images from B. The central line details the median (50%), whereas the upper and lower boundaries of the box (hinges) represent the first

(25%) and third (75%) quartile of the data. The whiskers extend up to the largest and down to the smallest value, all of which were inside 1.5*IQR the

interquartile range, or the distance between the first and third quartiles, n= 4 for control cells, n= 3 for HD-homo cells. D Representative immunoblots

showing co-immunoprecipitation of wHtt/mHtt (MAB2166) with indicated proteins, and input, n= 4 independent experiments. E Representative

immunoblots on inputs and outputs of in vitro ribosome-binding assays using recombinant GST-exon 1 HTT 23Q and GST-exon 1 HTT 51Q proteins and

isolated ribosomes from mouse Htt-depleted striatal cells (n= 3 independent experiments, see Supplementary Fig. S6 for the experimental diagram

and corresponding polysome profiles). F Proteomics analysis on samples prepared from immunoprecipitation experiments on human (healthy controls 17Q

and HD patient 69Q-het) fibroblasts in Krebs or Krebs + 3mM Leu (four control IgG and four HTT IgG, n= 1 per group).
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homo cells can be found at the UCSC genome browser (see “Data
availability” for the link).

Thus, our Ribo-Seq analysis revealed robust differences in
the RPF/mRNA, 5′, and 3′ distribution of ribosomes and
single-codon pauses on selected mRNA transcripts. This study
also provides a rich source of potential unknown targets for drug
discovery in HD research.

Discussion
Despite many efforts, no effective therapies are yet available that
are directed toward inhibiting the abnormal functions of mHtt in
HD. Therefore, delineating the mechanisms become important
for developing effective therapies against HD. Based on the

present study findings, our model indicates that wtHtt physio-
logically inhibits protein synthesis by inhibiting the speed of
ribosomal translocation. This function is exacerbated by mHtt,
which further impedes protein synthesis and aberrantly slows
down ribosomal translocation (Fig. 9H). This model is supported
by multiple pieces of evidence from the present study: (i) an
enhanced level of polysome-bound mRNA transcripts but a
diminished level of protein synthesis in HD cells, (ii) increased
protein synthesis as well as increased speed of ribosome runoff by
depletion of mHtt, (iii) direct inhibition of protein synthesis
in vitro by mHtt, (iv) an association between mHtt and trans-
lating ribosomes, and (v) widespread alterations in the ribosome
occupancy in HD cells compared to control cells.
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Fig. 7 Global ribosome profiling reveals diverse ribosome occupancy on mRNA transcripts in HD cells. A Principal component analysis using Ribo-Seq

and RNA-Seq data obtained from control, HD-het, and HD-homo striatal cells. B Representative graphs showing triplet periodicity plots generated for

protein-coding regions of Ribo-Seq data obtained from control, HD-het and HD-homo striatal cells. C Violin plots showing the distribution of ribosome

occupancy changes (calculated by the number of Ribo-Seq reads divided by mRNA-Seq reads for each gene, Log2FC) in HD-homo and HD-het cells

(compared to control cells). In the middle of each density curve is a small boxplot, with the rectangle showing the ends of the first and third quartiles and

central dot the median (n= 3 independent experiments). D Scatter plots of expression changes of Ribo-Seq vs mRNA-Seq data in control, HD-het, and HD-

homo striatal cells. Using Anota2seq, changes in Ribo-Seq are classified into six groups (see Supplementary Fig. S10A). The numbers of genes in each

group are shown at the top left corner of each plot. The total number of genes: 36411, absolute fold change (FC) > 2, nominal P < 0.05, and false discovery

rate (FDR)= 0.15. All statistical tests within the anota2seq package are two-tailed.
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Surprisingly, despite an approximately two-fold increase in the
levels of Fmrp, a previously known regulator of ribosome stalling
and mRNA translation18,104–107, depletion of Fmrp did not sig-
nificantly affect ribosome stalling or protein synthesis in HD cells.
Previous studies have shown a biochemical association of Fmrp
and Htt, as Htt mRNA is a target for Fmrp binding in the brain16,
and Fmrp binds with 3′ UTR of Htt mRNA108. A recent study
showed that Fmrp deficiency leads to reduced Htt mRNA
expression and that Htt mediates the Fmrp regulation of mito-
chondrial fusion and dendritic maturation109. Thus, Htt and
Fmrp may act together in a cell-type-specific manner and have
yet undiscovered biological functions in the brain. Although
Fmrp upregulation did not affect translation in HD cultured
striatal cells, we cannot rule out its role in HD pathogenesis. This
notion is supported by evidence suggesting that deletion of Fmrp
(dfmr1) suppresses the mHTT-mediated toxicity in the

Drosophila model of HD110. In the HD brain, hypothetically,
Fmrp may regulate the translation of selected mRNA transcripts
involved in synaptic functions104,111,112. In addition, Fmrp
upregulation may impact noncanonical functions, such as
autophagy regulation in HD113,114. Thus, our study demonstrates
a previously unknown link for mHtt and Fmrp and its relevance
to HD pathogenesis requires further studies.

