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Mutation bias reflects natural selection in 
Arabidopsis thaliana

J. Grey Monroe1,2 ✉, Thanvi Srikant1, Pablo Carbonell-Bejerano1, Claude Becker1,10, 
Mariele Lensink2, Moises Exposito-Alonso3,4, Marie Klein1,2, Julia Hildebrandt1, 
Manuela Neumann1, Daniel Kliebenstein2, Mao-Lun Weng5, Eric Imbert6, Jon Ågren7, 
Matthew T. Rutter8, Charles B. Fenster9 & Detlef Weigel1 ✉

Since the first half of the twentieth century, evolutionary theory has been dominated 
by the idea that mutations occur randomly with respect to their consequences1.  
Here we test this assumption with large surveys of de novo mutations in the plant 
Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less 
often in functionally constrained regions of the genome—mutation frequency is 
reduced by half inside gene bodies and by two-thirds in essential genes. With 
independent genomic mutation datasets, including from the largest Arabidopsis 
mutation accumulation experiment conducted to date, we demonstrate that 
epigenomic and physical features explain over 90% of variance in the genome-wide 
pattern of mutation bias surrounding genes. Observed mutation frequencies around 
genes in turn accurately predict patterns of genetic polymorphisms in natural 
Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind 
patterns of sequence evolution around genes in natural accessions is supported by 
analyses of allele frequencies. Finally, we find that genes subject to stronger purifying 
selection have a lower mutation rate. We conclude that epigenome-associated 
mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, 
challenging the prevailing paradigm that mutation is a directionless force in evolution.

The random occurrence of mutations with respect to their conse-
quences is an axiom upon which much of biology and evolutionary 
theory rests1. This simple proposition has had profound effects on 
models of evolution developed since the modern synthesis, shaping 
how biologists have thought about and studied genetic diversity over 
the past century. From this view, for example, the common observation 
that genetic variants are found less often in functionally constrained 
regions of the genome is believed to be due solely to selection after ran-
dom mutation. This paradigm has been defended with both theoretical 
and practical arguments: that selection on gene-level mutation rates 
cannot overcome genetic drift; that previous evidence of non-random 
mutational patterns relied on analyses in natural populations that were 
confounded by the effects of natural selection; and that past proposals 
of adaptive mutation bias have not been framed in the context of poten-
tial mechanisms that could underpin such non-random mutations3–6.

Yet, emerging discoveries in genome biology inspire a reconsidera-
tion of classical views. It is now known that nucleotide composition, 
epigenomic features and bias in DNA repair can influence the likelihood 
that mutations occur at different places across the genome7–13. At the 
same time, we have learned that specific gene regions and broad classes 
of genes, including constitutively expressed and essential housekeep-
ing genes, can exist in distinct epigenomic states14. This could in turn 

provide opportunities for adaptive mutation biases to evolve by cou-
pling DNA repair with features enriched in constrained loci2. Indeed, 
evidence that DNA repair is targeted to genic regions and active genes 
has been found15–20. Here we synthesize these ideas by investigating 
the causes, consequences and adaptive value of mutation bias in the 
plant Arabidopsis thaliana.

De novo mutations in Arabidopsis
The greatest barrier to investigating gene-level mutation variability 
has been a lack of data characterizing new mutations before they 
experience natural selection. We addressed this limitation by compil-
ing large sets of de novo mutations in A. thaliana (hereafter referred 
to as Arabidopsis), for which there is rich information on sequence 
and epigenomic features plausibly linked to mutation rates. We first 
reanalysed existing Arabidopsis mutation accumulation lines12, com-
bining putative germline and somatic mutations (Fig. 1a, Extended 
Data Figs. 1, 2, Supplementary Data 1; Methods). A filtering pipeline 
to eliminate false positives and based on mapping quality, depth and 
variant frequency retained less than 10% of called variants in a final 
high-confidence set of mutations. We found no evidence of selec-
tion on these mutations. The germline mutations had accumulated 
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in randomly chosen single-seed descendants, so very few mutations, 
only those causing inviability or sterility, should have been removed 
by selection12. Somatic mutations experience even less selection21,22. 

