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1. Introduction 

Information Technology architecture and its associated infrastructure have changed dramatically 
over recent decades (hardware, middleware, programming languages, development tools, standards, 
web technology, etc.). However, the information stored in databases still usually relies on Codd’s 
relational data model supported by relational database management systems and said information is 
manipulated using the Structured Query Language (SQL) [22], developed in the late 1970’s. The huge 
number of applications that make use of SQL leads to a real need for helper techniques in its 
development in general and in testing in particular. Yet, although many testing techniques [55] and 
test adequacy criteria [59] exist, these are not tailored to address certain specific issues that 
differentiate this kind of non-imperative language from others. 

The most frequently used SQL statements in commercial applications are those that retrieve 
information (SELECT queries) [40], which use a common set of major characteristics, such as the 
relational schema and core clauses for selecting, joining, combining, grouping and sorting data. On 
some occasions, however, developing even a single statement may be a complicated task [28]. Test 
cases are complicated to write because the input consists of information spread over several tables 
containing many rows, and the output is likewise a table structure. Queries are tightly dependent on 
the relational schema and small changes can entail undesirable side effects in many queries. Moreover, 
SQL is non-procedural and uses a mixture of set-based and logic-based techniques and the logical 
expressions use a three-valued logic for supporting missing information (null values), which in turn 
makes the process of writing and testing queries even more difficult [25].  

Mutation testing techniques [56,36] help the tester to create test data and evaluate their adequacy by 
systematically inserting artificial faults in a given program and then evaluating the percentage of faults 
that are detected by a given test set. Empirical studies comparing the fault detection ability of test 
suites on hand-seeded, automatically-generated (mutation) and real-world faults suggest that the 
generated mutants provide a good indication of the fault detection ability of a test suite [1]. The 
development of a set of mutants specifically tailored for dealing with the particularities of SQL 
constitutes the motivation and aim of this work.  

In this article we develop a set of mutation operators for SQL queries that retrieve data from the 
database (SELECT queries) and test the mutants using a set of queries drawn from the NIST SQL 
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Conformance Test Suite. Further experiments aimed at reducing the cost of testing are performed 
using two different approaches: reducing the number of mutants (selective mutation) and reducing the 
number of test cases (by selecting the order in which mutants are killed). We shall show that in some 
cases selective mutation behaves slightly differently for the SQL mutants than those developed for 
imperative programs. However, the number of test cases can be reduced by ordering the mutants from 
the most difficult to the easiest to be killed.  

The article is organised as follows: In Section 2 we provide an overview of related work on 
database testing, common errors in SQL and mutation testing. The set of mutants for SQL are 
described in Section 3 and subsequently tested using queries drawn from the NIST SQL Conformance 
Test Suite in Section 4. Some indications on the feasibility of reducing the cost of testing when using 
the mutation criterion are given in Section 5. Finally, in Section 6 we discuss all the above issues and 
present our conclusions in Section 7. 

2. Background 

This section provides some background on research into testing database applications (subsection 
2.1), some common sources of errors that programmers commit when writing database queries 
(subsection 2.2) and a brief overview of mutation testing (subsection 2.3). 

2.1. Related work on testing database applications 

Even though a great deal of research on databases and on software testing has been carried out in 
recent years, few studies have been specifically related to the testing of database applications. The 
studies focus on automatic test case generation (either considering SQL statements, database structure 
or both), checking test results, web applications, regression testing or developing test adequacy 
criteria. 

Test case generation by means of considering the database schema and other properties or 
constraints is the approach taken in [12,57,42]. In all cases, neither the SQL statements that are 
executed nor adequacy criteria are considered. Considering only the SQL query, testing and adequacy 
measurement is carried out in [9] after translating the SQL query into a procedural language and then 
using conventional testing techniques. A quite different approach is that of [47], in which the test cases 
are valid SQL statements (instead of data) that are randomly generated with the goal of evaluating the 
differences between database management systems.  

Many other studies on database test case generation consider both the structure of the data and the 
query under test. Relational algebra is used in [30,50] and general purpose constraint solvers for test 
data generation in [58]. The information on the database schema and the SQL queries is completed 
with heuristics supplied by the tester to automatically generate test cases and checking the test results 
in the AGENDA tool [11], which has been extended to deal with transactions [15]. The test cases are 
specified in [54] using pre and post-conditions in the form of intensional rules (using an SQL-like 
language) and then the database populated for fulfilling the rules. 

Other different approaches that involve the testing of applications that use databases focus on the 
testing of web applications [16,17] and on regression testing [20,52]. 

Test adequacy criteria for database applications are a more recent field of study. In [48], a multiple 
condition based coverage criterion is defined for testing select queries taking into account both the 
database structure and SQL syntax and semantics. The criterion is used to develop and complete test 
cases that are able to reveal faults caused by errors in the use of joins, conditions or the handling of 
null values. Data-flow adequacy criteria are defined in [23], which extends the concept of the control 
flow graph by taking into account database interactions at different levels of granularity (databases, 
relations, tuples, attributes and values of attributes) starting from the initial test suite database state. An 
improved approach is presented in [53], which considers transactions (both committed and non-
committed) and the define-use pairs for different database states resulting from the execution of 
previous statements, not only for the initial state. As far as we are aware, the only work dealing with 
mutants specifically tailored for dealing with the particularities of SQL is [10], that proposes a set of 
mutants based on features present in a conceptual model of the database schema. 
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2.2. Studies on errors in querying databases 

Since the appearance of the first languages for querying databases, many empirical studies have 
been conducted into the performance of humans in querying databases using different languages and 
different underlying data models. Most of the studies covered in Reisner’s survey [41] compare 
different query languages and different skills in the users. These studies provide an initial insight into 
the problems that the user encounters when writing SQL queries, such as the use of computed 
variables, correlated variables, group by, composition (nested queries) and quantification. 

More recent studies [7] draw attention to the problems with joins and confusion over the handling 
of where, group by and having clauses. The problems with joins and having are also revealed in [4]. A 
taxonomy of frequent SQL errors is given in [5,6], which shows many potential problems that are 
spread across all main SQL clauses, especially with missing and unnecessary joins, inconsistent 
conditions and with duplicate rows.  

The effect of the normalization of database schema and the underlying data models has been 
extensively studied [3,4,8,27,46]. Although the use of a normalized logical data model facilitates data 
integrity, it makes the process of query writing more difficult. Other kinds of problems motivated by 
the semantic distance between the information request (ambiguities), the underlying data 
representation (incongruence) and the query syntax are analysed in [2]. Queries with greater construct 
incongruence resulted in more errors for six out of eight classes of SQL clauses. Performance 
differences were most evident for errors in the where and join conditions, from, and select clauses. 
Ambiguity is associated with errors in select, where conditions, group by and having clauses. 

A survey of the industrial usage of SQL queries is presented in [28]. The overall results give the 
impression that most SQL features are used quite often in real applications. Among the most 
outstanding general problems encountered are: the confusing "nested maze" (due to a not well defined 
semantics for nesting), uncertainty of the query accuracy when there are multiple joins of many tables, 
and difficulties in detecting logical errors as compared to third generation languages. Problems in the 
formulation of queries include difficulties in joins, output formatting, the use of many aggregate 
functions in a single query, the use of incorrect field and name definitions, and variables used with 
wrong variable types, especially for embedded SQL. Another survey, [40], focuses on the kind of 
statements that appear in industrial applications. According to this survey, the select clause is the most 
widely used (constituting up to 68% of the total number of queries), and some of the most frequent 
features used are the order by, aggregate functions, comparison using equal operators, and the set and 
like operators. 

2.3. Mutation testing overview 

Mutation testing is a fault-based testing technique that was originally proposed in [13,19]. Mutation 
analysis consists in generating a large number of alternative programs called mutants, each one having 
a simple fault that consists of a single syntactic change in the original program. Mutants are created by 
transforming the source code using a set of defined rules (mutation operators) that are developed to 
induce simple syntax changes based on errors that programmers typically make or to force common 
testing goals. Each mutant is executed with the test data and when it produces an incorrect output (the 
output is different to that of the original program), the mutant is said to be killed. A test case is said to 
be effective if it kills some mutants that have not yet been killed by any of the previously executed test 
cases. Some mutants always produce the same output as the original program, so no test case can kill 
them. These mutations are said to be equivalent mutants. After executing a test set over a number of 
mutants, the mutation score is defined as the percentage of dead mutants divided by the number of 
non-equivalent mutants. 

Mutation testing can be easily integrated in systems that automate mutant generation and execution, 
as for example, Mothra [24]. The generation of test cases for killing mutants can be performed 
manually or automatically using a constraint-based test case generator [14]. A great deal of research 
has been conducted into mutation testing for decades in order to improve the feasibility of the 
approach (see [36] for a survey). Among some of most recent contributions are tools for different 
kinds of languages such as object-oriented [29] and mutation systems for different kind of applications 
like web applications [31] or web services [37].  
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A mutation approach was used in [50] to perform a partial evaluation of the fault detection 
capability of database test cases and in [15,17] for seeding manual faults in queries in order to assess 
the effectiveness of test generation techniques.   

