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Abstract. In MDE, model transformations should be efficiently tested so that it 
may be used and reused safely. Mutation analysis is an efficient technique to 
evaluate the quality of test data, and has been extensively studied both for 
procedural and object-oriented languages. In this paper, we study how it can be 
adapted to model oriented programming. Since no model transformation 
language has been widely accepted today, we propose generic fault models that 
are related to the model transformation process. First, we identify abstract 
operations that constitute this process: model navigation, model’s elements 
filtering, output model creation and input model modification. Then, we 
propose a set of specific mutation operators which are directly inspired from 
these operations. We believe that these operators are meaningful since a large 
part of the errors in a transformation are due to the manipulation of complex 
models regardless of the concrete implementation language. 

1   Introduction 

Validation refers to a process that aims at increasing our confidence that software 
meets its requirements. It usually relies on a combination of reasoning and testing, 
and encompasses unit, integration, and acceptance testing. Testing is thus a key aspect 
of software development, because of its cost and impact on final product reliability. 

In the case of model-driven development, classical views on testing and their 
associated testing models are not well-suited to the significant changes this software 
paradigm has induced to the development process. The standardization of a model 
transformation language (QVT) reveals the need of a systematic way for specifying 
and implementing the model transformations. However, as for any other program, 
faults may occur in a model transformation program which must be detected through 
testing. Programming a model transformation is a very specific task which implies 
operations a classical programmer does not usually manipulate, such as navigating the 
input/output metamodels or filtering model elements in collections. If a skilled 
programmer of a model transformation can still introduce classical faults in the 
program, specific faults appear. These specific faults are more at a semantic level than 
classical programming faults. For instance, the programmer may have navigated a 
wrong association from class A to class B, thus manipulating class incorrect instances 
of the expected type. He may also be wrong in the criteria used to select some class 
instances (e.g. selecting all classes while he should have selected only persistent 
ones).  Such faults are related to new fault categories we introduce in this paper. 
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A fundamental step in the elaboration of a test environment for a given software 
programming paradigm consists of defining criteria to estimate the quality of a test 
dataset. Structural coverage criteria are a classical way to have such an estimate. 
However, they are not directly related to the capacity of a test dataset to reveal faults 
(e.g. a faulty statement can be executed and covered several times without provoking 
the error). 

In this paper, we focus on mutation analysis as a convincing way to check the 
efficiency of a test dataset for detecting faults in the program under test. Mutation 
analysis consists of systematically creating faulty versions of a program (called 
mutants) and of checking the efficiency of a test dataset to reveal the faults in these 
erroneous programs. The main interest of mutation analysis is to provide an estimate 
of the quality of a test dataset with the proportion of faulty programs it detects. 
Instead of structural test adequacy criteria, this estimate really reflects the “fault 
revealing power” [1] of the test dataset. To be effective, the mutation analysis must 
create mutant programs which correspond to realistic faults. In this paper, we first 
study the limitations of classical mutation operators for seeding model transformation 
programs. Then, we analyze the main activities involved in a model transformation, 
independently of a specific model transformation language. This analysis of model 
transformation leads to its decomposition in four main activities, which are fault-
prone. Mutation operators are then proposed at this generic level of decomposition, 
which correspond to faults a programmer may (realistically) introduce into his code. 
The contribution of this paper is thus two-fold:  

− a study of the specific faults a programmer may do in a model transformation, 
− a definition of specific mutation operators for applying mutation analysis to model 

transformations and asses the quality of a test dataset. 

The paper is structured as follows. Section 2 recalls the general process of mutation 
analysis. Section 3 explains the limitations of classical fault categories (classical 
mutation operators); studies the fault-prone activities involved in model 
transformations and introduce the notion of semantic mutation operators. Section 4 
details the mutation operators dedicated to model transformations while Section 5 
illustrates the application of two operators on several implementations of a same 
model transformation. 