Our results demonstrating a role for Htt in protein synthesis in
HD is consistent with the findings of previous studies73,75–78.
These earlier studies showed that full-length wtHtt or mHtt
interacted with ribosomal proteins in the brain and inhibited cap-
dependent translation of a reporter mRNA in Hela cells75.
Similarly, the expression of the fragment of the first 17 amino
acids of Htt fused to a poly(Q) tract of 103 (Htt103Q) in yeast
cells and Drosophila cells diminished the expression of genes
involved in rRNA metabolism and ribosome biogenesis, while
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also suppressing protein synthesis73,76. Protein/gene expression
profiling has revealed diminished protein levels, altered expres-
sion of genes encoding ribosomal proteins, and RNA processing
proteins in various HD models51,70,71,74,115,116, indicating a
strong translational role for mHtt. But the mechanisms of how
mHtt might promote translational abnormalities were not
revealed by these previous works.

Our data show both wtHtt and mHtt appear to act as inhibitors
of translation elongation, we predict that they can elicit gain or
loss of function activities toward protein synthesis, depending
upon how much (levels) and what (with or without mHtt) is
present on the ribosomes as well as where Htt/mHtt is present
(localization). In support of this notion, our super-resolution
Ribo-Seq data revealed markedly different RPF/mRNA profiles
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between HD-homo cells and the control and between HD-het
and the control cells (Fig. 7D). Previously, we showed that mHtt
activates amino acid-induced Rheb–mTORC1 signaling, which
promotes the initiation of mRNAs containing the 5′-terminal
oligopyrimidine (5′ TOP) motif117,118. We also showed Rheb can
inhibit protein synthesis by activating the PERK–eIF2α signaling
cascade119. Interestingly, a recent study demonstrated enhanced
protein synthesis in the brains of R6/1 transgenic and HdhQ7/Q111

knock-in mice, while Q175FDN mice showed diminished levels
of soluble proteins77,120. Thus, mHtt may modulate protein
synthesis depending upon the interacting partners, nutritional
status of the cells, and the changes in the intact brain environ-
ment in vivo.

Previous elegant studies have suggested multiple players in the
regulation of ribosome stalling, including secondary RNA struc-
tures, 3′ UTR, codon usage, or the availability of charged tRNAs,
ribosomal-binding proteins, and/or nascent polypeptide chains,
which may all contribute to ribosomal pauses1–4. Whether similar
mechanisms operate in striatal neuronal cells, and whether mHtt
recruits one or more of these players to stall ribosomes, remains
unknown. Htt consists of 28–32 HEAT [Huntingtin, elongation
factor 3 (eEF3) 1, protein phosphatase 2A (PP2A) 2, and the yeast
PI3‐kinase TOR1] repeats that span the entire protein. Many
translation regulators, such as eEF3, eIF4Gs, p97DAP5, GCN1,
and mTOR, contain HEAT repeats. These repeats are tandem
repeats of an alpha-helical hairpin that form a superhelical
structure with hydrophobic cores; this structure is predicted to
interact with other proteins and/or nucleic acids121,122. Structural
analysis has shown that yeast eEF3 HEAT (13) repeats interact
with rRNA and the ribosomal proteins of the small ribosomal
subunit, and this is proposed to play a role in the translocation
of aminoacyl-tRNA from the A site to the P site on the ribo-
some123–125. Similarly, yeast eIF4G HEAT (four) repeats have
been shown to interact with eIF4A and to stimulate its ATPase
activity to facilitate 43S preinitiation complex recruitment and
movement along the mRNA in a 5′ to 3′ direction126. Thus, mHtt
may interact with ribosomes via HEAT repeats to modulate
ribosome stalling.

Short fragments and aggregated forms of Htt may also differ-
entially influence ribosome stalling. Htt is proteolytically cleaved
by several proteases, resulting in smaller N-terminal poly-Q
containing exon 1 and non-poly-Q Htt C-terminal fragments,
which are considered important for disease pathogenesis54,127,128.
Although we found FL-mHtt present on the polysomes and
interacts with ribosomal proteins, previous work has shown that
exon 1 aggregates could also be associated with ribosomes129,130.
Therefore, different Htt fragments (e.g., poly-Q exon 1 and
HEAT repeat domains) and aggregated forms54,63,131 may dif-
ferentially bind to the translating ribosomes. For example, mHtt
aggregates are sequestered by the cytoplasmic polyadenylation
element-binding protein/Orb276, a translational regulator132,133,
whose mRNA shows an enhanced ribosome occupancy in HD
(see UCSC browser link), indicating Orb2 may be involved in
ribosome stalling in HD. Notably, the association of protein

aggregates with ribosomes, as found with various neurodegen-
erative disease-linked proteins, may have a considerable impact
on the mRNA translational machinery134–136. Further identifying
the nature and stoichiometry of Htt fragment binding to the
ribosomes and its binding partners may yield molecular insights
into dynamic protein synthesis regulation in HD cells.

One question that remains is whether or how mHtt-mediated
ribosome stalling influences striatal-specific damage in
HD137,138. We previously showed that striatal-enriched Rhes
promotes HD toxicity in cell and animal models139,140 by
enhancing the SUMOylation of mHtt and increasing its
solubility139,141. Several independent studies support a toxic role
for Rhes in various HD models139,140,142–148. Recently, we
demonstrated that Rhes promotes cell-to-cell transport of mHtt
via tunneling nanotube (TNT)-like protrusions149. Rhes also
activates mTORC1 signaling150, a known mediator of mRNA
translation151,152, but how this may influence ribosome stalling
in HD remains to be determined. We propose that a Rhes-
mediated enhancement of mHtt solubility may further worsen
ribosome stalling in the striatum and interfere with Rhes-
mediated intercellular communication via the TNT-like pro-
trusions; other cellular and inflammatory processes may also
contribute to ribosome stalling and selective neurodegeneration
in HD68,103,137,138,153.