3. SQL mutation operators 

As explained in Section 2.2, usage of and problems in writing queries spread across all syntax and 
semantics elements of the SQL language. It would therefore seem reasonable to adopt a mutation-
based approach covering a wide range of SQL features to assess the adequacy of database test cases. 

In this section we describe the SQL mutation operators that have been designed. Operators are 
organized in the following categories identified by two capital letters: 
• Mutations for the main SQL clauses (SC). 
• Mutations for the operators that are present in conditions and expressions (OR). 
• Mutations related to the handling of NULL values (NL). 
• Replacement of identifiers: column references, constants and parameters (IR). 

Each category defines several mutation operators or mutant types identified by three capital letters 
that are described in the subsequent subsections. As most of the operators can be applied in different 
SQL clauses, each type is further decomposed into subtypes, each of which refer to a particular mutant 
type when it is applied to a given clause (SELECT, JOIN, WHERE, GROUP BY, HAVING and 
ORDER BY). We conclude the section with a short description of the automation of the mutation 
process and the way in which views are handled. 

3.1. SC – SQL clause mutation operators 

The aim of SC operators, described below, is to mutate the most distinctive features of SQL as 
compared to other languages (clauses, aggregate functions, subquery quantifiers, etc.). These operators 
contribute to detecting a number of faults such as incorrect joins, the wrong usage of the DISTINCT 
quantifier that can lead to the presence of unwanted duplicate rows or incorrect aggregate calculations, 
or incorrect orderings in the result set. 

SEL – SELECT Clause.- Each occurrence of one of the SELECT or SELECT DISTINCT keywords 
is replaced by the other. 

JOI – JOIN Clause.- Each occurrence of a join-type keyword (INNER JOIN, LEFT OUTER JOIN, 
RIGHT OUTER JOIN, FULL OUTER JOIN, CROSS JOIN) is replaced by each of the others. When a 
join-type is replaced by CROSS JOIN, the search-conditions under the ON keyword are removed. 
When CROSS JOIN is replaced by another join-type, an ON clause is added and its corresponding 
join-condition is created based on the primary keys of the joined tables. 

SUB – Subquery Predicates.- Subqueries are normally used in predicates in the general form of 
eℜp(Q), where e is the row value constructor (usually an attribute or expression), ℜ is a relational 
operator {=,<>,<,<=,>,>=}, p is a keyword representing the predicate and Q is the subquery. Three 
types of predicates can be formed depending on the kind of the keyword p: 
• Type I (p∈{ALL, ANY, SOME}): of the form eℜp(Q). 
• Type II (p∈{IN, NOT IN}): of the form e p(Q). 
• Type III (p∈{EXISTS, NOT EXISTS}) of the form p(Q). 

The mutations are the following: (1) Each occurrence of a keyword in a predicate of any type is 
replaced by each of the other keywords of the same type except for the replacement of ANY by 
SOME, as these have the same semantic meaning. (2) Additional replacements are made depending on 
the keyword type: 
• Each type I keyword is (1) replaced by each of the type II keywords and then the relational 

operator is removed, (2) replaced by each of the type III keywords and then both the relational 
operator and the row value constructor are removed. Do not replace either =SOME by IN or 
<>ALL by NOT IN because they have the same meaning. 

• Each type II keyword is (1) replaced by all combinations of each type I keywords and relational 
operators, and (2) replaced by each of the type III keywords and then the row value constructor is 
removed. Do not replace either IN by =SOME or NOT IN by <>ALL because they have the same 
meaning 
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• Each type III keyword is replaced by the other. 
GRU – Groupings.- Each of the group-by-expressions is removed. If the removed expression in the 

GROUP BY is present in the select-list or in the order-by-list, this expression must be enclosed in an 
aggregate function to avoid a syntactically wrong query. In this case, two mutants are generated for 
each of the expressions, one using the MIN and the other using the MAX aggregate functions. If there 
is only one group-by-expression, then the whole clause is removed. 

AGR – Aggregate functions.- Each occurrence of one of the aggregate functions (MAX, MIN, 
AVG, AVG(DISTINCT), SUM, SUM(DISTINCT), COUNT, COUNT(DISTINCT)) in a select-list or 
having-list is replaced by each of the others. Replacement must take into account the data type of the 
function argument. If the data type is character, then AVG and SUM are excluded from the 
replacement. Also, if the data type is character and the aggregate function belongs to a HAVING 
clause, then the COUNT function is not mutated if it participates in a comparison with a numeric 
expression. 

UNI – Query concatenation.- (1) Each occurrence of one of the union keywords (UNION, UNION 
ALL) is replaced by the other keyword. (2) Each of the queries that participate in the union is 
removed. 

ORD – Ordering of the result set.- For each occurrence of an order-by-expression (1) the direction 
of ordering is changed by replacing each of the keywords (ASC, DESC) by the other. If neither of 
these keywords is present, DESC is added. (2) Remove each of the order-by-expressions (if there is 
only one order-by-expression, then the entire clause is removed), and (3) exchange each pair of 
adjacent order-by-expressions. 

3.2. OR – Operator replacement mutation operators 

The OR operators adapt and extend the expression modification operators described in [24]. The 
aim of these mutants is to detect logical errors in the WHERE and HAVING clauses. 

ROR – Relational operator replacement.- Each occurrence of one of the relational operators 
{=,<>,<,<=,>,>=} is replaced (1) by each of the other operators, (2) by falseop (always returns false) 
and (3) by trueop (always returns true). 

LCR – Logical connector operator.- Each occurrence of one of the logical operators (AND, OR) is 
replaced (1) by each of the other operators, (2) by falseop, (3) by trueop, (4) by leftop (returns the left 
operand), and (5) by rightop (returns the right operand). 

UOI – Unary Operator Insertion.- Each arithmetic expression or reference to a number e is replaced 
by -e, e+1 and e-1. References to numbers are not mutated either inside of GROUP BY and ORDER 
BY clauses or in the select-list of an EXISTS subquery. 

ABS – Absolute Value Insertion.- Each arithmetic expression or reference to a number e is replaced 
by ABS(e) and –ABS(e). The same exceptions as for UOI operators are applicable here.  

AOR – Arithmetic operator replacement.- Each arithmetic operator {+,-,*,/,%} is (1) replaced by 
each of the others, (2) operators leftop and rightop are applied to the arithmetic expression. 

BTW – Between predicate.- Each condition in the form a BETWEEN x AND y is replaced (1) by a>x 
AND a<=y and (2) by a>=x AND a<y. If the condition is NOT BETWEEN, the mutants are negated. 

LKE – Like predicate.- The possible combinations of string conditions in the form a LIKE s are 
infinite, since s is a search pattern. Therefore the mutations will be restricted to exercising the 
behaviour of the wildcards {%,_} (the percent symbol means for any character string and the 
underscore means for an individual character). Each occurrence of a wildcard is mutated by (1) 
removing the wildcard, (2) replacing the wildcard by the other, (3) removing the character just before 
the wildcard if it is not at the beginning of s and (4) removing the character just after the wildcard if it 
is not at the end of s. (5) If no wildcard is present at the beginning of s, then add each of the wildcards 
at the beginning, and (6) if no wildcard is present at the end of s then add each of the wildcards at the 
end. 

3.3. NL – NULL mutation operators 

In SQL, the domain explicitly defined for each attribute is extended to include a distinguished 
symbol (NULL) that denotes the absence of any data value and which may be interpreted as 
undefined, not relevant or unknown. Programmers and testers must be very careful to avoid 
undesirable effects resulting from the incorrect behaviour of conditions having null values [51,21]. 
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Therefore, conditions are evaluated using a tri-valued logic and then logical expressions can return 
true, false and undefined. For instance, the evaluation of an AND logical expression of the form a 
AND b, will return unknown when either a or b are unknown; the evaluation of an OR expression of 
the form a OR b will return unknown if a is false and b is unknown, and true if a is true and b is 
unknown. When the search condition in a WHERE clause is evaluated to unknown, the row that would 
result if it were evaluated to true is excluded from the result set (it behaves similarly to false). 

Incorrect treatment of NULL values can lead to unpredictable results such as failing to include rows 
in the result set that should be present, or returning NULL values in the result set that could cause 
incorrect behaviours when they are stored in variables and then processed by the program1. Hence, the 
mutations related to null values must be considered in order to detect test cases for considering this 
kind of situation. 

NLF – Null check predicates.- Each occurrence of one of the predicates IS NULL or IS NOT NULL 
is replaced by the other.  

NLS – Null in select list.- A good test case must result in each output variable having values that 
cover its domain as much as possible. In the case of an SQL query, we want the result set of the query 
to return at least one NULL value when possible. The NLS operator will transform each item in the 
select list (column names or expressions) by generating mutants that will be killed when this value is 
NULL, but not killed when it is not NULL. This operator replaces each column reference c in the 
select-list by a function ifnull(c,r)2, that substitutes a value c by r (r is a replacement value outside of 
the domain of c) when a null value is encountered in c. The column reference is not mutated if all the 
attributes involved in it are declared NOT NULL by the database schema. 