2   Mutation Testing 

Mutation analysis is a testing technique that was first designed to evaluate a test 
dataset. It also allows to improve their effectiveness and fault revealing power [1, 2]. It 
has been originally proposed in 1978 [3], and consists in creating a set of faulty 
versions or mutants of a program with the ultimate goal of designing a test set that 
distinguishes the program from all its mutants. A mutant is the program modified by 
the injection of a single fault. In practice, faults are modelled as a set of mutation 
operators where each operator represents a class of software faults. To create a mutant, 
it is sufficient to apply its associated mutation operator to the original program. 
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A test set is relatively adequate if it distinguishes the original program from all its 
non-equivalent mutants. Otherwise, a mutation score is associated with the test set to 
measure its effectiveness in terms of percentage of the revealed non-equivalent 
mutants. 

It is to be noted that a mutant is considered equivalent to the original program if it 
does not exist any input data on which the mutant and the original program produce a 
different output. A benefit of the mutation score is that even if no error is found, it 
still measures how well the software has been tested giving the user information about 
the program test quality. It can be viewed as a kind of reliability assessment for the 
tested software. The value of the mutation analysis is based on one assumption: if the 
test dataset can detect that all the mutants contain fault, then this set is able to detect 
real involuntary errors.  
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Fig. 1.  Mutation process 

The process of mutation analysis is presented in Figure 1 with the execution of 
each test datum against all the mutants of the program. An oracle function is used to 
determine if the failure is detected. This function compares each mutant’s result with 
the result of the program P; the latter being considered as correct. If the results differ, 
it means that the test data exhibit the fault; the test data kill the mutant. During the test 
selection process, a mutant program is said to be killed if at least one test data detects 
the fault injected into the mutant. Conversely, a mutant is said to be alive if no test 
data detects the injected fault. If a mutant is alive, there are two possibilities: 

• the mutant is equivalent, 
• actual test data are not able to highlight this fault: the mutant is still alive and the 

test dataset must be involved. New test data may be generated or existing ones can 
be modified.  

The equivalent mutants are suppressed from the set of mutants and a list of killed 
mutants is obtained. The mutation score for the test dataset is computed, which is the 
proportion of killed mutants compared to the total number of non-equivalent mutants; 
this score quantifies the quality of the test dataset. 
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If the score is insufficient, we have to improve the test set, which could be done 
with new test data or actual data involving. 

The relevance of mutation analysis is based on the mutants’ relevance, which itself 
strongly depends on the mutation operators relevance. Classical mutation testing is 
related to a set of faults specified by mutation operators which define syntactic 
patterns which are identified in the program in order to inject a fault. Classical 
mutation operators include relational and arithmetic operator replacement (for 
example replacing a ‘+’ with a ‘-‘), variable and method calls replacements, statement 
deletion. Some operators dedicated to OO programs, and especially to Java, have been 
introduced by Ma et al. in [4], (method redefinition, inherited attributes etc.). These 
faults are related to the notions of classes, generalization, and polymorphism. These 
operators take into consideration specificities related to the semantics of OO 
languages, but remain simple faults which can be introduced by a syntactic analysis of 
the program. To execute mutation testing with these operators, the faults are inserted 
systematically everywhere the pattern is found in the code.  

In the next part 3, we explain why we don’t want to transpose this classical 
mutation process to the model oriented development. 

3   Adapting Mutation Analysis to Model Driven Development 

This section studies the application of mutation to model transformation programs, 
and shows that the classical mutation operators are not suitable for these specific 
programs. Faults at this level are related to the main activities involved in a model 
transformation. 
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Fig. 2. Model transformation process and a model transformation mutant creation 

3.1   Mutation Analysis in a Model Development Context 

Before proposing fault models specific to the model transformations, we need to 
analyze the activities involved in development which may be fault-prone. The  
Figure 2 illustrates the general model transformation process. An input model is 
transformed and an output model is returned. Each one has its own metamodel, the 
transformation uses these metamodels to know which action it can process on the 
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input and the output models. The mutants produced by the mutation operator 
insertions has to preserve this conformity with the metamodels, they must be able to 
process the input models and must not create output models that do not conform to 
output metamodels. Thus mutation operators must be directly connected to the 
metamodel notion.  