Taken together, our findings indicate that mHtt suppresses
protein synthesis via ribosome stalling potentially during trans-
lation elongation. This altered function may mediate progressive
and widespread development of HD-related behavioral and
pathological symptoms. Developing drugs that interfere with
mHtt-mediated mechanisms of ribosome stalling may prevent or
slow down the progression of HD.

Methods
Chemicals and cell culture. Chemicals and reagents were mainly purchased from
Sigma. Mouse striatal cells (STHdh) expressing knock-in wild-type HTTexon1 with
7 glutamine (Q) repeats (control; STHdhQ7/Q7) or expressing knock-in mutant
human HTTexon1 with 111 glutamine repeats (HD-het; STHdhQ7/Q111, and HD-
homo; STHdhQ111/Q111)80 were purchased from Coriell Institute for Medical
Research (Camden, NJ, USA) and cultured in Dulbecco’s modified Eagle’s medium,
high glucose, GlutaMAX supplement (DMEM) (Thermo Fisher Scientific) sup-
plemented with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific), 1%
penicillin–streptomycin 5% CO2, at 33 °C, as described before118. HD patient-
derived fibroblast cell lines GM04281 (wild-type HTT allele/17 CAG repeats,
mutant HTT allele/69 CAG repeats) and normal human fibroblast cell line
GM07492 were obtained from Coriell Institute for Medical Research (Camden, NJ,
USA). Cells were maintained at 37 °C and 5% CO2 in DMEM, high glucose,
GlutaMAX supplement supplemented with 10% FBS, 1% penicillin–streptomycin,
and 1% MEM nonessential amino acids (Thermo Fisher Scientific).

Antibodies. The following commercial antibodies were used: Huntingtin
(MAB2166, 1:3000) and puromycin (MABE343, 1:10,000) antibodies were
obtained from, Millipore-Sigma. Anti-polyglutamine (poly-Q) antibody (P1874,
1:5000) was from Sigma. Actin (sc47778, 1:20,000) and GST-horseradish perox-
idase (HRP, sc138 HRP, 1:10,000) antibodies were from Santa Cruz Biotechnology.
RPL7 (IHC-00455, 1:10,000), RPL35A (A305-106A, 1:10,000) and Caprin1 (A303-
881A, 1:1000) from Bethyl Laboratories. mTOR (2972, 1:3000), FMRP (4317,
1:1500), and S6 (2217, 1:10,000), and normal mouse IgG (5415, 1:2500) were from
Cell Signaling Technology. Mfsd (10 11518-1-527 AP, 1:1000), Acan (13880-1-AP,

Fig. 9 Ribosome stalling was confirmed in several genes by measuring protein levels. A–F Representative graphs showing the overlay of Ribo-Seq (RPF)/

mRNA-Seq reads for indicated genes obtained from UCSC browser. Bar graphs indicate RPF abundance, mRNA abundance, and ribosome occupancy as the

ratio between CDS of RPF and mRNA for the indicated gene (RPF/mRNA) from the raw read counts from the UCSC browser. Data mean ± SEM (n= 3

independent experiments, #P < 0.05 by two-tailed Student’s t test, **P < 0.01 by one-way ANOVA followed by Tukey’s multiple comparison test. n.s. not

significant. G Representative immunoblots showing the protein expression levels of indicated genes in A–F and the corresponding quantifications. Data

mean ± SEM, n= 4 independent experiments, *P < 0.05 and **P < 0.01 by one-way ANOVA followed by Tukey’s multiple comparison tests. Exact P values

are reported in the Source Data file. Source data are provided as a Source Data file. H Model showing wtHtt bind to ribosomes and physiologically inhibits

the translocation of ribosomes on mRNA, a normal function that is further enhanced by mHtt leading to slower movement and stalling of ribosomes. Note

stoichiometry of wtHtt/mHtt binding to ribosomes is currently unknown.
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1:1000), Ppbp (13313-1-AP, 1:1000), Mgp (10734-1-AP, 1:1000), and Phf11d
(10898-1-AP, 1:1000) were from Proteintech. HRP-conjugated secondary anti-
bodies were from Jackson ImmunoResearch Inc. HRP-conjugated secondary
antibodies (115-035-146 (goat anti-mouse), 1:10,000; or 111-035-144 (goat anti-
rabbit), 1:10,000) were from Jackson ImmunoResearch Inc. For Immunostaining
Huntingtin (1:100, MAB2166), Rpl7 (1:50; IHC-00455) were used. Secondary
antibodies for STED microscopy were anti-mouse STAR 635p (1:400) and anti-
rabbit Alexa 594 (1:400) that were self-coupled in-house and the company that
produced them is Abberior, Göttingen, Germany.