NLI/NLO – Nulls in the input data.- Operators ROR and LCR seek to produce a change in the 
outcome of a condition for some values in the input domain. However, since SQL uses tri-valued 
logic, a condition can have three possible outcomes: true, false and undefined, and this issue must be 
taken into account. 

Let us consider the first four rows and first two columns of Table 1. Each column represents an 
original condition cond(A) over some attribute A when the outcome of its evaluation is true and false 
respectively. The first row represents this condition and the next three rows represent the mutation 
operators that achieve the different combinations of outcomes for each different evaluation of the 
condition. In the first two cases, if the attribute is null, then the outcome of the condition is undefined 
(last column). The set of mutation operators to be designed for exercising null values in the inputs 
must be such that for every different combination of outcomes of the condition under non null values, 
whenever a null value is present, the outcome is changed (therefore, the mutant can be killed). The last 
four rows achieve this goal and will be the basis for the NLI and NLO mutants that are described 
below: 

NLI – Include nulls.- This operator forces a true value of the condition when there is a null value. 
For each attribute a in a condition C of the form aℜ b or bℜ a, the condition is replaced by C OR a IS 
NULL. If a is present in more than one condition, then every occurrence of a is replaced 
simultaneously.  

NLO – Other nulls.- This operator completes the other combinations presented in Table 1. For each 
attribute a in C, the condition is replaced by (1) NOT C OR a IS NULL, (2) a IS NULL, and (3) a IS 
NOT NULL. 

3.4. IR – Identifier replacement mutation operators 

IR operators are an adaptation of the Replacement-of-operand operators described in [24], taking 
into account the fact that arrays do not exist in SQL, though column references do. These mutants 
replace the column identifiers, constants and references to query parameters and so, they are able to 

                                                      
1 The value obtained when an application program retrieves a null column is highly dependent on both the 

programming language and the platform. For instance, in the J2SE platform using a ResultSet, a null integer 
is retrieved either as zero (when stored in an int variable), or as null (when stored in an Object). In the 
.NET platform, a DataSet produces a run-time exception when retrieving a null value. 

2 The syntax is different depending on the DBMS vendor. In SQL92, for instance, this is a special case of the 
COALESCE function, in MySQL it is implemented by IFNULL(c,r), in Oracle by NVL(c,r) and in SQL Server 
by ISNULL(c,r). 
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detect mistakes such as the use of incorrect fields. The replacement of column references in queries 
having subqueries, group by or unions is restricted only to those replacing columns that are within the 
scope of the clause containing the column to be replaced. 

IRC – Column replacement.- Each column reference is replaced by each of the other column 
references, constants and parameters that are present in the query and are type compatible.  

IRT – Constant replacement.- Each constant is replaced by each of the other constants, columns and 
parameters that are present in the query and are type compatible. 

IRP – Parameter replacement.- Each query parameter reference is replaced by each of the other 
parameters, columns and constants that are present in the query and are type compatible. 

IRH – Hidden column replacement.- The aim of this operator is to detect potential errors produced 
when many similar columns appear in the same table and test cases have not enough diversity in their 
values to detect the use of a wrong column name. Each column attribute reference is replaced by each 
of the other columns that are defined in its table provided that they have not been the replacement in 
any of the other IR operators and are type compatible.  

3.5. Execution of the mutants 

The generation and execution of the mutants has been completely automated in an SQL mutation 
tool3. The query to mutate along with relevant information about the database schema, the loading of 
the test databases, commands for changing the data and query parameter setup are written into an 
XML script that is further processed for mutant generation and running the test cases. The query is 
parsed into an XML internal representation and then each of its elements is processed: For each one, 
both the query and the database schema are explored and mutants are generated by applying the 
aforementioned rules. Finally, the mutants are executed.  

Each execution of all mutants of a query is enclosed in a single database transaction which finishes 
with a rollback to ensure a clean execution for all queries. Inside the transaction, the test data specified 
in the script is loaded into the test tables and then some SQL queries can be optionally executed to 
modify it. Subsequently, query parameters are instantiated with their actual values for both the original 
query and each mutant. Each of these is executed and finally their outputs are compared to determine 
the mutants that have been killed. When the execution of a mutant causes a run-time error, it is 
considered as if it were killed. The process is repeated for each test case by executing only the mutants 
that have not yet been killed.  

Many queries use database views to encapsulate complex queries. In the case of a query using 
views, each view is also mutated. In this case the execution of mutants consists in first executing each 
mutated version of the query with the original views and then executing the original query with each 
mutant of each view. If there is more than one view, all views are kept as the original except the one 
that is being mutated. Views are mutated in the same way as queries, except that views do not have 
any parameter and each column in the select-list of the view is not mutated in any way if this column 
is not referenced in the query using that view (the converse would generate equivalent mutants). 

In the following, the unit of execution of the test cases will be denoted as T-Query, which, in the 
case of a query without views, is the same as the query. In the case of a query using views, it refers to 
the query together with its views. Therefore, in this latter case the mutants of a T-Query will be all the 
mutants of both the main query and each view used by it. 

4. Testing 

In this section we describe the results of the execution of a set of SQL queries against the mutants 
generated as defined in the previous section. We first describe the SQL suite to be used and then 
provide the results of the execution of the mutants. 

4.1. Description of the SQL test suite 

The SQL Conformance Test Suite was originally developed by the Information Technology 
Laboratory of the National Institute of Standards and Technology (NIST) and is used to validate 

                                                      
3 A Web interface to generate the mutants of SQL queries is available at 

http://in2test.lsi.uniovi.es/sqlmutation  
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commercial SQL products for conformance with ISO, ANSI, and FIPS SQL standards [49]. The test 
suite is organised into programs (which we shall call modules), each one having several tests. Each test 
exercises one or more queries. The software for the SQL Test Suite can be downloaded from the NIST 
Conformance Test Suite Software Web pages [33]. 

For the purpose of mutation testing, we selected a set of tests that exercises the way in which SQL 
retrieves data from the database: Data Manipulation Language (modules whose name begins with 
dml). The content of each module is inserted in the XML script and tagged for automating mutant 
generation and test execution. Original queries are designed to be executed without any parameters 
and always make use of constants in the conditions. To be able to exercise a query under different 
parameters, we transform these constants into parameters. 

The test suite contains tests and procedures to evaluate conformance to various levels of the 
standards or profiles. We have organized these in two groups of tests: 
• Entry SQL: This is the most basic feature set. All major commercial database vendors conform to 

this level of the standard. 
• Transitional SQL and Intermediate SQL: These represent more advanced levels of conformance. 

Major database vendors have many features of these levels, although they do not usually attain full 
conformance. 

The two groups differ mainly in the number of different tables that are used and their more or less 
intensive use of views and joins. Table 2 displays the main characteristics of each group and the SQL 
features being tested are enumerated in Appendix I. We shall henceforth refer to the set of queries 
being used as the SQL suite.  

4.2. Executing the entry SQL suite 

We shall execute the SQL suite against all mutants. Since the test data, as specified in the NIST 
suite, will achieve a lower than 100% mutation score, then we shall complete the test data in several 
steps, the results of which are summarized in Table 3 grouped by mutant category and mutant type. 

4.2.1. Step 1: Executing the NIST test cases 
The first step will consist in taking the entry level SQL suite and executing it against all the 

mutants. The test cases are exactly as defined by the original NIST test suite. From column 1 in Table 
3, we can see that this test set has achieved 69.6% mutation coverage ranging from 51.4% for NL 
mutants to 81.0% for IR mutants.  

4.2.2. Steps 2 to 4: Completing test cases automatically 
To complete the test cases in order to increase mutation coverage and avoid the expensive task of 

manually designing test cases, we perform steps 2 to 4 as explained below: 
• In step 2 we keep the same database as that of step 1, but the queries will be executed using 

different values for the parameters. For each parameter, we construct a vector of possible values 
consisting of every value of the attribute represented by the parameter as extracted from the test 
tables. Additional values are added in order to exercise different conditions, such as ensure that 
there is at least one value surrounded by two values immediately before and after (for checking 
boundary values) high, negative, zero and null values. For each query having parameters, a test 
case is created for each combination of parameters. After executing the new cases generated, the 
percent mutation score increases up to 79.7% (column 2 in Table 3). 

• In step 3 we take a copy of the original database and apply changes to it so as to obtain duplicate 
rows, high and negative values in the attributes as well as incomplete relations to other tables 
(master without details and details without master). Query parameters are selected as in step 2. 
The percentage score now increases up to 83.3% (column 3 in Table 3). 

• Finally, we can see that the category with the lowest score is NL. Thus, in step 4 we take another 
copy of the original database and modify it by including null values when possible and query 
parameters selected in the same way as in step 2. Now the mutation coverage increases up to 
85.6% (column 4 in Table 3), with an increase of 25.4% for the NL category. 