3.2   Limitations of Classical Mutation Operators 

All the classical and OO operators can be applied to model transformations programs, 
but their relevance to this very particular context is limited due to the following 
reasons: 

• Mutant significance: seeded faults are far from the specific faults a transformation 
programmer may do if he is competent. Indeed, the transformation programmer 
will make an incorrect model transformation, which seems correct from his point 
of view, and not only a classical programming fault. He may forget some particular 
cases (e.g. forget to deal with the case of multiple inheritances in an input model), 
manipulate the wrong model elements etc.  An incorrect model transformation will 
differ from the correct one by complicated modification in the transformation 
program, and not necessarily by a single faulty statement, as in classical appro-
aches to mutation. A semantic fault, defined to represent fault in the transfor-
mation, produces viable mutants, which are not detected simply at compilation, 
execution or during the rest of the programming.  

• Mutant viability: a simple fault has a high probability to generate a non viable 
mutant program (that does not compile or run correctly). Since a transformation 
program navigates both the input and the output metamodels, most simple faults 
will disturb this navigation in a non-consistent way (e.g. trying to navigate non-
existing association due to a syntactic replacement). Thus, these faults will be 
detected either during programming, at compilation or at runtime. This approach 
generates many mutants which are not viable candidates for mutation analysis. 

• Implementation language independency: The semantic operators have to reflect the 
type of fault which may appear during the implementation of a transformation. The 
first constraint to define these operators is that they can not take advantage of a 
transformation language's syntax. Indeed, today there are lots of model transfor-
mation languages which all have their specificities and which are very hetero-
geneous (object oriented, declarative, functional, mixed). To be independent from a 
given implementation language is an important issue. That leads us to choose to 
focus on the semantic part of the transformation instead of the syntactic one 
imposed by a language, that’s studied next part (3.3). 

Classical mutation operators (object oriented or not) are still useful, to check code 
or predicate coverage, for example. However they depend on the language which is 
used in the implementation, thus they have to be completed by injecting faults which 
make sense, in terms of erroneous model transformations. These new operators that 
we propose in the section 4 try to capture specific faults that take into account the 
semantics of a particular type of program: model transformations. Such mutation 
operators are called semantic operators.  
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3.3   Semantic Faults for Model Transformations Activities 

The operators introduced have to be defined based on an abstract view of the 
transformation program, by answering the question: which type of fault could be done 
during a model transformation implementation? For example, if a transformation 
traverses the input model to find the elements to be transformed then a fault can 
consist of the navigation of the wrong association in the metamodel, or of selecting 
the incorrect elements in a collection. During a transformation, output model elements 
have to be created; a fault can consist of creating elements with the wrong type or 
wrong initialization. The analysis of these possible faults for a model transformation 
leads to distinguish 4 abstract operations linked to the main treatments composing a 
model transformation: 

• navigation: the model is navigated thanks to the relations defined on its 
input/output metamodels, and a set of elements is obtained. 

• filtering: after a navigation, a set of elements is available, but a treatment may be 
applied only on a subset of this set. The selection of this subset is done according 
to a filtering property. 

• output model creation: output model elements are created from extracted 
element(s). 

• input model modification: when the output model is a modification of the input 
model, elements are created, deleted or modified. 

These operations define a very abstract specification of transformations, which 
highlights the fault-prone steps of programming a model transformation. However, 
we believe they explore the most frequent important model manipulations for trans-
formations. Operators defined at this level will have to be wrapped to real languages.  

Any model transformation combines and mixes these 4 operations of navigation/ 
filtering (read mode) and output/input model modification (write mode). Let us 
consider the transformation UML to RDBMS to illustrate this decomposition (see Fig. 
3). In the class diagram of the input model, the persistent classes are selected and 
correspondent tables are created with columns corresponding to the attributes. First 
the input model (a) is navigated to find the classes (b) which are filtered to keep the 
persistent ones (c). A table is created for each one (d). Then the navigation covers the 
persistent classes to find their attributes (e) (inherited attributes too) and corres-
ponding columns are created (f). Finally columns are filtered (g) to find an appro-
priate key which is created (h). 