Deletion of Hdh (Htt) and Fmr1 (Fmrp) genes using CRISPR/Cas9. GFP
expressing CRISPR/Cas9 knockout plasmids for mouse Htt (sc-420825) and Fmr1
(sc-420392) or CRISPR/Cas9 control plasmid (sc-418922) were purchased from
Santa Cruz Biotechnology. Mouse striatal cells were transfected with knockout
plasmids by PolyFect (Qiagen) following recommendations by the company. The
transfected cells were harvested 48 h later, washed, and resuspended in the sorting
buffer (containing 1× phosphate-buffered saline (Ca/Mg++ free), 2.5 mM EDTA,
25 mM HEPES pH 7.0, 1% fetal bovine serum, and 10 unit/ml DNase1). The GFP
expressing cells were sorted using a BD biosciences Aria FACs machine. The sorted
cells were plated and maintained in DMEM high glucose containing 10% FBS
at 33 °C.

Immunostaining of the cells and STED image acquisition. Mouse striatal cells
were plated in 12-well plates containing glass coverslips. The day after, the cells
were washed with PBS and fixed using 4% PFA in PBS, then permeabilized in 0.1%
Triton X-100 in PBS and blocked using 5% normal donkey serum/ 1% BSA/ 0.1%
Tween in PBS. The cells were incubated with primary antibodies (Htt 1:100,
MAB2166, Rpl7 1:50; IHC-00455) in blocking buffer at 4 °C overnight. The day
after, the cells were washed and incubated with secondary antibodies and DAPI in
1% BSA/ 0.1% Tween in PBS for 1 h at room temperature. The stimulated emission
depletion (STED) microscopy imaging was performed using a multicolor Expert-
Line STED nanoscope (Abberior Instruments GmbH), using the 775-nm pulsed
STED laser in combination with the 561-nm and 640-nm pulsed excitation lasers,
as well as the 405-nm excitation for diffraction-limited imaging of DAPI. All
images were recorded simultaneously with diffraction-limited (i.e., confocal) and
with 2D-STED enhanced resolution, recording each color channel and resolution
in a line-interleaved manner. Pixel sizes (x, y) were 20-nm × 20-nm for both STED
and confocal images, with typical pixel dwell times of 10 µs for confocal and 30—45
µs for STED images. The images were recorded with a ×100 oil immersion
objective lens (NA 1.4), using the QUAD beam scanner, utilizing the Imspector
software package (Max-Planck Innovation).

Image analysis. For the colocalization analysis, raw STED images from Imspector
were imported into FIJI and were processed as follows. First, raw images were
gently smoothed with a one-pixel Gaussian filter. Next, an appropriate background
level was determined individually for each image, striking a careful balance between
being able to distinguish individual clusters in proximity without losing any of the
dimmer features. This background value was then subtracted from the images. For
some parts of the analysis, the images were then binarized. Regions coinciding with
the cell nucleus were excluded from the colocalization analysis, as were smaller
regions coinciding with any obvious staining artifacts. The colocalization analysis
itself was performed using the ImageJ plugin JACoP, utilizing both the pixel-based
Manders coefficient analysis and the object-based methods. The data is presented
as boxplots that were generated using R Statistics (www.r-project.org).

Puromycin metabolic labeling and immunoblotting. Mouse striatal cells were
plated at a confluency of about 60–70%. The day after the cells were incubated with
puromycin (20 μM final concentration) for 5 min, as described81. Then cells were
rinsed with cold PBS and immediately were lysed in RIPA buffer containing
protease inhibitors. Equal proteins were used to run western blotting experiments.
The puromycin incorporation was normalized to the ponceau S staining.

Immunoprecipitation in striatal cells. Control, HD-Het, and HD-Homo striatal
cells (2 × 106) were plated in 10-cm dishes, and next day were lysed in immuno-
precipitation (IP) buffer (15 mM HEPES (pH 7.3), 7.5 mM MgCl2, 100 mM KCl,
1.0% Triton X-100, 1 mM dithiothreitol (DTT), EDTA-free protease inhibitor
cocktail (Roche), RNasin (40U/μl, Promega)). The lysates were run several times
through a 26-gauge needle in IP buffer and incubated on ice for 15 min and
centrifuged 20,000×g for 15 min. Protein estimation in the lysate supernatant was
done using a bicinchoninic acid (BCA) method, a concentration (1 mg/ml) of
protein lysates was precleared with 40 μl of protein A/G beads for 1 h, the super-
natant was incubated for 1 h at 4 °C in HTT IgG (MAB2166) or control IgG, and
then 60 μl protein A/G beads were added and incubated overnight at 4 °C. After 12
h, the beads were washed five times with IP buffer (without RNasin/protease
inhibitor), and the protein samples were eluted with 30 μl of 2× lithium dodecyl
sulfate (LDS) containing +1.5% β-mercaptoethanol, separated on NuPAGE 4–12%
Bis–Tris gel (Thermo Fisher Scientific), transferred to polyvinylidene difluoride
membranes, and probed with the indicated antibodies. HRP-conjugated secondary
antibodies (Jackson ImmunoResearch Inc.) were probed to detect bound primary

IgG with a chemiluminescence imager (Alpha Innotech) using enhanced chemi-
luminescence from WesternBright Quantum (Advansta).