Therefore, as expected, non-synonymous changes and premature 
stop codons accounted for a greater share of variants than in natural  
populations, and their frequencies were indistinguishable from a 
null model of random mutation. We also confirmed that there was no 
bias in detecting non-synonymous mutations when comparing genes  
predicted to be sensitive or insensitive to mutation (Fig. 1b).

Epigenome-mediated mutation bias
We tested whether the location of mutations in our dataset was associ-
ated with epigenomic features, focusing on biochemical properties 
previously linked to mutation: gene expression, GC content, cyto-
sine methylation, histone modifications and chromatin accessibility 
(Fig. 1c). We built linear models of mutation frequencies in genic regions 
as a function of these features across the genome (Fig. 1d; Methods).

These models revealed features positively and negatively associated 
with mutations, with several having been already linked to mutagenesis 
or DNA repair (Fig. 1e). For example, the negative relationship between 
GC content and mutation23 is consistent with GC-biased gene conver-
sion24 and reduced DNA denaturation in GC-rich regions25. Likewise, 
previous work has linked H3K4me1 to genome stability, DNA repair and 
lower mutation rates26–31. By contrast, methylated cytosines correlate 
with elevated mutation rate, consistent with the effects of cytosine 
deamination12,32, while highly accessible chromatin regions (for exam-
ple, transcription factor-binding sites) can impair nucleotide excision 
repair33. In conclusion, we uncovered associations between mutation 
frequencies and biochemical features known to affect DNA repair and 
vulnerability to damage.

We note in advance here that all downstream analyses led to the same 
conclusions for single-nucleotide variants (SNVs) and insertions and 
deletions (indels), or for germline and somatic mutations. All were 
less frequent in gene bodies and essential genes, and we therefore 
report combined results. Our conclusions also did not change when 
we repeated the analyses after training our initial epigenome predic-
tion model on non-coding regions only. Finally, we confirmed that 
observed mutation biases could not be explained by variation in read 
depth, mappability, the distribution of false positives or selection on 
mutations (Extended Data Fig. 3).

Lower mutation rate in gene bodies
We calculated predicted mutation probabilities (predicted mutations 
per base pair) as a function of epigenomic features around genes and 
found that mutation rates were lower within gene bodies (Fig. 2a). 
These predictions were confirmed by observed mutations in multi-
ple independent datasets (Fig. 2b, Supplementary Data 1). We called 
mutations in new Arabidopsis mutation accumulation populations, 
the largest reported to date: germline and somatic mutations in  
400 lines established from eight genetically diverse founder geno-
types, four each from the extreme North and South of Europe. Observed 
distributions of germline and somatic mutations were very similar 
to epigenome-predicted mutation rates. These data also provided 
evidence for genetic variation in mutation bias, raising the possibility 
of mutation bias evolvability (Extended Data Fig. 4). Somatic variants 
identified from 10 rosettes and from reanalysing deep sequencing data 
of 64 leaves in two Arabidopsis plants21 further confirmed predicted 
patterns, as did previously discovered germline mutations in a bot-
tlenecked Arabidopsis lineage32 (Extended Data Figs. 3, 4).

By combining mutation datasets, we found that the frequency of 
mutation was 58% lower in gene bodies than in nearby intergenic space. 
Epigenome-predicted mutation probabilities explained over 90% of 
the variance in the pattern of observed mutations around gene bodies 
(Fig. 2a, b, Extended Data Fig. 5). Since only 20–30% of gene body sites 
are estimated to be subject to selection, mutation bias in genic regions 
could affect sequence evolution around genes more than selection34.
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Fig. 1 | Identifying epigenomic and other features associated with 
mutations in Arabidopsis. a, Experimental design for identifying germline 
and somatic mutations in the main dataset12. b, Relaxed purifying selection in 
de novo mutation calls: rates of non-synonymous (non-syn) and stop codon 
variants (stop) as compared with polymorphisms detected in 1,135 natural 
accessions from the 1001 Genomes (1001G) project35 and to a null model based 
on mutation spectra and nucleotide composition of coding sequences. 
Comparison of de novo mutations between genes predicted to have or not have 
lethal effects when mutated is also shown37. P values from χ2 test; *P < 0.05.  
NS, not significant. c, Genome-wide distributions in gene body density, 
observed mutation rates and candidate predictive features in relation to 
transcription start sites (TSS) and transcription termination sites (TTS). Darker 
shading represents greater density. SNV, single-nucleotide variant; CHGm, 
CHHm, CGm, methylation in the CHG, CHH and CG contexts, respectively.  
d, Modelling approach to predict mutation probability from a range of 
features. ATAC-seq, assay for transposase-accessible chromatin using 
sequencing; AIC, Akaike information criterion. e, Predictive models and 
t-values of predictor variables from the generalized linear model.
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Genetic diversity in a global set of Arabidopsis accessions35 sup-
ported these results (Fig. 2c, d). Over 90% of the variance in polymor-
phism levels found around gene bodies could be explained by our 