Navigation, filtering, creation, modification are fault-prone operations which are 
sequentially dependent: while the navigation returns elements, these elements are 
often filtered before being used for model creation (or modification).  We obtain a 
basic cycle which is repeated to compose a complete model transformation. The 
decomposition of a model transformation into such basic cycles provides an abstract 
view useful to inject faults. So, we define mutation operators which are applied on 
these basic cycles, by injecting faulty navigation/filtering/creation/modification 
operations.  
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Fig. 3.  Process of the transformation studied 

4   Mutation Operators Dedicated to Model Transformations 

Based on the analysis of the fault-prone operations which constitute a model transfor-
mation, we propose several new mutation operators. They act on the navigation and 
the filtering processed by the transformation on input or output models and the 
creation of the output model.  

We present our operators starting with there names and abbreviations. Then we give 
a concise explanation of their functionality. The UML to RDBMS transformation and 
the Figure 4 (which represents a simple metamodel) will help us to illustrate our oper-
ators in a third time. Finally, we explain when these operators are the most pertinent. 

4.1   Mutation Operators Related to the Navigation 

Relation to the same class change (RSCC): This operator replaces the navigation of 
one association towards a class with the navigation of another association to the same 
class (when the metamodel allows it). 

Example: the class A has three relations b1, b2, and b3 to the class B: if the 
original transformation navigates A.b1 then the operator replaces b1 with b2 and 
b3, making two mutants. 

Different cases could occur when a wrong relation is navigated towards the same 
class, depending on the cardinality. To replace A.b1 with A.b2 leads to a cardinality 
difference. The results are respectively a variable and a collection, so the compilation 
will fail. On another hand, replacing b2 with b3 leads to a relevant fault (complex to 
detect): both returning a collection of instances of B. Thus the rest of the 
transformation being not affected, the fault is harder to detect. 

Relation to another class change (ROCC): This operator replaces the navigation of 
an association towards a class with the navigation of another association to another 
class.  

Example: the class A has several outgoing relations: b1, b2, b3 (to B) and c (to 
C), if the transformation navigates A.b1 then the operator creates one mutant, 
replacing b1 with c. 
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This operator is really relevant when the expected class and the unwanted one have 
same properties used in the rest of the transformation (same attribute, method or 
outgoing relation). Due to inheritance, this case is very common because it directly 
makes direct use of the generalization process. If the wrong navigation leads to a class 
which has a common parent with the wanted class, the parent’s attributes, methods 
and relations are inherited by both classes. As a consequence the rest of the 
transformation should not be affected by this fault. In our example, the classes B and 
C have a common parent E, so they inherited of the same attribute name. 

Relation sequence modification with deletion (RSMD): During the navigation, the 
transformation can navigate many relations successively. This operator removes the 
last step off from the composed navigation. 

Example: from an instance of A, we can obtain a collection of instances of F with 
the composed navigation A.b1.f. In the generated mutant, the navigation becomes 
A.b1 and the result is not a collection of instances of F but of instances of B. 

This operator leads to the same cases than the ROCC operator, which justifies its 
relevance. 

Relation sequence modification with addition (RSMA): This operator does the 
opposite of RSMD. The number of mutants created depends on the number of 
outgoing relations of the class obtained with the original transformation. 

Example: a relation is added: A.c becomes A.c.d for example. Only one mutant 
is created because the class C has a single outgoing relation. 

This operator leads to the same cases than the ROCC operator, which justifies its 
relevance. 
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Fig. 4.  Metamodel example 

Mutation operators related to the filtering 
Filtering manipulates collections to select only the elements useful for the transfor-
mation. In a general way, a filter may be considered as a guard on a collection, 
depending on specific criteria. Two types of filtering are considered. First, instances 
of a given class may be selected in function of their properties (attributes…). That’s 
the property filtering. The second one can select some instances among a collection of 
instances of generic classes. That’s the type filtering. 
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Collection filtering change with perturbation (CFCP): This operator aims at modi-
fying an existing filtering, by influencing its parameters. One criterion could be a 
property of a class or the type of a class; this operator will disturb this criterion. 