Immunoprecipitation in human fibroblasts and LC-MS/MS. Human healthy
and HD fibroblasts were plated in 10-cm dishes and the next day the medium was
changed to Krebs buffer medium (20 mM HEPES pH 7.4, glucose (4.5 g/liter), 118
mM NaCl, 4.6 mM KCl, 1 mM MgCl2.6H2O, 12 mM NaHCO3, 0.5 mM CaCl2,
0.2% (w/v) bovine serum albumin (BSA)) devoid of serum and amino acids for 1 h
to simulate full starvation conditions. For the stimulation conditions, cells were
stimulated for 15 min with 3 mM L-Leucine (Leu). Cells were lysed and proceeded
for IP for HTT as mentioned above for the striatal cells using HTT IgG (MAB2166)
and control IgG. After running the IP samples in electrophoresis, the samples were
subjected to IP–LC-MS/MS as described previously154 for the analysis of HTT
interactors.

Eight protein samples named H1, H2, H3, H4, H5, H6, H7, and H8 (details in
Supplementary Table 1) and 4mg of BSA control were subjected in parallel to SDS-
PAGE at 120 V for 12min. The gel was Coomassie-stained for 1 h at room
temperature with shaking, followed by de-staining in water overnight. The gel bands
were cut, in-gel treated with 25mM DTT followed by 55 mM iodoacetamide, and
subjected to trypsin digestion with ProteaseMax Surfactant Trypsin Enhancer for
1 h at 50 °C. The peptide pools were acidified and desalted through Zip-Tip μC18
tip columns. Prior to mass spectrometry analysis, the samples were reconstructed in
5 μl of 0.1% formic acid and 5 μl were loaded into the system. Each sample was
analyzed by an Orbitrap Fusion Tribrid Mass Spectrometer (Thermo Fisher
Scientific) coupled to an EASY-nLC 1000 system. Peptides were online eluted on an
analytical RP column (0.075 × 150mm Acclaim PepMap RLSC nano Viper, Thermo
Fisher Scientific), operating at 300 nl/min using the following gradient: 5–25% B for
90 mins, 25–44% B for 30min, 44–80% B in 10 s, 80% for 5 min, 80–5% B in 10 s,
and 5% B for 40min (solvent A: 0.1% formic acid (v/v); solvent B: 0.1% formic acid
(v/v), 80% CH3CN (v/v) (Fisher Scientific)). The Orbitrap Fusion was operated in a
data-dependent MS/MS mode using top speed precursor selection detected in a
survey scan from 380 to 1400 mass/charge ratio (m/z) performed at 120 K
resolution. Tandem MS was performed by higher-energy collisional dissociation
fragmentation with a normalized collision energy of 30.0%. Protein identification
was carried out using Sequest algorithms (Proteome Discoverer v1.4, Thermo
Scientific), allowing oxidation (Met) and deamination (Q) as variable modifications.
Other settings included carbamidomethylation of Cys as a fixed modification, three
missed cleavages, and mass tolerance of 10 ppm and 0.02 Da for precursor and
fragment ions, respectively. MS/MS raw files were searched against a Uniprot
human database. The FDRs of peptide identifications were calculated from the
search results against a reverse sequence database; 1% FDR, was used as a criterion
for peptide identification (the list of peptide identification is presented in data files
Supplementary Data 2). Scaffold (version Scaffold_4.8.8, Proteome Software Inc.,
Portland, OR) was used to validate MS/MS-based peptide and protein
identifications. The complete dataset from the analysis of the interactors (raw files,
identification data, and data analysis files) can be obtained via ProteomeXchange
with identifier PXD017115 at http://www.proteomexchange.org/.

Ribosome isolation and in vitro binding assay. For each assay, four 15-cm plates
of mouse striatal cells were used. Briefly, the cells were incubated with 100 μg/ml
cycloheximide (CHX) for around 10 min at 37 °C, then harvested, spin down, and
washed once with cold PBS containing CHX. The cells were lysed in the lysis buffer
containing 20 mM HEPES pH 7.3, 150 mM KCl, 10 mM MgCl2, 2 mM DTT,
100 μg/ml CHX, 0.5% v/v Triton X-100, 20 U/ml RNasin and EDTA-free protease
inhibitor cocktail (Roche). The cell lysates were loaded on 10–50% sucrose gra-
dients and centrifuged at 280,000 ×g (SW41Ti rotor) at 4 °C for 2 h. Gradients were
fractionated using a gradient fractionator and UA-6 detector, 254-nm filter (ISCO/
BRANDEL). The fractions containing monosome and polysomes were collected
and transferred to a 50-mL centrifuge tube and were diluted using isolation buffer
containing 20 mM HEPES pH 7.3, 150 mM KCl, 10 mM MgCl2, 2 mM DTT,
100 μg/ml CHX (at least one in three for the monosome fractions and one in five
for the polysome fractions). The diluted fractions were put on top of 1M sucrose
cushion (made in isolation buffer) and centrifuged at 180,000×g (SW32Ti rotor) at
4 °C overnight. The pellets were rinsed gently with isolation buffer, then incubated
with 50 μl of ribosome isolation buffer, and stored on ice for 1 h to allow the
resuspension of the isolated ribosomes. Isolated ribosomes (50 nM final con-
centration) were incubated with recombinant HTT exon 1 proteins (500 nM final
concentration) in an isolation buffer for 10 min at room temperature. The samples
were loaded on top of 10–50% sucrose gradients and centrifuged at 280,000×g
(SW41Ti rotor) at 4 °C for 2 h. The fractions containing monosomes were col-
lected. Protein was precipitated and used to run western blotting assays. GST-HTT
protein was produced in bacteria as described before139.