4.2.3. Step 5: Completing test cases manually and detecting equivalent mutants 
After obtaining a reasonably diverse set of test cases consisting of several database instances and 

sets of parameters, we proceed in this step to manually complete the test cases in order to kill the 
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remaining mutants. During this process, some mutants will be killed by the new tests and others will 
be determined as being equivalent. Before starting this manual process, we determine whether some of 
the equivalent mutants can be determined automatically and implement these criteria in the SQL 
mutation tool. 
• SEL mutants are those that obtain the lowest score after step 4. Many of the remaining mutants 

may be automatically determined as equivalent when some of the following rules are fulfilled: (1) 
If the SELECT is inside a subquery predicate (if the SELECT is a scalar subquery, then SELECT 
DISTINCT is equivalent to SELECT, but not conversely). (2) If the SELECT participates in a 
UNION (without ALL), because the UNION will remove duplicated rows. (3) If all primary keys 
of all tables being joined in the SELECT are included in the select-list and there is not a GROUP 
BY clause. Keys that are not in the select list are considered as if they were if they participate in 
one or a series of AND’s join conditions in the form k1=k2, where k1 is in the select-list and k2 is 
not. (4) If every column in the select-list is composed of aggregate functions, as these will always 
return only one row. (5) When there is a GROUP BY clause and all the group-by columns are in 
the select-list. 

• NLS mutants are equivalent when the attribute or expression c to be mutated participates in a 
condition composed by AND’s of single conditions in the form c=x, because if c has a null value, 
then the result of the condition will be undefined and hence the row will never be selected at the 
output. 

• IR mutants: Replacing a column reference c1 by another c2 generates an equivalent mutant if the 
replacement is made in a SELECT in which all tables are joined using INNER JOIN and there is a 
single or a series of AND’s join conditions in the form c1=c2. 

The percentage of coverage achieved after manually completing the test cases (94.2%) is given in 
Table 3, column 5. The remaining percentage (up to 100%) corresponds to equivalent mutants. The 
number and percentages of equivalent mutants (both automatically and manually detected) are given 
in the subsequent columns. It should be noted that there are not many equivalent mutants (5.8%) and 
half of these correspond to automatically detected equivalent mutants. 

The time spent manually creating the new test cases was 24 hours (to kill all the non-equivalent 
mutants remaining alive after step 4 and detect the manual equivalent mutants). The machine time 
needed to generate the mutants, select and execute all test cases and store the information in the 
database is 16 minutes for all steps on a single dedicated computer (single Pentium 4 3GHz 
processor). The total number of test cases selected was 4,662, of which 778 were effective in killing 
the mutants. 

4.3. Executing the Transitional and Intermediate SQL suite 

Transitional and intermediate suite includes another set of different queries, using different tables 
and involving more views and join clauses than in the entry level, as can be seen in Table 2. Table 4 
shows the results obtained after reproducing exactly the same procedure as described before for this 
suite. The percentages of scores are similar to the entry SQL (Table 3). The manual time for creating 
the new test cases was 15 hours and the machine time 22.5 minutes. The total number of test cases 
selected was 1,579, of which 575 were effective in killing the mutants. 

The last row in Table 4 presents the grand total over all queries (entry, transitional and 
intermediate). It should be noted that the percentage of equivalent mutants (6.0%) is similar, though 
slightly lower than that obtained in other experiments for mutation in imperative programs (e.g. [35], 
which achieves 6.75%), although in the case of SQL mutants, many of these (2.5%) are automatically 
detected as being equivalent. 

5. Reducing the cost 

Having elaborated the test cases for achieving a 100% mutation score, we now wish to check 
whether the cost of testing could be reduced in some way. Two different approaches will be explored 
in the following subsections. The first (subsection 5.1) consists in reducing the number of mutants 
being tested and the second (subsection 5.2) in selecting an adequate ordering for mutants when test 
cases are developed in order to reduce the number of test cases. 
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5.1. Reducing the number of mutants by selective mutation 

This approach was first suggested in [32] and further developed in [35]. The basic idea of selective 
mutation consists in selecting a reduced number of mutant operators such as those mutants being truly 
different from the others. If operators that generate the largest number of mutants can be removed, 
then the reduction of the cost of running mutants will also be large. 

The procedure consists in developing a set of effective test cases for killing all mutants excluding 
some operators. The test cases are then run over the whole set of mutants. If the score obtained after 
the run is very close to 100%, this implies that the operators that were excluded when generating the 
test cases may be removed from the set of mutants because they are not useful in detecting new faults. 

5.1.1. Selective mutation by mutant category 
First at all, we need to have a large enough set of test cases. A random test case development would 

not be appropriate here, since it is likely to ignore test cases for killing the most complicated 
situations. We therefore decided to use the test databases developed previously in Section 4 and to 
generate different random sequences of the test cases as explained here: For each T-Query and each 
test case to be generated, we randomly select each of the groups of test cases from steps 2 to 5 (test 
cases from step 1 are not used because they are included in step 2). Once a group has been selected, 
we randomly select one of the test cases included in it. We thus balance the use of different test 
databases along with the use of different parameter instantiations when calling the queries. The pool 
consists of 6,241 test cases for all queries. All the values that will be presented below correspond to 
the means of 10 random series of test cases. 

The first two columns in Table 5 display for each mutant category (row) the mutation score 
obtained by selecting test cases for killing all mutants with the exception of said category (column 1) 
and the score after executing the selected cases over all mutants (column 2). Comparing the results 
with those presented in [35], we obtain a similar percentage when removing IR (99.67%) as that 
obtained when excluding the replacement-of-operand operators (99.54%). Lower percentages are 
obtained in all the other cases that can be compared: removing OR (94.50%) compared with the 
removal of the expression modification operators (97.31%) and removing SC (99.23%) compared with 
the removal of the statement modification operators (99.97%). The SC and NL operators are very 
specific to SQL features and it does not seem appropriate to remove them in order to avoid the risk of 
forgetting important features to be tested. The only operators that could be considered for their 
exclusion are the IR operators, which also generate many mutants. 

However, this reasoning cannot be generalised without looking at the individual queries. Table 5, 
column 3 displays the number of T-Queries that do not achieve a 100% score under selective 
mutation. Columns 4 and 5 display the same information as columns 1 and 2, though considering only 
the T-Queries that have not achieved a 100% score under selective mutation. Similarly, columns 6 and 
7 present the same information, though considering only the T-Query that has achieved the lowest 
score. 

When excluding the IR operators, we check that unkilled IR mutants are concentrated in 10.4% of 
T-Queries (25 out of the total of 241). The score for these queries is 97.30% and the worst case lowers 
this percentage to 91.43%. Compared with [35], in which the program with the lowest score when 
removing the replacement-of-operators operands achieves a 98.45% score, in the case of the SQL 
mutants developed in the present study and for some queries we do not conclude that the IR operators 
should be eliminated. Another argument in favour of not removing these operators is that the use of a 
wrong column name is an easily made error when writing queries, especially if there are many 
columns with similar names and/or meanings. 

5.1.2. Selective mutation by mutant type 
If we assume that we do not remove an entire mutant category, a further experiment is carried out 

performing the selective mutation by excluding each mutant type instead of all types in a category. 
Table 6 displays the same information as in the previous table, though in this case each row displays 
the scores when removing only the mutants that belong to a type (a single mutation operator). 
Following a similar reasoning to that put forward in [35], we could draw a line at 99% and try to 
remove those mutant types that achieve more than 99% when they are excluded form the mutant set. 
We check the scores over all mutants when we consider the queries that do not achieve a 100% score 
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(column 5) and we can consider AOR, LCR, NLO and UNI. If we consider only the worst case (column 
7), we can only consider AOR and NLO. However, arguments could be found for not removing any of 
them: The AOR and LCR are the operators corresponding to the ‘sufficient mutant operators’ for 
imperative programs; LCR does not generate many mutants and therefore the saving would be minimal 
and AOR has not generated many mutants, as the SQL set does not have many arithmetic operations. 
The UNI operator mutates a very important SQL clause, and allows duplicate rows in unions to be 
detected. NLO, which tries to complete the ROR and LCR to include nulls in conditions is the only 
clear candidate to be removed (compare its score with NLI, which aims for the same goal).  

Since the goal of selective mutation is to significantly reduce the number of mutants without loss of 
effectiveness and as we must take a conservative approach, the elimination of some of the above 
operators would not give a significant improvement and hence we decided not to remove any of them.  

Nonetheless, the information given in Table 6 provides an indication that some mutants are more 
easily killed than others. Therefore, the most difficult mutants could be used first when developing test 
cases, in the hope that they will also kill other ‘easier to kill’ mutants. This issue will be explored in 
the next subsection. 

5.2. Reducing the size of the test set by ordering the mutants 

Another approach to reducing the cost is to somehow reduce the number of test cases that must be 
developed. Test suite prioritization techniques seek to order test cases previously created according to 
some criterion in order to reduce the number of test cases needed to attain a certain goal such as 
achieving a given coverage criterion as fast as possible or the rate of fault detection [43,45,18]. Test 
suite reduction techniques seek to select a subset of the test suite so that its coverage is the same as the 
original test suite [44,38]. These approaches have the common goal of reducing the cost of regression 
testing. 