 Example: in our transformation UML to RDBMS, this operator generates a mutant 
which filters depending on a wrong stereotype instead of the “persistent” one. 
Filtering depending on the type of the classes could also be disturbed in the Figure 4 
example. The transformation could act on a collection of the generic class E. The 
instances in this collection are of type E, B, C or F (the classes of its children). If a 
filtering on this collection selects only the instances of B, this operator creates three 
mutants: one selects the instances of C, another the instances of E and the last the 
instances of F. 

Two kinds of filtering are considered. In the simplest case, the filtering acts on a 
collection of instances of the same class, and depends on one of its properties. Then it 
is viable because the rest of the transformation won’t be influenced. Indeed, the 
expected erroneous collections just have a different size. Secondly, we can consider 
the filtering depending on the type. To filter a collection of a generic class depending 
on this class or any of the classes of its children makes no difference. All these classes 
share the same inherited properties (attributes, methods, relations), so the fault 
injected by this operator will not be discovered. 

Collection filtering change with deletion (CFCD): This operator deletes a filter on a 
collection; the mutant returns the collection it was supposed to filter. 

Example: in the UML to RDBMS example, only persistent classes are used. The 
navigation provides all the classes and the filtering selects the persistent ones to create 
correspondent tables. The operator suppresses the filtering and the transformations 
will create tables for all classes, even the ones that are not persistent. It could be a 
filtering depending on the class types: the filtering of a collection of classes of type E 
and its specialization classes could be useful to select only the A instances. The 
mutant will kept all the instances without type consideration. 

This operator leads to the same cases than the CFCP operator, which justifies its 
relevance. 

Collection filtering change with addition (CFCA): This operator does the opposite 
of CFCD. It uses a collection and processes a useless filtering on it. This operator 
could return an infinite number of mutants, we have to restrict it. We choose to take a 
collection and to return a single element arbitrarily chosen.  

Example: we do not need to illustrate this one because of its clearness. 
This operator leads to the same cases than the CFCP operator, which justifies its 

relevance. 

Mutation operators related to the creation 
These operators are based on two abstract operations: the creation of the output model 
elements and the creation part of the modification operation. 

Class’ compatible creation replacement (CCCR): This operator replaces the cre-
ation of an object by the creation of an object of a compatible type. It could be an 
instance of a child class, of a parent class or of a class with a common parent.  
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Example: if the transformation creates an instance of B (one child of E), then the 
operator creates three mutants: one creating an instance of C, one an instance of F, the 
last an instance of E. 

This operator is really interesting because the wrong created class and the right one 
have common inherited properties (relations, methods and attributes), then the rest of 
the transformation could be not affected and the fault is not detected. 

Classes’ association creation deletion (CACD): This operator deletes the creation of 
an association between two instances. 

Example: when the transformation creates the relation b1 between an instance of A 
and an instance of B, the corresponding mutant does not create this relation. 

If the relation not created has the cardinality 1 in the metamodel (or a bigger one 
fixed) then its absence can affect the rest of the transformation. But if the cardinality 
is n, then the transformation will not much be affected. The model can have an 
instance of A connected towards several instances of B with relations b1. If one 
relation is not created, the navigation A.b1 will just return a collection deprived of 
one element, without detectable consequence. 

Classes’ association creation addition (CACA): This operator adds a useless cre-
ation of a relation between two class instances of the output model, when the 
metamodel allows it. 

In our example, the metamodel (Figure 4) allows three different relations between 
A and B. Then if the transformation manipulates instances of A and B then the 
operator generates three mutants, each one creating one of the relations b1, b2, b3 
between A and B, even if one of them already exists (then overwritten relation could 
point to a different instance that the original one). 

The errors injected by this operator are not easily detectable: collections will just 
have one item added and relations of cardinality 1 will just be created or overwritten. 

These faults are directly linked to the way we design model transformations which 
are divided following the four abstract operations (navigation, filtering, creation, 
modification). These operators aim to generate viable mutants with pertinent faults to 
improve the value of the mutation analysis. This allows improving test dataset 
capacity to detect the faults of the programmer. 