In vitro translation assay. Recombinant human HTT proteins were purchased
from Coriell life sciences (HTT-Q23, 1-3144, TEV, FLAG C-TE; # CH02228, HTT-
Q48, 1-3144,TEV, FLAG C-TE, #CH02230). In vitro translation assays (IVTs) were
performed using Flexi® Rabbit Reticulocyte Lysate System (Promega #L4540) fol-
lowing the manufacturer’s recommendations. Briefly, firefly luciferase mRNA
(included in the kit) was used to measure translational regulation by HTT proteins
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comparing to BSA (as the control). Recombinant HTT proteins (1 mg/ml) or BSA
(1 mg/ml) in 10 mM Tris pH 8.0, 1 mM EDTA, were further dissolved in Tris
buffer (50 mM Tris-HCl pH 7.4, 500 mM NaCl, 10% glycerol, 0.1% CHAPS, and 1
mM EDTA). In total, 1 μl of Q23 or Q48 or BSA containing desired concentrations
were added to 25 μl or 50 μl rabbit reticulocyte IVT containing luciferase mRNA
for 90 min at 30 °C (IVT mixture). In control reactions, Q48 was added after
90 min of IVT for 5 min. In all, 2 μl of IVT mixture was added to 25 μl of luciferase
assay reagent, and luminescence activities were measured in each well every 30 s
over a period of 1 h with 500-ms integration time (data is presented for every
5 min) using a FlexStation3 plate reader (Molecular Devices). We avoided repeated
freezing and thawing of recombinant HTT proteins as it drastically affected the
activity in the IVT assay.

Ribosome run-off assay. Mouse striatal cells were plated at 60–70% confluency,
on the next day were incubated with vehicle (DMSO) or harringtonine (2 μg/ml
final concentration) for indicated timepoints or puromycin (100 μg/ml) for 20 min
at 37 °C. The cells were immediately incubated with CHX (100 μg/ml) for 10 min
and then scraped. Polysome profiles for each sample were collected and area under
the curve for PS and 80S (MS) peaks in control and HD-homo cells, using Peak-
Chart (v. 2.08, BRANDEL), and expressed as a ratio of PS/MS (Supplementary
Fig. S1).

Postmortem HD brain samples. Postmortem frozen human brain tissue (Caudate
nucleus) samples of HD-affected patients and normal donor controls used (Sup-
plementary Table 2) in this study were obtained from Human Brain and Spinal
Fluid Resource Center, VA West Los Angeles Healthcare Center, 11301 Wilshire
Blvd. Los Angeles, CA 90073, which is supported in part by the National Institutes
of Health (NIH) Neurobiobank (HHSN-271-201300029C) and the US Department
of Veterans Affairs with informed consent from the donors. Human tissue col-
lected from the NIH NeuroBioBank was overseen by institutional review board
PCC #: 2015–060672, VA Project #: 0002 and were analyzed under ethical and
safety guidelines approved by the Scripps Research Institute and its Institutional
Review Board.

Western blot analysis. The cells were lysed in the lysis buffer containing 20 mM
HEPES pH 7.3, 150 mM KCl, 10 mM MgCl2, 2 mM DTT, 100 μg/ml CHX, 0.5% v/
v Triton X-100, 20 U/ml RNasin, and EDTA-free protease inhibitor cocktail
(Roche) and an RNA concentration A260 reading of 10 OD, loaded on a 30–50%
sucrose gradient. Individual fractions (250 μl) were collected, the protein was
precipitated using the methanol/chloroform method, and loaded for western blots
analysis using antibodies to detect indicated endogenous protein. To examine Htt
interaction with ribosomes HD-het cells were treated with vehicle (HEPES buffer)
or puromycin (100 μg/ml) for 30 min at 37 °C followed by lysis and sucrose gra-
dient fractionation. Human tissue was homogenized in binding/lysis buffer (50 mM
Tris (pH 7.4), 150 mM NaCl, 10% glycerol, and 1.0% Triton X-100) with protease
and phosphatase inhibitors, followed by a brief sonication for 6 s at 20% amplitude.
Total proteins were precipitated from monosome/polysome sucrose fractions using
methanol/chloroform. Protein pellets were resuspended in a buffer containing
10 mM Tris-HCl pH 8 and 0.1% SDS and used to run western blotting assays.
The lysates or fractions were subjected to western blotting, as described
previously103,155.