experimentally observed mutation rates (Extended Data Fig. 5). To 
determine whether low levels of polymorphism in gene bodies were 
indeed caused by reduced mutation rather than purifying selection, 
we analysed the site frequency spectrum. Theory shows that purifying 
selection causes an enrichment of rare alleles (reduced frequency of 
deleterious variants), whereas site frequency spectrum scales with muta-
tion rate such that lower mutation rate causes a depletion of rare alleles 
(fewer young alleles)36. Our analysis of the site frequency spectrum 
statistic Tajima’s D around genes confirmed a depletion of rare alleles 
in gene bodies (less negative D), consistent with a reduced mutation 
rate. We validated this inference with extensive forward population 
genetic simulations (Extended Data Fig. 6). In conclusion, evolution 
around genes in Arabidopsis appears to be explained by mutation bias 
to a greater extent than by selection.

Gene structure and mutation
We further discovered emergent relationships between gene structure 
and mutation rate (Extended Data Fig. 7). Owing to the distribution of 
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epigenomic features along gene bodies, mutation probabilities are 
highest in extreme 5′ and 3′ coding exons. Natural polymorphisms in 
Arabidopsis and Populus trichocarpa showed a similar pattern. Consist-
ent with the effects of mutation bias, D was more negative in peripheral 
exons. The predicted mutation rate of coding regions was 28% and 39% 
higher in genes annotated as lacking 5′ untranslated regions (UTRs) and 
3′ UTRs, respectively. The inferred effect size of 5′ UTRs and 3′ UTRs on 
coding-exon mutation probabilities and polymorphism was greatest in 
extreme 5′ and 3′ coding exons. UTR lengths were negatively correlated 
with mutation probabilities and polymorphisms in peripheral coding 
exons. Mutation probabilities were also 90% greater in genes lacking 
introns and lower in genes with more (r = −0.34) and longer (r = −0.24) 
introns. These patterns were mirrored by patterns of polymorphism 
and Tajima’s D. In conclusion, an unexpected emergent effect of UTRs 
and introns in Arabidopsis appears to be lower mutation rates in cod-
ing regions.

Fewer mutations in essential genes
We next investigated mutation rates in relation to gene functions, 
discovering that genes with the lowest epigenome-predicted muta-
tion rates were enriched for conserved biological functions (for 
example, translation). By contrast, genes with the highest predicted 
mutation rates had specialized functions (for example, environmental 
response) (Fig. 3a). Comparing genes whose effects have been meas-
ured with knockout experiments37 confirmed that essential genes are 
enriched for epigenomic features associated with low mutation, and, 
as predicted, observed mutation rates were significantly lower in the 
coding regions of essential genes. By contrast, genes with environ-
mentally conditional functions had the highest mutation rates. Intron 
mutations showed the same pattern, confirming that these results 

are not due to selection on coding sequences biasing our mutation 
datasets (Fig. 3c). We found no evidence that reduced mutation rate 
in essential genes could be explained by the potential intrinsic muta-
tional properties of CG methylation, expression level or GC content. 
Instead, the observed 37% reduction in mutation rates in essential 
genes is consistent with a reduction in mutation, plausibly explained 
by their enrichment for low-mutation-associated epigenomic features  
(for example, H3K4me1).

These results were further supported by our discovery of reduced 
mutation rate in genes with lethal knockout effects38 and broadly 
expressed genes39. Again, these results were consistent with epigenomic 
profiles (Extended Data Fig. 8). In conclusion, we find that genes with 
the most important functions experience reduced mutation rate, as 
predicted by their epigenomic features.