5   Examples  

In this section, we present how two of our mutation operators are implemented in 
different languages. This reveals that the distance between the specification of a 
semantic mutation operator and its implementation varies with the model transfor-
mation language. This also emphasizes the need to present a semantic vision of the 
mutation analysis in model oriented programming instead of a syntactic one directly 
associated to specific languages. 

We use samples of a model transformation written for the workshop MTIP (part of 
the MoDELS 2005 Conference). We selected three different languages to illustrate 
the different implementations of two mutation operators (CFCP and CFCD). The 
model transformation studied is quite similar to the UML to RDBMS transformation 
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used in this paper: we study the filtering operation which selects the persistent classes 
to create correspondent tables. 

The mutation operator CFCP will perturb the filter. In this example, the mutation 
operator takes the negation of the filtering condition: the non persistent classes are 
selected. More complex perturbations may be implemented (e.g. replacing is_ persistent 
with any other Boolean attribute of the class).  The mutation operator CFCD will delete 
the filtering, tables are created for all the classes. Due to the fact the example is very 
simple, the seeded faults would be easily detected with a simple oracle function.  

5.1   Operator Implementation with an Imperative Model Transformation 
Written in Kermeta 

The transformation written in Kermeta is published in [5]. The excerpt is: 

getAllClasses(inputModel) 
    .select{c|c.is_persistent} 
    .each { c |  var table:Table init Table.new 
      Table.name:=c.name 
      Class2table.storeTrace(c,table) 
      Result.table.add(table) 
 } 

In this example, the filtering (on the collection elts) is just a conditional expression, 
line 2. If we apply the CFCP operator, a mutant is generated with the code: 

getAllClasses(inputModel) 
    .select{c|not c.is_persistent} 
    .each { c |  var table:Table init Table.new 
      Table.name:=c.name 
      Class2table.storeTrace(c,table) 
      Result.table.add(table) 
 } 

If we apply the CFCD operator, a mutant is generated with the code: 

getAllClasses(inputModel) 
    .each { c |  var table:Table init Table.new 
      Table.name:=c.name 
      Class2table.storeTrace(c,table) 
      Result.table.add(table) 
 } 

In Kermeta, filtering a collection is really simple because the operation select has 
this role. So mutation operators related to the filtering are quite simple to implement. 

5.2   Operator Implementation with a Declarative Model Transformation 
Written in Tefkat 

The transformation written in Tefkat is published in [6]. The sample is: 

RULE ClassAndTable(C, T) 
  FORALL Class C { 
    is_persistent: true; 
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    name: N; 
  } 
  MAKE Table T { 
    name: N; 
  } 
  LINKING ClsToTbl WITH class = C, table = T 
; 

In this example the filtering (on the collection elts) is just a conditional expression, 
line 3. If we apply the CFCP operator, a mutant is generated with the code: 

RULE ClassAndTable(C, T) 
  FORALL Class C { 
    is_persistent: false; 
    name: N; 
  } 
  MAKE Table T { 
    name: N; 
  } 
  LINKING ClsToTbl WITH class = C, table = T 
; 

If we apply the CFCD operator, a mutant is generated with the code: 

RULE ClassAndTable(C, T) 
  FORALL Class C { 
    name: N; 
  } 
  MAKE Table T { 
    name: N; 
  } 
  LINKING ClsToTbl WITH class = C, table = T 
; 

With this declarative language, code modifications are also relatively simple. The 
rules are written close to the transformation design. Mutation operator implementation 
does not affect many statements of code. 

5.3   Operator Implementation with a Language Not Devoted to the MDE, Java 

We wrote the entire transformation using Eclipse Modeling Framework (EMF). The 
sample we are interested in is: 

Vector cls = getClasses(modelUse); 
Iterator itCls = cls.iterator(); 
while (itCls.hasNext()){ 
  Class c = (Class)(itCls.next()); 
  if (not c.is_persistent){ 
      cls.remove(c); 
  } 
} 
createTables(cls); 
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In this example the filtering (on the collection cls) is implemented from line 2 to 9. 