Ribosome profiling. Global RNase foot-printings were performed during three
independent rounds of cell cultures (n= 3). For each round of global footprinting,
mouse immortalized striatal cells (i.e., control, HD-het, and HD-homo cells) were
plated in 15-cm dishes at a confluency of 70%. The following day, the medium was
changed, and after 2 h, the cells were incubated with CHX (100 μg/ml) for 10 min
as in previous studies95,96. Cells were then scraped and washed with cold PBS
(containing 100 μg/ml CHX) twice. During the second wash, 5% of cells were
transferred to different tubes and were lyzed by adding 700 µl of QIAzol lysis
reagent. Total RNAs of these samples were isolated using miRNeasy Mini Kit
(Qiagen) for mRNA sequencing. After the second wash, the rest of the cells were
lysed in a lysis buffer containing 20 mM HEPES pH 7.3, 150 mM KCl, 10 mM
MgCl2, 2 mM DTT, 100 μg/ml CHX, 0.5% v/v Triton X-100, 20 U/ml RNasin, and
EDTA-free protease inhibitor cocktail (Roche). The cell lysates were passed 20
times through a 26-G needle and incubated on ice for 15 min, then centrifuged at
21,000×g for 15 min. Supernatants were transferred to different tubes. Equal total
RNA amount of each sample was used for global RNase footprinting as follows; for
each A260 absorbance unit of the lysates 60 units of RNaseT1 (Thermo Fisher
Scientific) and 0.6 µl of RNaseA (Ambion) were added and the samples were
incubated at 25 °C for 30 min. RNase-treated samples were immediately loaded on
10–50% sucrose gradients and centrifuged at 280,000×g (SW41Ti rotor) at 4 °C for
2 h. Gradients were fractionated using a gradient fractionator and UA-6 detector,
254-nm filter (ISCO/BRANDEL). Fractions containing 80S peaks of each sample
were collected, and their RNAs were isolated using a miRNeasy Mini Kit (Qiagen).
The area under the curve for PS and 80S (MS) peaks in control and HD cells, using
PeakChart (v. 2.08, BRANDEL), and expressed as a ratio of PS:MS.

Generation of cDNA libraries from ribosome-protected mRNAs. The following
procedure was performed for all the RNA samples simultaneously. In total, 20 µg of
each sample was run on a 15% TBE-Urea gel (Novex) along with 26 and 32 nt RNA
markers. The gel containing each sample was excised between two markers. RNAs
were extracted from gel pieces by incubating gel slurries with nuclease-free water
overnight at 4 °C and precipitated using RNase-free isopropanol and then eluted in
nuclease-free water. T4 polynucleotide kinase (NEB) was used to catalyze the
addition of 5′ monophosphate and removal of the 3′ phosphate in the RNA
fragments to leave a 3′ hydroxyl terminal needed for adapter ligation. RNA was
purified using the Zymo clean and conc-5 kit (Zymo Research, Cat. no. R1013).
Ribosomal RNA was depleted from the samples using TruSeq total RNA rRNA-
depletion protocol (Illumina, Cat. no. RS-122-2201) and then RNA samples were
purified using Agencourt RNAClean XP beads (Beckman Coulter).

Generation of cDNA libraries and sequencing. NEXTflex small RNA-Seq Kit v3
(Perkin Elmer) was used to ligate 5′ and 3′ adapters to purified RPF fragments,
which then were reverse-transcribed and amplified (14 cycles) to generate cDNA
libraries. Libraries were cleaned up using NEXTflex Cleanup beads, pooled and
sequenced in the NextSeq 500 (V2) using single-end 50 bp chemistry at the Scripps
Genomic Core, at FL, USA.

Generation of mRNA-Seq libraries. Total RNA extracted from the cultured
striatal cells as noted under Ribosome profiling were used for mRNA-seq library
preparation. NEBNext Ultra II Directional kit (NEB, Cat. no. E776) with the
NEBNext poly(A) mRNA magnetic isolation module (NEB, Cat. no. E7490) was
used to generate mRNA-Seq libraries. Briefly, 400 ng of high-quality total RNA was
used to purify poly(A) mRNA, fragmented, reverse-transcribed with random pri-
mers, adapter-ligated, and amplified according to the manufacturer’s recommen-
dations. The final libraries were validated on the bioanalyzer, pooled, and
sequenced on the NextSeq 500 using paired-end 40 bp chemistry.

Ribo-Seq, RNA-Seq quality control, and mapping the reads to UCSC browser.
RNAseq reads were trimmed using Cutadapt v1.18156 with the following para-
meters: -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -A AGATC
GGAAGAGCGTCGTGTAGGGAAAGAGTGT–minimum-length=15 –pair-fil-
ter=any. For Ribo-Seq reads, 3′ adapters were trimmed using Cutadapt with the
following parameters: -a TGGAATTCTCGGGTGCCAAGG–minimum-length 23.
The reads were further trimmed using Cutadapt to remove four bases from either
side of each read accordingly to the NEXTflex™ Small RNA Trimming Instructions
(cutadapt -u 4 -u -4). Fastq files were checked for quality control with FastQC
v0.11.8. Both RNA-Seq and Ribo-Seq reads were next mapped to a library of mouse
rRNA and tRNA sequences using Bowtie v1.1.2. Any reads mapping to these
abundant contaminants were filtered out. The remaining reads were then aligned to
the mouse transcriptome with RSEM v1.3.0157 using the GRCm38.p5 genome
annotation and the comprehensive gene annotation from Gencode (M16 release) as
transcriptome reference. Reads with a mapping quality <5 were discarded. Cleaned
bam files were converted to bigWig files with Bedtools v2.27.0158 for visualization
using the UCSC Genome Browser. For the Euclidian distance analyses, gene
expression was quantified with RSEM v1.3.0, and comparison plots were generated
in R using DESeq2 v1.22.2159 and ggplot2 v3.3.0 packages. Statistical testing was
done using DESeq2 with a two-tailed Wald test and adjusted for multiple com-
parisons using the procedure of Benjamini–Hochberg160.