Reduction in mutation load
Comparing predicted mutation rates with signatures of evolution-
ary constraint revealed that genes subject to purifying selection are 
enriched for epigenomic features associated with low mutation rate 
(Fig. 4a, b). We confirmed these predictions with our dataset of empiri-
cal mutations—mutation rate was significantly correlated with meas-
ures of evolutionary constraint on coding and regulatory function 
(Fig. 4a, c). These patterns were replicated in analyses of mutations in 
introns, where selection is weaker than in exons, further indicating that 
results are not due to selection biasing our mutation datasets. These 
findings demonstrate that genes subject to stronger purifying selec-
tion are maintained in epigenomic states that underlie a significant 
reduction in their mutation rate (Extended Data Fig. 9). In conclusion, 
mutation bias acts to reduce levels of deleterious variation in Arabi-
dopsis by decreasing mutation rate in constrained genes.
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Evolution of mutation bias
Our findings reveal adaptive mutation bias that is mediated by a link 
between mutation rate and the epigenome. This is mechanistically 
plausible in light of evidence that DNA repair factors can be recruited by 
specific features of the epigenome8. Hypomutation targeted to features 
enriched in functionally constrained loci throughout the genome would 
reduce the relative frequency of deleterious mutations. The adaptive 
value of this bias can be conceptualized by the analogy of loaded dice 
with a reduced probability of rolling low numbers (that is, deleterious 
mutations), and thus a greater probability of rolling high numbers (that 
is, beneficial mutations) (Fig. 4d).

This intuitive model fits established theory showing that adaptive 
mutation bias could evolve despite drift when the length of sequence 
affected (Lsegment) is large2,3,5,40. While this criterion can rarely be satis-
fied for single-gene modifiers, it can be if the mutation is suppressed 
in many constrained loci. For example, the total sequence length of the 
coding regions of essential genes enriched for H3K4me1 is three times 
the estimated minimum Lsegment required for targeted hypomutation 
to evolve in Arabidopsis, assuming a 30% reduction in mutation rate 
(Extended Data Fig. 10). Thus, while perhaps initially surprising, our 
synthesis between epigenomics and population genetic theory pre-
dicts that the observed biases could readily arise via natural selection2.

Conclusions
While it will be important to test the degree and extent of mutation 
bias beyond Arabidopsis, the adaptive mutation bias described here 
provides an alternative explanation for many previous observations in 
eukaryotes, including reduced genetic variation in constrained loci41 
and the genomic distributions of widely used population genetic sta-
tistics42. Since mutational biases are a product of evolution, they could 
differ between organisms, potentially explaining differences in the 
distribution of fitness effects of new mutations among species43,44. 
Finally, because epigenomic features are plastic, epigenome-associated 
mutation bias could even contribute to environmental effects on muta-
tion45. Our discovery yields a new account of the forces driving patterns 
of natural variation, challenging a long-standing paradigm regarding 
the randomness of mutation and inspiring future directions for theo-
retical and practical research on mutation in biology and evolution.
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Methods

Identification of de novo mutations in A. thaliana
Col-0 mutation accumulation lines. Our training set of mutations 
was identified from 107 mutation accumulation lines of the A. thaliana 
Col-0 accession, which is the basis of the A. thaliana TAIR10 refer-
ence genome sequence12. The lines had been previously grown for  
24 generations of single-seed descent before sequencing with 150-bp 
paired-end reads on the Illumina HiSeq 3000 platform, of pools of 
approximately 40 seedlings of each line from the 25th generation 
(Fig. 1a). Seedlings were sampled at the four-leaf stage, at 2 weeks of 
age. Variants were identified with GATK HaplotypeCaller12. In many 
organisms, germline mutations are primarily influenced by processes 
specific to reproductive organs10. Because plants may lack a com-
pletely segregated germline46, we hypothesized that mechanisms that 
influence local mutation rates in the germline may be reflected in the 
distribution of somatic mutations as well, or at least that the processes 
governing mutation rate variability across the genome may be similar 
in germline and somatic tissue. Therefore, in addition to the original 
variants called12, we implemented a custom filtering pipeline to iden-
tify a high-confidence set of additional de novo mutations (Extended 
Data Fig. 1). This set included, in addition to somatic variants, germline 
variants that had not been called in the original analyses12. Somatic 
mutations were previously excluded because they appear as heterozy-
gous calls12. Germline mutations were previously excluded if at least 
1 out of the 107 lines also included a putative somatic mutation at the 
same position12. On the basis of previously reported germline muta-
tion rates (1–2 per genome and generation) and with the knowledge 
that these lines were self-fertilized each generation, we expected the 
seedlings that were sequenced to be segregating for 2–4 additional het-
erozygous germline variants, which would have been called as somatic  
mutations by our pipeline (approximately 2–5% of putatively somatic 
mutations). Because we combined putative somatic and germline 
mutations to characterize the mutational landscape of the A. thaliana 
genome, this did not have an obvious effect on our results.