If we apply the CFCP operator, a mutant is generated with the code: 

Vector cls = getClasses(modelUse); 
Iterator itCls = cls.iterator(); 
while (itCls.hasNext()){ 
  Class c = (Class)(itCls.next()); 
  if (c.is_persistent){ 
      cls.remove(c); 
  } 
} 
createTables(cls); 

If we apply the CFCD operator, a mutant is generated with the code: 

Vector cls = getClasses(modelUse); 
createTables(cls); 

If the CFCP operator modifies only one statement, the CFCD one affects a larger part 
of the program. In Java, the distance between the specification of the mutation 
operator and their implementation can be higher. 

5.4   Implementing Semantic Mutation Operators 

The feasibility of the implementation depends on the operators and the language.  
To have a comparison basis with existing mutation tools (MuJava [4]), we applied 
manually the operators on the Java implementation and we get the following results: 

 RSCC ROCC RSMD RSMA CFCD CFCP CFCA CACD CACA CCCR Total 
#mutants 5 13 2 7 2 6 7 3 1 0 46 

implementation
difficulty 

A A A A A B B A C B  

The first line presents the number of generated mutants for each operator (46 
mutants were generated), and the second line gives a qualitative estimate of the 
difficulty for seeding the program per operator. An “A” means that the operator is 
easy to implement, a “B” that it is difficult and a “C” that it forces a very careful 
analysis of the code. Depending on the target language, this difficulty may be 
different, but we believe that it still corresponds to the difficulty to automate the fault 
injection with a dedicated tool. 

With MuJava, 96 mutants were generated and 19 were not viable (detected at 
compile or runtime). With the specific mutants, 2 were not viable among the 46. 
Combining classical and dedicated mutants would allow a more complete verification 
of the quality of a test dataset. Classical mutant operators capture simple program-
ming faults which still exists in any programming language, but the semantic 
operators go further and improve the level of confidence in the dataset by capturing 
fault related to the MDD. 
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6   Related Work 

Several works consider model transformations as an essential feature in model driven 
development (MDD) [7, 8]. However, there are few works concerned with the 
validation of these particular programs. 

As stated earlier, the validation of model transformations has not been studied 
much yet. In [9], the authors present the testing issues they have encountered when 
developing a model transformation engine, and what solutions they have adopted. 
They note the similarity between this task and that of testing transformations 
themselves, and address a number of mainly technical issues associated with using 
models as test data. In [10], Lin et al., identify all the core challenges for model 
transformation testing, and propose a framework that relates the different activities. 
The authors focus more particularly on the problem of model comparison which is 
necessary for the comparison of models produced by the original program and the 
mutants. They give a first algorithm inspired by graph matching algorithms. In [11], 
Küster considers rule-based transformations and addresses the problem of the 
validation of the rules that define the model transformation, i.e. syntactic correctness 
and termination of the set of rules. In [12], we looked at the problem of test data 
generation for model transformation and proposed to adapt partition testing to define 
test criteria to cover the input metamodel (that describes the input domain for a 
transformation). 

Mutation analysis has often been studied in classical and object oriented programs, 
like Java [2, 4]. In [13], authors studied how to apply mutation to components’ 
interfaces. They do not base their analysis at the code implementation level of a 
component, but at its interface level. In [14], mutation analysis is studied in a UML 
context. The idea is to propose a taxonomy of faults when designing UML class 
diagrams.  The work presented in this paper focuses on the specific faults related to 
model transformations and not on the way models may be faulty. 

7   Conclusion and Future Work 

The approach presented in this paper aims at adapting mutation analysis for building 
trust into model transformation programs using this technique. By measuring the 
quality of a test dataset with mutation, we seek to build trust in a model transfor-
mation passing those tests. To adapt mutation analysis, we first studied the main 
activities involved in a model transformation and deduced some categories of faults a 
programmer may do. Mutation operators have been proposed for the specific 
paradigm of model transformation and illustrated on several implementations of the 
same model transformation. 

Further work will consist in addressing the issue of the operators implementation  
in a tool (for a well-chosen model transformation language) and in conducing  
experi-mental studies for validating the relevance of mutation operators to the MDD 
context.  
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