Fault-based testing researchers have established a fault class hierarchy that orders some kinds of 
mutations [26] that can be used to skip a test case from an ‘easier to detect’ class in the hierarchy, 
provided that we detect a corresponding fault from a ‘harder to detect’ class [39]. The question is 
whether this would be applicable to the SQL mutants. In our case, we wish to determine an ordering of 
the mutants such that if we design test cases to kill the mutants in said order, we achieve a reduction in 
the number of test cases while attaining the same fault detection effectiveness (100% mutation score). 
This would be useful not only for regression but also for the development of new test cases. 

5.2.1. The effect of ordering on the total number of test cases 
After running the test set as explained in the previous section, the number of effective test cases 

needed to kill all mutants over all queries was 1,353 (unordered sequence). An initial indication of the 
influence of ordering on the number of test cases that are needed is that if we run the test cases using 
this unordered sequence in inverse order (from step 5 down to 2), the number of test cases is 1,160 
(14.3% lower than the former). We shall now determine the number of test cases needed to kill all 
mutants under different sequences obtained by ordering the mutants in different ways. 

The procedure will consist in first selecting a set of groups of mutants ordered according to some 
criterion. For each group of mutants in the established order, we select the set of effective test cases to 
kill all mutants within this group and then run the test cases over the whole set of mutants.  

Three main types of orderings are considered: 
• Category ordering: Each group is formed by all mutants in the same category. The orderings are 

denoted as Cxyzt, where x, y, z and t represent the first character of the corresponding category. 
For instance, Cinos first uses the whole set of test cases in the pool, keeping only the test cases 
that are effective for killing all mutants that belong to the IR category and executes these test cases 
over all mutants, then the procedure is repeated for NL, then for OR and finally for SC. 

• Global Ordering: According to the previous results on fault class hierarchies, we first order some 
groups of mutants according to their mortality. Given a group of mutants, mortality is the 
percentage of test cases of the whole test pool that kill some mutants in that group and gives an 
indication about whether the mutant is easier to detect (high mortality) or harder to detect (low 
mortality). Two different groups of mutants are considered (one for each type and another for each 
subtype) and two orderings (ascending and descending). These orderings are denoted by GXy, 
where X refers to the kind of grouping (T: by type, S: by subtype) and y refers to the ordering in 
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mortality (a: ascending, d: descending). For instance, GTa includes in each group all mutants that 
belong to the same type and orders them by mortality in ascending order.  

• Local Ordering: The ordering is determined as in global ordering, with only one difference: 
Mortality is calculated by considering only the mutants and test cases in the pool related to the 
query being tested. Therefore, we have a different local ordering for each T-Query, instead of a 
unique global ordering for all T-Queries. The orderings are denoted in the same way as before, but 
beginning with L. 

Figure 1 depicts the box plots of the total number of test cases for each of the above orderings. Each 
box includes the values of ten series of randomly selected test cases from the pool of test cases 
developed as explained in the previous subsection. The first box corresponds to test cases selected in a 
random sequence (labelled as RA).  

The first issue worth noting is that we need a higher number of test cases when using random order 
(RA) than when using any ordering, and the number of test cases is always lower using any order than 
when using both the unordered and the random sequences. Let us conduct an ANOVA analysis to 
confirm the above indications using the total number of test cases as the dependent variable and a 
single factor with a level for each ordering. The subjects will be each of the ten series of randomly 
selected test cases. Using alpha=0.05, we first check the prerequisites: Levene’s test for checking the 
homogeneity of variances gives p=0.743, and Shapiro-Wilk’s test for checking normality gives p>0.05 
for all orderings with the exception of Csoin (p=0.048), Csoni (p=0.036), LSa (p=0.008) and LTa 
(p=0.013). As ANOVA is robust enough with respect to deviations from normality, we can conduct 
the test, which gives F=92.471, p<0.001. As expected, this result allows us to reject the null 
hypothesis that the means are equal for the different orderings. 

A post-hoc multiple comparison procedure will allow us to identify homogeneous subsets. We use 
Tukey’s Honestly Significant Difference test (HSD) for multiple comparisons, the results of which are 
given in Table 7. For each ordering, an x means the range in which it is classified, range 1 being that 
which achieves the lowest number of cases.  

Comparing the different orderings by category (Cxxxx), we find that all of them are not significantly 
different, with the exception of those in which the first category of mutants to be killed is OR 
(orderings Coxxx). This gives a first rule for selecting the order of mutants: do not select the OR 
mutants as the first ones to be killed. Comparing the global and local orderings, we find that using 
ascending orderings always produces a lower number of test cases than using descending orderings, in 
keeping with the hypothesis that the most difficult mutants must be the first to be killed to reduce the 
number of test cases. Local ascending orderings achieve the lowest number of test cases, although 
there is not much difference between local and global (the difference is, however, significant). 
Additionally, it is slightly better (although not completely significant) to use the orderings by subtype 
instead of by type. 

If we wish to establish one ordering as a criterion for testing all the queries, we would select GSa 
(LSa ordering is distinct for each query and must thus be discarded as a general criterion). Table 8 
summarizes the results, showing the mean values of some of the orderings compared to the unordered 
and random sequences. The table shows that by using GSa ordering we reduce the number of test 
cases needed 14.7% when compared to a random sequence. The improvement is much higher (a 
30.4% reduction) if compared with the unordered sequence. 

5.2.2. Validity of the ordering 
The previous analysis has indicated that GSa is the most adequate ordering to use in order to obtain 

a lower number of test cases. However, this ordering was elaborated using the results (the mortality of 
the mutants) of the same queries that are to be tested using it. An important question here is whether 
this ordering is sufficiently valid for testing queries that are different from those that have participated 
in the elaboration of the ordering. 

To check this, we arrange all the T-Queries in quartiles. Each quartile is determined on the basis of 
the mutant size (the number of mutants in the T-Query). Therefore, the first quartile will group queries 
having the lowest number of mutants and the last one will group queries having the highest number of 
mutants. We use the orderings RA and GSa as before, plus a new ordering (QGSa) obtained as 
follows: For all T-Queries that belong to a quartile Qi, the ordering QGSa is determined using the 
same criteria as for the GSa ordering, though considering only the T-Queries that belong to all the 
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other quartiles Qj, j?i. The ordering QGSa used to test each query was determined in this way using 
different queries with different mutant sizes. 

We conduct a univariate ANOVA with two factors: quartile (0 to 3) and ordering (RA, GSa and 
QGSa) and the number of test cases as the dependent variable. Although samples are normal across all 
cells (the Shapiro-Wilk test of normality gives p>0.25), Levene’s test of the homogeneity of variances 
is just barely not satisfied (p=0.031). The reason is that samples under the ordering RA give higher 
variances than the others. Even so, we proceed with the analysis, which gives significant differences in 
both factors (p<0.001).  

Figure 2 depicts the marginal means for each quartile and ordering. Queries in higher quartiles need 
more test cases, as would be expected, since they are more complex. In each quartile, the ordering RA 
needs more test cases than the others. Orderings GSa and QGSa are apparently very close to each 
other. A further post-hoc Tukey’s HSD test confirms what was indicated by the figure: the differences 
in the number of test cases is significantly different across all quartiles (they appear classified in four 
different groups), RA ordering is significantly different to all the others, but GSa and QGSa are not 
significantly different to each other (they appear in the same group).  

All the above analyses considered the whole set of queries as if they were a single large program. 
The analyses were performed using ten random sequences of test cases as the experimental subjects. 
However, the effects of the ordering in each individual query should also be considered. We therefore 
consider each T-Query as an independent subject and the average of test cases needed across all the 
ten series of cases as the dependent variable. A proper analysis for this would be a repeated measures 
ANOVA, which requires assuring that the variance-covariance matrices of the dependent variable are 
circular. This is checked using Mauchly’s test of sphericity, which gives p<0.001. As sphericity is 
violated so severely that it cannot be adjusted (e<0.6), we switch to a non-parametric test. A test that 
does not require all these assumptions to be satisfied is Friedman’s test, which checks whether a set of 
variables that are measured on the same subject are equal by ranking the variables and stating the null 
hypothesis that the rankings of the variables are equal. 

Friedman’s test gives p<0.001 when comparing all the orderings and when comparing RA against 
GSa and QGSa in turn. However, when comparing GSa against QGSa, the test gives p=0.067. 
Therefore, we cannot reject the null hypothesis that both orderings are equal.  

The above result provides a useful indication to the tester when using SQL mutants as criteria for 
developing test cases: The ordering GSa obtained after analyzing the mortality of the mutants over a 
set of queries can be efficiently used in the testing of a different set of queries. This provides the user 
with a fairly stable criterion about the order in which mutants must be killed in order to obtain a lower 
number of test cases than if no ordering were used. 