Ribosome occupancy (Anato2Seq) analysis. The raw Ribo-Seq reads were
clipped of adapter sequence (TGGAATTCTCGGGTGCCAAGG) using Cutadapt
(version 1.18)156 with the following command: cutadapt -f fastq -a
CTGTAGGCACCATCAAT–minimum-length=23 <input > .fastq -o <output > .
fastq. A 4 bp secondary trim from either end of the reads was performed also using
Cutadapt. Mouse rRNA sequences were retrieved from NCBI161 with the following
accessions: NR_003279, NR_003278, NR_003280, NR_030686. Ribo-Seq and
RNA-Seq reads aligning to these sequences were removed using bowtie (version
1.0.1)162 with the following command: bowtie -v 3–norc <path_to_rRNA_indices
> -q <input > .fastq–un <output > .fastq. The remaining reads were then mapped
using bowtie to the RefSeq163 mouse transcriptome downloaded from ftp://ftp.ncbi.
nlm.nih.gov/refseq/M_musculus/mRNA_Prot/ on October 9, 2018. The following
command was used: bowtie -a -m 100 -l 25 -n 2 -S–norc <path_to_tran-
scriptome_indices > -q <input > .fastq <output > .sam.

The sam alignment files were parsed with an in-house python script to count
the number of reads aligned to each gene using an exon union approach164. The
Ribo-Seq reads were assigned to mRNA coordinates using an offset of 14
nucleotides downstream of the 5′ end of the reads. The counts included uniquely
mapped reads i.e., reads that mapped to one location only in the mouse
transcriptome plus reads that mapped up to 3 locations in the transcriptome which
were weighted by the number of their mapped locations (up to 3).

For differential expression analysis using Anota2seq97, the number of reads
aligning to annotated CDS regions was used for Ribo-Seq while for RNA-Seq the
number of reads aligning to the entire transcript was used. These counts were input
to anota2seq (version 1.5.2) with the parameters dataType= “RNAseq”,
filterZeroGenes = FALSE, normalize = TRUE, transformation= “TMM-log2”. All
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statistical tests within the anota2seq package are two-tailed. Violin plots were
generated using R version 4.0.2 (2020-06-22) to show the distribution of ribosome
occupancy changes165.

Ribosome pause (PausePred) analysis. The command-line version of the Pau-
sePred software100,164 was run with the following parameters for each replicate
(control, HD-het and HD-homo): fold change: 5; window size: 1000 nucleotides; read
lengths: 26–32 nucleotides; window coverage: 5. Individual offset values were assigned
according to metagene analysis for each read length (26–32 nucleotides) accounting
for mismatches at the 5′ ends of the reads. For genes with detected pauses, the center
of ribosome density166 was determined using an in-house python script.

cDNA preparation and real-time PCR. A sucrose density gradient centrifugation
was carried out using control and HD-homo cells, and ribosome fractions were
collected. RNA was extracted from the fractionated samples following lysis in
Trizol reagent. In total, 250 ng of RNA was used to prepare cDNA using Takara
primescripttm kit (Cat no. 6110A) using random hexamers. The qRT-PCR of genes
was performed with SYBR green (Takara RR420A) reagents. Primers for all the
genes were designed based on sequences available from the Harvard qPCR
primer bank.

The total mRNA-Seq data of control and HD-homo cells was used to estimate
the Fmr1 and actin mRNA reads. The mRNA was isolated from the striatal tissue
of unaffected and HD patient striatum (grade 1 and grade 2) and qPCR for FMR1
or GAPDH were done as described103. Relative mRNA expression of Fmr1 was
determined after normalization with Actin or Gapdh transcripts. The list of PCR
primers used in this study is listed in Supplementary Table 3.

Statistical analysis. Data are presented as mean ± SEM as indicated. Except where
stated all experiments were performed at least in three biological replicates and
repeated at least twice. Statistical comparison was performed between groups using
two-tailed Student’s t test, one-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparison test or Bonferroni’s multiple comparisons test and
two-way ANOVA or two-way repeated measures ANOVA followed by Tukey’s
multiple comparison test or Bonferroni post-hoc test as indicated in the figure
legends. Significance was set at P < 0.05. All statistical tests were performed using
Prism 7.0 (GraphPad software).

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The complete dataset from the analysis of the HTT interactors from healthy and HD

fibroblasts (raw files, identification data, and data analysis files) can be obtained via

ProteomeXchange with identifier PXD017115. The data for the Ribo-Seq and RNA-Seq

reported in this study are openly available in Gene Expression Omnibus at accession

number GSE146675. UCSC browser information to view genome browser hub with the

RNA-Seq and Ribo-Seq data: To find genes of your interests, go to the Genome browser

website (http://genome.ucsc.edu) and then click on “My Data > Track Hubs”. Then paste

the link https://data.cyverse.org/dav-anon/iplant/home/rmi2lab/Hub_Collaborations/

Srini/hub.txt in the “url” field and click on “Add hub.” After the hub is loaded, go to

“Genomes > Mouse GRCm38/mm10”. Once you reach the actual browser window, you

will have to scroll down to the bottom menu. Find a section (the one at the top of the

menu) named “Srini” to activate the different tracks. The data supporting the findings of

this study are available from the corresponding authors upon reasonable request. Source

data are provided with this paper.
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