Testing for mutation calling artefacts by resequencing ten siblings 
of a single-mutation accumulation line. To test for the possibility that 
our results were in part artefacts of the pooled-seedling sequencing 
approach12, we resequenced entire rosettes of individual plants that 
were sibling from the same mutation accumulation line (#73) and asked 
whether the distribution of called variants (that is, putative somatic 
mutations around TSS and TTS) was similar to the patterns seen with the 
seedling pools of the 107 individual lines described in the preceding sec-
tion (Extended Data Fig. 6). Specifically, we grew 10 siblings of line #73 
and extracted DNA from 3-week-old whole rosettes. Barcoded PCR-free 
libraries for the 10 siblings were sequenced, with 150-bp paired-end 
reads, at approximately 60× depth each on a single lane of the Illumina 
HiSeq 3000 platform. Additionally, for one sibling, the same library 
was sequenced in an independent lane at approximately 600× depth. 
After adapter and quality trimming with cutadapt (version 2.3) and 
removing duplicates with samtools markdup (version 1.10), reads were 
aligned to the TAIR10 reference genome with bwa-mem (version 0.7.17) 
and variants were called independently for each sample with GATK 
HaplotypeCaller version 4.1.0.

Measuring the effects of mappability of reads. We wanted to ensure 
that variation in mappability could not explain the observed distribu-
tion of de novo variants. To evaluate the possibility that results were 
an artefact of bias in mappability across gene regions, we calculated 
mappability for k = 100, e = 1, across the A. thaliana reference genome 
using GenMap47. We then plotted and visualized mappability around 
TSSs and TTSs to confirm that differences in mappability were not the 
same as the signals of mutation bias detected in our numerous datasets 
of de novo mutation. While we did not see any evidence that mappability 

bias covaried with patterns of mutation bias, for building our predictive 
model of mutation rate as a function of epigenomic and other features, 
we still chose to filter out variants called in regions of poor mappability 
(±100 bp of mappability < 1), as our analysis of resequenced siblings 
suggested that variants called in low-mappability regions are more 
likely to be false positives (since variants called in many independent 
lines had lower mappability).

Simulating reads and identifying true false positives. To further rule 
out artefacts, we calculated the expected distribution of false positives 
using simulated short reads. We simulated Illumina reads based on the 
TAIR10 reference genome using ART48 with the following parameters:  
-l 150 -f 30 -m 500 -s 30. Reads were mapped to the TAIR10 genome with 
NextGenMap, the same caller as used in the original calling of muta-
tion accumulation lines49, and variants were called with GATK Haplo-
typeCaller. This was repeated for a total of 1,000 simulated genomes. 
Because these are simulated reads, all variants that are called must be 
false positives. To test the possibility that the main results found in 
this study, such as elevated mutation and polymorphism upstream of 
TSSs, are artefacts of bias resulting from Illumina sequencing (which 
is included in simulations) or from mapping error (which is captured 
by mapping the simulated reads), we plotted the distributions of false 
positives around these regions to confirm that the distribution of false 
positives was more similar to likely false positives (for example, called 
in many lines) and unlike the higher confidence variants called in real 
sequencing data.