6. Discussion 

This paper has focused on the development of a set of mutants for queries that retrieve data from the 
database (SELECT statements), which are the most complex in terms of the variety of SQL features 
being exercised and the most widely used, both for selecting the data to be processed in transactions 
and for reporting. As indicated in [40] “once you have a reasonable understanding of SELECT, the 
other statements are fairly straightforward”. The mutation of the other SQL main statements that 
modify the database state could thus be easily adapted. The UPDATE statement is composed of 
several assignments of values to columns along with a WHERE clause to select the rows that will be 
updated. Then most of the operators used for SELECT statements are applicable. Similarly the 
INSERT statement also performs assignments of values to columns and optionally, uses a SELECT 
clause as the source of the values to be assigned, and the DELETE statement also uses a WHERE 
clause to select the rows to be deleted. The most significant difference would be the way a mutant is 
determined to be killed: in this case comparison must be made by comparing the final state of the 
database after executing the query instead of comparing the result set, that would result in an 
additional overhead when running the mutants.  

A first issue about the way in which mutants are killed by the test cases is suggested by the results 
presented in Section 4 (Tables 3 and 4). The columns presenting the mutation scores after the first step 
present a relatively high score obtained using (in almost all cases) only one test case for each T-Query. 
An initial explanation might be that this first test case is the same as the one used in the NIST SQL test 
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suite and is hence far from being random. It was elaborated to exercise a particular SQL feature, so we 
expect a relatively high effectiveness. Perhaps a more general explanation is that when testing SQL 
queries it is usual to have a large input test space (many rows for each table), as in the case of the test 
cases used here. Therefore, a single test case is able to exercise many different situations in the data 
and then detect many of the faults represented by the mutants.  

Although many mutants are killed by a single test case, all mutants seem important, and there are 
some mutants in some queries that are difficult to kill, as shown in subsection 5.1. We can take 
advantage of this fact by using a specific ordering of mutants to reduce the number of test cases 
(subsection 5.2). However, there are certain potential threats to the validity of this conclusion. The 
first concern is with regard to the SQL suite that has been used and its representativeness compared to 
real-life SQL queries. We may lay claims to its representativeness in terms of the set of SQL features 
covered by it, since it was designed precisely to test SQL conformance. Nevertheless it includes many 
simple queries (complex queries are concentrated in the last quartile), and it is unsure whether each 
query is representative in terms of the combination of features that can be found in a real-life query.  

A second major concern is related to the way in which the test cases have been constructed. The 
procedure for selecting the initial test cases does not vary much from the usual procedure: use a small 
set of database loads to test the most common features (as used in steps 1 to 4) and then complete with 
specific test cases to cover the rest (step 5). However, for the experiments related to selective mutation 
and the ordering of mutants (Section 5), the procedure for constructing a pool of test cases is 
conditioned by the initial test cases and therefore could introduce bias in the conclusions. A huge 
effort would be required to develop more test cases manually (which would not necessarily reduce the 
bias), and selecting random database loads would run the risk of omitting test cases for the most 
difficult mutants. 

A third relevant issue is whether the set of SQL mutants are representative of real-life faults. If so, 
the effectiveness of a set of test cases for killing mutants is similar to the effectiveness in detecting 
real-life faults. Ostensibly, if we assume that mutants for SQL behave like mutants for imperative 
code, we could borrow conclusions from previous studies on mutation testing (e.g. [1]). The mutants 
used in this study are 1-order mutants (each mutant is generated by applying only one mutation 
operator). Previous studies on the coupling effect in mutation testing for imperative programs have 
shown that test data developed to kill 1-order mutants are very successful at killing 2-order mutants 
[34]. However, it should not be forgotten that testing SQL queries is somewhat different to testing 
imperative programs because of the high input space of test cases and also because a single query can 
be considered as a small program that performs many complex operations. An example of the 
differences compared to mutants in imperative programs is the behaviour for some queries of the IR 
mutants under selective mutation, as shown in subsection 5.1.  

Nonetheless, the set of queries was found to be useful in validating the tool that automates the 
creation and execution of mutants, showing that selective mutation may not be generally applicable for 
some queries. The conclusions about the reduction of test cases by means of selecting an adequate 
order of mutants also agree with previous studies on fault-based testing.  

7. Conclusions 

We have developed a quite complete set of mutant operators for SQL queries that retrieve 
information from a database that exercises the main syntax and semantic features of SQL. Mutants 
perform small changes in condition operators (OR), the replacement of variables, constants and 
parameters (IR) and take into account several very specifically SQL-related features that exercise the 
way in which the query selects, joins, combines, groups and orders the selected data (SC). Another 
specific category of mutants deals with the processing of unknown information (null values) and the 
evaluation of conditions using tri-valued logic (NL). The SQL mutation adequacy criterion is used as 
both a guide to complete database unit test cases as well as a measure of the completeness of a test set.  

The generation and execution of mutants is fully automated and these were tested against a 
reasonably large set of SQL statements drawn from the NIST SQL Conformance Test suite. We found 
slight differences compared with the mutants developed for imperative programs, as in the case of the 
study on selective mutation. However, the approach of using the most difficult mutants to develop the 
first test cases of a suite with the aim of reducing the overall number of test cases that are needed is 
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validated with the test set that we have used. This may be useful not only for regression testing, but 
also for significantly reducing the effort involved in developing the test cases and especially in 
reducing the effort spent on the construction of the test oracles. 

Despite the growing number of applications whose core information is stored in a database, there is 
a lack of test adequacy criteria and test case design techniques specifically tailored for database 
programs. The mutation approach for SQL queries may be used as a complementary aid to the tester 
for developing database test cases or as a foundation for test automation tools. Similar to the use of 
mutation in imperative programs, the use of the SQL mutants could also become a valuable tool for 
systematically injecting faults in queries and then using these faults to evaluate the effectiveness of 
test cases and for comparing different assessment and test case generation techniques for database 
applications. 
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Appendix I – Features of the SQL set 

The following table displays the features being tested in the SQL suite for each module and test as 
specified in the NIST SQL Conformance Test Suite [33]. Column entitled NQ indicates the number of 
queries in the test (the number of T-Queries and between brackets the number of views, if any). 