Identification of de novo mutations in a new A. thaliana 
mutation accumulation experiment
To validate our predictive model of the mutation probability score, 
we used a second A. thaliana mutation accumulation experiment 
descended from eight founders collected in natural environments50. 
The lines were grown for seven to ten generations of single-seed descent 
before 150-bp paired-end read Illumina sequencing of pools of 40 seed-
lings. The specifics of the populations were as follows: founder CN1A18: 
56 lines for 10 generations; founder CN2A16: 51 lines for 10 generations; 
founder SJV12: 48 lines for 7 generations; founder SJV 15: 36 lines for  
7 generations; founder RÖD4: 50 lines for 8 generations; founder RÖD6: 
50 lines for 8 generations; founder SB4: 53 lines for 8 generations; and 
founder SB5: 56 lines for 8 generations. Mutations were identified as 
described in ref. 11. Briefly, raw reads were mapped to the TAIR10 refer-
ence genome, variants were called using GATK HaplotypeCaller, merged 
with the GenotypeGVCFs tool and filtered by variant quality (QD > 30) 
and read depth (DP > 3). A germline mutation was called if a single muta-
tion accumulation line per founder population had a homozygous alter-
native allele. Somatic mutations were called as heterozygous variants 
found in only one of the mutation accumulation lines derived from a  
single founder genotype. This should remove any true heterozygous 
calls, variants between cryptic duplications in the founder, and low 
confidence calls, as suggested by our preceding analyses by resequenc-
ing siblings from the original mutation accumulation experiment.

Identification of de novo somatic mutations in a resequencing 
dataset of A. thaliana leaves
To further test our power to predict the distribution of de novo muta-
tions in an independent experiment, we used published data gener-
ated from Illumina sequencing of 64 samples of leaf tissue (rosettes 
and cauline leaves) of two Col-0 plants21. Raw fastq files were down-
loaded from NCBI and forward reads were mapped twice to the TAIR10  
reference genome using bwa-mem (bwa mem ${sample}_R1.fastq.gz 
${sample}_R1.fastq.gz), and duplicate reads (that is, PCR duplicates) 
were filtered using samtools markdup. Variants for every sample were 
called with GATK HaplotypeCaller. Variants were filtered to include only 
those found in a single sample (as our previous work had already shown 
that putative somatic variants called in many independent samples tend 



to be enriched for regions of low mappability and exhibit distributions 
more similar to the expected distribution of false positives).

De novo mutations in a natural mutation accumulation lineage. We 
analysed mutations that had accumulated in a single A. thaliana lineage 
that recently colonized North America32. The 100 samples came both 
from modern populations as well as historical herbarium specimens 
and contained 8,891 new variants with at least 50% genotyping rate in 
the population. Phylogenetic coalescent analyses indicated that these 
100 samples shared a common ancestor around 1519–1660, presumably 
the ancestor that colonized North America, and thus that these lines 
have recent mutations that accumulated after a population bottleneck 
(small Ne) and therefore under weak selection32. We used these to study 
the level of polymorphisms around TSSs and TTSs in a wild population 
with a simple demographic history.

Constructing a model to predict mutation probability
Sequence and epigenomic features. We were interested in study-
ing epigenomic features plausibly linked to mutation rate16–19,28,51–55. 
To build a high-resolution predictive model of mutation rate vari-
ation, we extracted or generated data describing genome-wide se-
quence and epigenomic features. First, we calculated GC content 
(% of sequence), which can affect DNA denaturation5,25,56–58, across 
regions9,23,59–64. From the Plant Chromatin State Database, we also 
downloaded 62 BigWig formatted datasets characterizing the dis-
tribution of histone modifications14 H3K4me2, H3K4me1, H3K4me3, 
H3K27ac, H3K14ac, H3K27me1, H3K36ac, H3K36me3, H3K56ac, 
H3K9ac, H3K9me1, H3K9me2 and H3K23ac, many of which have been 
linked to mutational processes8,9,11,12,19,33,65–70. For each specific histone 
modification, depths were scaled (0 to 1) and averaged across each 
region for downstream analyses.