 
Module Test NQ Features being tested 
dml001 0001 1 SELECT with ORDER BY DESC! 
dml001 0002 1 SELECT with ORDER BY integer ASC! 
dml001 0003 1 SELECT with ORDER BY DESC integer, named column! 
dml001 0004 1 SELECT with UNION, ORDER BY integer DESC! 
dml001 0005 1 SELECT with UNION ALL! 
dml001 0158 1 SELECT with UNION and NOT EXISTS subquery! 
dml001 0160 1 SELECT with parenthesized UNION, UNION ALL! 
dml004 0008 1 SQLCODE 100:SELECT on empty table ! 
dml004 0009 2 SELECT NULL value! 
dml008 0016 1 SELECT ALL syntax! 
dml008 0017 1 SELECT:checks DISTINCT! 
dml008 0018 1 SQLCODE = 100, SELECT with no data! 
dml008 0019 1 SQLCODE = 0, SELECT with data! 
dml008 0020 1 SELECT NULL value ! 
dml008 0164 1 SELECT:default is ALL, not DISTINCT! 
dml013 0039 1 COUNT DISTINCT function! 
dml013 0040 1 SUM function with WHERE clause! 
dml013 0041 1 MAX function in subquery! 
dml013 0042 1 MIN function in subquery! 
dml013 0043 1 AVG function! 
dml013 0044 1 AVG function - empty result NULL value! 
dml013 0167 1 SUM ALL function! 
dml013 0168 1 SUM function! 
dml013 0169 1 COUNT(*) function ! 
dml013 0170 1 SUM DISTINCT function with WHERE clause! 
dml013 0171 1 SUM(column) + value! 
dml014 0045 2 BETWEEN predicate! 
dml014 0046 2 NOT BETWEEN predicate   ! 
dml014 0047 2 IN predicate! 
dml014 0048 2 NOT IN predicate! 
dml014 0049 2 IN predicate value list! 
dml014 0050 1 LIKE predicate -- %! 
dml014 0051 1 LIKE predicate -- underscore! 
dml014 0052 1 LIKE predicate -- ESCAPE character! 
dml014 0053 2 NOT LIKE predicate 
dml014 0054 1 IS NULL predicate! 
dml014 0055 2 NOT NULL predicate! 
dml014 0056 1 NOT EXISTS predicate! 
dml014 0057 1 ALL quantifier ! 
dml014 0058 1 SOME quantifier! 
dml014 0059 1 ANY quantifier ! 
dml018 0069 1 HAVING COUNT with WHERE, GROUP BY! 
dml018 0070 1 HAVING COUNT with GROUP BY! 
dml018 0071 1 HAVING MIN, MAX with GROUP BY 3 columns! 
dml018 0072 1 Nested HAVING IN with no outer reference! 
dml018 0073 1 HAVING MIN with no GROUP BY! 
dml019 0074 1 GROUP BY col with SELECT col., SUM! 
dml019 0075 1 GROUP BY clause! 
dml019 0076 1 GROUP BY 2 columns! 
dml019 0077 1 GROUP BY all columns with SELECT * ! 
dml019 0078 1 GROUP BY three columns, SELECT two! 
dml019 0079 1 GROUP BY NULL value! 
dml020 0080 1 Simple two-table join! 
dml020 0081 1 Simple two-table join with filter! 
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Module Test NQ Features being tested 
dml020 0082 1 Join 3 tables! 
dml020 0083 1 Join a table with itself! 
dml022 0096 1 Subquery with MAX in < comparison predicate! 
dml022 0097 1 Subquery with AVG - 1 in <= comparison predicate! 
dml022 0098 1 IN predicate with simple subquery! 
dml022 0099 1 Nested IN predicate - 2 levels! 
dml022 0101 1 Quantified predicate <= ALL with AVG in GROUP BY! 
dml022 0102 1 Nested NOT EXISTS with correlated subquery and DISTINCT! 
dml023 0103 1 Subquery with comparison predicate! 
dml023 0105 2 Subquery in comparison predicate is empty! 
dml023 0106 1 Comparison predicate <> ! 
dml023 0107 2 Comp predicate with short string logically blank padded! 
dml023 0180 1 NULLs sort together in ORDER BY! 
dml023 0181 1 NULLs are equal for DISTINCT! 
dml024 0108 1 Search condition true OR NOT(true)! 
dml024 0109 1 Search condition true AND NOT(true)! 
dml024 0110 1 Search condition unknown OR NOT(unknown)! 
dml024 0111 1 Search condition unknown AND NOT(unknown)! 
dml024 0112 1 Search condition unknown AND true! 
dml024 0113 1 Search condition unknown OR true! 
dml025 0114 1 Set functions without GROUP BY returns 1 row! 
dml025 0115 1 GROUP BY col, set function: 0 groups returns empty table! 
dml025 0116 1 GROUP BY set functions: zero groups returns empty table! 
dml025 0117 1 GROUP BY column, set functions with several groups! 
dml026 0118 1 Monadic arithmetic operator +! 
dml026 0119 1 Monadic arithmetic operator -! 
dml026 0120 3 Value expression with NULL primary IS NULL! 
dml026 0121 1 Dyadic operators +, -, *, /! 
dml026 0123 1 Evaluation order of expression! 
dml038 0205 1 Cartesian product is produced without WHERE clause! 
dml040 0209 1 Join 2 tables from different schemas! 
dml051 0227 2 BETWEEN predicate with character string values! 
dml051 0228 2 NOT BETWEEN predicate with character string values 
dml052 0229 2 Case-sensitive LIKE predicate! 
dml059 0257 1 SELECT MAX, MIN (COL1 + or - COL2)! 
dml059 0258 1 SELECT SUM(2*COL1*COL2) in HAVING SUM(COL2*COL3) 
dml059 0259 1 SOME, ANY in HAVING clause! 
dml059 0260 1 EXISTS in HAVING clause! 
dml059 0264 2 WHERE, HAVING without GROUP BY! 
dml060 0261 1 WHERE (2 * (c1 - c2)) BETWEEN! 
dml060 0262 1 WHERE clause with computation, ANY/ ALL subqueries! 
dml060 0263 1 Computed column in ORDER BY! 
dml061 0269 3 BETWEEN value expressions in wrong order! 
dml061 0270 1 BETWEEN approximate and exact numeric values! 
dml061 0271 1 COUNT(*) with Cartesian product subset ! 
dml061 0273 1 SUM, MAX, MIN = NULL for empty arguments  ! 
dml061 0278 1 IN value list with USER, literal, variable spec.! 
dml069 0406 1 Subquery from different schema! 
dml070 0409 2 Effective outer join -- with 2 cursors! 
dml070 0411 1 Effective set difference! 
dml070 0412 1 Effective set intersection! 
dml073 0393 1 SUM, MAX on Cartesian product! 
dml073 0394 1 AVG, MIN on joined table with WHERE without GROUP! 
dml073 0395 1 SUM, MIN on joined table with GROUP without WHERE 
dml073 0396 1 SUM, MIN on joined table with WHERE, GROUP BY, HAVING! 
dml073 0417 1 Cartesian product GROUP BY 2 columns with NULLs! 
dml073 0418 1 AVG, SUM, COUNT on Cartesian product with NULL! 
dml073 0419 1(1) SUM, MAX, MIN on joined table view! 
dml075 0431 2 Redundant rows in IN subquery 
dml075 0432 6 Unknown comparison predicate in ALL, SOME, ANY! 
dml075 0433 6 Empty subquery in ALL, SOME, ANY! 
dml075 0434 1 GROUP BY with HAVING EXISTS-correlated set function! 
dml075 0442 3 DISTINCT with GROUP BY, HAVING! 
dml079 0452 2 Order of precedence, left-to-right in UNION [ALL]! 
dml079 0453 6 NULL with empty subquery of ALL, SOME, ANY! 
dml090 0512 2 (value expression) for IN predicate! 
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Module Test NQ Features being tested 
dml090 0513 1 NUMERIC(4) implies CHECK BETWEEN -9999 AND 9999! 
dml090 0523 3 (value expression) for BETWEEN predicate! 
dml090 0564 1 Outer ref. directly contained in HAVING clause! 
dml104 0591 2(2) NATURAL JOIN (feature 4) (static)! 
dml104 0592 4(4) INNER JOIN (feature 4) (static)! 
dml104 0593 4(4) LEFT OUTER JOIN (feature 4) (static)! 
dml104 0594 2(2) RIGHT OUTER JOIN (feature 4) (static)! 
dml106 0599 9(9) UNION in views (feature 8) (static)! 
dml112 0623 11(15) OUTER JOINs with NULLs and empty tables! 
dml114 0635 6(5) Feature 13, grouped operations (static)! 
dml114 0637 7(8) Feature 14, Qualified * in select list (static)! 
dml134 0689 1(3) Many Trans SQL features #1:  inventory system! 
dml135 0692 4(6) Many TSQL features #3:  enhanced proj/works! 
dml147 0841 2 Multiple-join and default order of joins ! 
dml147 0842 7 Multi-column joins ! 
dml148 0843 3 Ordering of column names in joins ! 
dml148 0844 7 Outer join predicates ! 
dml158 0857 3 join condition set function, outer reference! 
dml162 0863 3(2) joined table directly contained in cursor,view! 
dml165 0870 1 Non-identical descriptors in UNION! 
dml171 0882 1 More full outer join! 
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Table 1: Mutations for conditions using tri-valued logic 
 

 cond(A) is true cond(A) is false cond(A) is undefined 
cond(A) true false undefined 
NOT cond(A) false true undefined 
FALSEOP false false false 
TRUEOP true true true 
cond(A) OR A IS NULL true false true 
NOT cond(A) or A IS NULL false true true 
A IS NULL false false true 
A IS NOT NULL true true false 

 
 
Table 2: Characteristics of the SQL suite 
 

 Entry SQL 
suite 

Transitional & 
Intermediate 

SQL suite 
Number of Modules 26 12 
Number of Queries 165 137 
Number of T-Queries 164 77 
Number of different views 1 26 
Number of different Tables 8 20 
Number of mutants generated 6,885 5,545 
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Table 3: Mutation scores by category and Mutant type (entry level, modules dml001 to dml090) 
 

Mutation score at each step Equivalent 
(Automatic) 

Equivalent 
(Manual) 

Mutant 
Category 

Mutant 
Type 

Number of 
Mutants 

1 2 3 4 5 Tot. % Tot. % 
SC AGR 560 72.9 78.9 80.7 80.7 94.1   33 5.9 

 GRU 72 88.9 88.9 91.7 91.7 91.7   6 8.3 
 JOI 84 61.9 61.9 70.2 70.2 71.4   24 28.6 
 ORD 39 82.1 87.2 89.7 94.9 97.4   1 2.6 
 SEL 241 5.0 6.2 12.4 12.4 18.3 188 78.0 12 5.0 
 SUB 379 84.7 94.5 97.4 97.4 97.9   8 2.1 
 UNI 23 87.0 87.0 91.3 91.3 91.3   2 8.7 

Total SC  1,398 65.0 70.5 73.8 74.0 80.6 188 13.4 86 6.2 
OR ABS 510 44.7 48.8 74.3 74.5 95.9   21 4.1 

 AOR 253 90.5 90.5 90.5 90.9 100.0     
 BTW 76 55.3 56.6 60.5 60.5 94.7   4 5.3 
 LCR 145 82.1 93.8 95.2 95.2 98.6   2 1.4 
 LKE 33 57.6 57.6 57.6 57.6 87.9   4 12.1 
 ROR 1,211 69.9 93.2 94.8 95.1 98.5   18 1.5 
 UOI 741 69.2 76.2 76.9 77.1 97.8   16 2.2 

Total OR  2,969 67.2 79.8 85.2 85.4 97.8   65 2.2 
NL NLF 8 100.0 100.0 100.0 100.0 100.0   0 0.0 

 NLI 92 9.8 12.0 12.0 84.8 92.4   7 7.6 
 NLO 276 88.4 92.8 93.8 95.3 99.6   1 0.4 
 NLS 153 7.2 13.1 13.1 54.2 81.7 11 7.2 17 11.1 

Total NL  529 51.4 55.8 56.3 81.7 93.2 11 2.1 25 4.7 
IR IRC 989 81.3 93.1 94.5 95.2 97.7 9 0.9 14 1.4 

 IRP 562 67.0 87.5 91.0 91.0 99.5   2 0.4 
 IRT 200 87.8 88.7 89.5 91.2 98.7   1 0.5 
 IRH 238 82.7 94.7 97.3 98.0 99.6   3 1.3 

Total IR  1,989 81.0 92.5 94.4 95.1 98.5 9 0.5 20 1.0 
TOTAL  6,885 69.6 79.7 83.3 85.6 94.2 208 3.0 196 2.8 
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Table 4: Mutation scores by category and Mutant type (transitional and intermediate levels, 

modules dml104 to dml171) 
 

Mutation score at each step Equivalent 
(Automatic) 

Equivalent 
(Manual) 

Mutant 
Category 

Mutant 
Type 

Number of 
Mutants 

1 2 3 4 5 Tot. % Tot. % 
SC AGR 79 84.8 87.3 87.3 87.3 97.5   2 2.5 

 GRU 41 75.6 87.8 90.2 90.2 90.2   4 9.8 
 JOI 267 61.0 66.7 75.3 78.3 79.0   56 21.0 
 ORD 66 86.4 89.4 89.4 89.4 97.0   2 3.0 
 SEL 163 6.7 9.8 28.8 28.8 36.2 91 55.8 13 8.0 
 SUB 29 100.0 100.0 100.0 100.0 100.0     
 UNI 50 62.0 64.0 72.0 74.0 82.0   9 18.0 

Total SC  695 56.0 60.3 68.8 70.1 74.5 91 13.1 86 12.4 
OR ABS 510 42.7 45.9 62.9 64.5 91.4   44 8.6 

 AOR 61 88.5 98.4 100.0 100.0 100.0     
 BTW 4 50.0 50.0 50.0 50.0 100.0     
 LCR 312 62.8 82.4 89.4 97.4 99.0   3 1.0 
 LKE 20 55.0 60.0 60.0 60.0 100.0     
 ROR 1176 74.1 87.2 92.4 94.7 99.8   2 0.2 
 UOI 735 78.8 84.1 85.3 88.7 97.1   21 2.9 

Total OR  2,818 68.6 78.4 84.8 87.8 97.5   70 2.5 
NL NLF 26 88.5 92.3 96.2 100.0 100.0     

 NLI 75 6.7 9.3 9.3 48.0 64.0   27 36.0 
 NLO 225 72.0 87.1 92.0 96.9 99.6   1 0.4 
 NLS 180 15.6 15.6 18.3 63.9 70.6 8 4.4 45 25.0 

Total NL  506 43.1 50.4 53.8 78.1 84.0 8 1.6 73 14.4 
IR IRC 946 87.6 92.0 92.7 96.5 98.5 4 0.4 10 1.1 

 IRP 315 92.8 94.2 94.2 100.0 100.0     
 IRT 69 79.6 81.6 82.7 82.7 98.0     
 IRH 196 91.1 92.1 93.7 94.6 100.0   4 2.0 

Total IR  1,526 87.5 90.8 91.7 94.5 98.8 4 0.3 14 0.9 
TOTAL  5,545 69.9 77.0 81.8 86.5 93.8 103 1.9 243 4.4 
GRAND TOTAL 12,430 69.7 78.5 82.7 86.0 94.0 311 2.5 439 3.5 
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Table 5: Selective mutation scores by mutant category 
 

Percent score 
considering all T-

Queries 

Percent score considering only the 
T-Queries that do not achieve 

100% 

Percent score 
considering the worst 

case 

Excluded 
category 

Excluding 
a category 

Over all 
mutants 

Number 
of T-

Queries 

Excluding 
a 

category 

Over all 
mutants 

Excluding 
a 

category 

Over all 
mutants 

IR 98.67% 99.61% 25 92.27% 97.30% 84.35% 91.43% 
NL 78.49% 98.31% 157 74.15% 97.57% 0.00% 0.00% 
OR 89.82% 95.08% 191 88.93% 94.40% 38.33% 69.17% 
SC 94.50% 99.23% 96 88.14% 98.18% 25.00% 70.00% 

 
 
Table 6: Selective mutation scores by mutant type 
 

Percent score considering 
all T-Queries 

Percent score considering only the 
T-Queries that do not achieve 

100% 

Percent score 
considering the worst 

case 

Category Excluded 
type 

Excluding a 
type 

Over all 
mutants 

Number 
of T-

Queries 

Excluding 
a type 

Over all 
mutants 

Excluding a 
type 

Over all 
mutants 

IR IRC 99.11% 99.86% 159 89.37% 97.57% 86.96% 95.17% 
 IRH 99.44% 99.96% 28 82.50% 98.53% 40.00% 91.43% 
 IRP 98.13% 99.96% 28 82.14% 97.60% 75.00% 95.45% 
 IRT 96.07% 99.86% 77 78.18% 96.11% 69.09% 92.34% 

NL NLF 96.47% 99.99% 2 40.00% 95.38% 0.00% 0.00% 
 NLI 70.00% 99.66% 91 56.15% 98.71% 0.00% 94.67% 
 NLO 99.94% 100.00% 6 95.00% 99.51% 95.00% 99.51% 
 NLS 47.74% 98.87% 218 39.59% 97.53% 0.00% 85.00% 

OR ABS 79.10% 98.29% 847 76.43% 97.46% 40.00% 86.67% 
 AOR 100.00% 100.00% 0 100.00% 100.00% 100.00% 100.00% 
 BTW 95.39% 99.97% 20 82.50% 98.61% 75.00% 95.91% 
 LCR 99.47% 99.98% 43 94.42% 99.29% 88.00% 98.85% 
 LKE 89.18% 99.95% 20 73.50% 92.43% 68.00% 90.59% 
 ROR 95.93% 99.17% 1485 93.51% 98.19% 78.57% 87.50% 

SC AGR 97.19% 99.85% 219 92.24% 98.64% 80.00% 95.38% 
 GRU 98.06% 99.98% 14 85.71% 98.61% 75.00% 98.10% 
 JOI 96.16% 99.91% 64 83.75% 98.31% 55.00% 95.88% 
 ORD 91.76% 99.93% 30 72.00% 98.15% 20.00% 84.00% 
 SEL 73.30% 99.76% 50 45.00% 98.78% 0.00% 76.67% 
 SUB 95.33% 99.84% 143 86.92% 97.31% 60.00% 88.89% 
 UNI 98.06% 99.99% 8 85.00% 99.36% 80.00% 98.79% 
 UOI 96.82% 99.61% 407 88.77% 98.35% 66.67% 95.77% 
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Table 7: Homogeneous subsets for the different orderings of the mutants (Tukey’s HSD Test) 
 

Ordering Tukey’s Rank 
 1 2 3 4 5 6 7 8 9 10 11 12 
RA            x 
Cinos    x x x       
Cinso    x x x       
Cions    x x x       
Ciosn    x x x x      
Cisno    x x x       
Cison     x x x x     
Cnios    x         
Cniso    x x        
Cnois    x x x       
Cnosi    x x x       
Cnsio    x x        
Cnsoi    x x x       
Coins          x x  
Coisn           x  
Conis         x x x  
Consi         x x x  
Cosin          x x  
Cosni         x x x  
Csino    x x x       
Csion    x x x       
Csnio    x x x       
Csnoi    x x x       
Csoin      x x x x x   
Csoni      x x x x    
GSa  x x          
GSd    x x x       
GTa   x          
GTd    x x x       
LSa x            
LSd        x x x x  
LTa x x           
LTd       x x x x x  

 
 
Table 8: Comparison of the mean number of test cases generated using different mutant orderings 
 

Sequence/ordering of mutants Number of 
test cases 

Percent of test 
cases in relation to 

the unordered 
sequence 

Percent of test 
cases in relation to 

the random 
sequence 

Unordered sequence 1,353.0   
Unordered reverse sequence 1,160.0 85.7%  
Random sequence (RA) 1,103.9 81.6%  
Global by type ascending (GTa) 961.2 71.0% 87.0% 
Global by subtype descending (GSa) 941.3 69.6% 85.3% 
Local by type descending (LTa) 929.6 68.8% 84.2% 
Local by subtype descending (LSa) 917.3 67.8% 83.1% 
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Figure 1: Boxplot for the total number of test cases generated under different mutant orderings 
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Figure 2: Marginal means of the number of test cases under different orderings and quartiles 

0 1 2 3

Quartile

100

200

300

400

500

Te
st

 C
as

es

Ordering
RA
GSa
QGSa

 