Col-0 cytosine methylation. Because cytosine methylation is known to 
affect mutation rates via deamination of methylated cytosines9,11,12,33,66, 
we wanted to include cytosine methylation as a predictor variable in 
our model. Methylated cytosine positions for Col-0 (6909) wild-type 
leaves were obtained from the 1001 Epigenomes dataset GSM1085222 
(ref. 71) under the file GSM1085222_mC_calls_Col_0.tsv.gz. Because the 
context of cytosines can vary and influence the functional effect of 
methylation, cytosines were further classified into three categories 
(CG/CHG/CHH) for all downstream analyses. For each region, we cal-
culated the number of methylated cytosines in each category per bp.

Chromatin accessibility. ATAC-seq can measure chromatin acces-
sibility, which also affects mutation rates9,11,12,33,66,72. Col-0 seeds were 
stratified on MS-agar (with sucrose) plates at 4 °C for 4 days in the dark. 
Plates were transferred to 23 °C long-days and kept vertically for easier 
harvesting of seedlings. On the eleventh day of light exposure, 10–20 
seedlings each from three MS-agar plates were fixed with formaldehyde 
by vacuum infiltration and stored at −80 °C.

Fixed tissue was chopped finely with 500 µl of general purpose buffer 
(GPB; 0.5 mM spermine•4HCl, 30 mM sodium citrate, 20 mM MOPS, 
80 mM KCl, 20 mM NaCl, pH 7.0, sterile filtered with a 0.2-µm filter, 
followed by the addition of 0.5% of Triton-X-100 before usage). The 
slurry was filtered through one-layered Miracloth (pore size: 22–25 µm),  
followed by filtration through a cell strainer (pore size: 40 µm) to collect 
nuclei. Approximately 50,000 DAPI-stained nuclei were sorted using 
fluorescence-activated cell sorting (FACS) as two technical replicates. 
Sorted nuclei were heated to 60 °C for 5 min, followed by centrifu-
gation at 4 °C (1,000g for 5 min). Supernatant was removed, and the 
nuclei were resuspended with a transposition mix (homemade Tn5 
transposase, a TAPS-DMF buffer and water) followed by a 37 °C treat-
ment for 30 min. 200 µl SDS buffer and 8 µl 5 M NaCl were added to 
the reaction mixture, followed by 65 °C treatment overnight. Nuclear 
fragments were then cleaned up with Zymo DNA Clean & Concentrator 

columns. 2 µl of eluted DNA was subjected to 13 PCR cycles, incorpo-
rating Illumina barcodes, followed by a 1.8:1 ratio clean-up using SPRI 
beads. Genomic DNA libraries were prepared using the same library 
preparation protocol from the Tn5 enzymatic digestion step onwards.

Each technical replicate (derived from nuclei sorting) was sequenced 
with 3.5 million 150-bp paired-end reads on an Illumina HiSeq 3000 
instrument. The reads were aligned as two single-end reads to the 
TAIR10 reference genome using bowtie2 (default options), filtered 
for the SAM flags 0 and 16 (only reads mapped uniquely to the forward 
and reverse strands), and converted separately to .bam files. The .bam 
files were merged, sorted, and PCR duplicates were removed using 
picardtools. The sorted .bam files were merged with the correspond-
ing sorted bam file of a second technical replicate (samtools merge 
--default options) to obtain a final depth of approximately 6 million 
reads for each replicate.

Peaks were called for each biological replicate using MACS2 using 
the following parameters:

macs2 callpeak -t [ATACseqlibrary].bam -c [Control_library].bam 
-f BAM --nomodel --shift −50 --extsize 100 --keep-dup=1 -g 1.35e8 -n 
[Output_Peaks] -B -q 0.05

Peak files and .bam alignment files from three biological replicates 
were processed with the R package DiffBind to identify consensus peaks 
that overlapped in at least two replicates (FDR < 0.01). Library qual-
ity was estimated by measuring the frequency of reads in peak (FRIP) 
scores for all three replicates, which were 0.36, 0.36 and 0.39, above 
the standard quality threshold of 0.3.

Gene expression. Gene expression was calculated as the mean across 
1,203 accessions71, from which we also extracted the genetic variance 
(Vg) and environmental variance (Ve) as well as the coefficient of varia-
tion (variance/mean) in expression for each gene. This dataset provided 
information for 17,247 genes with complete data.

Predictive model of mutation rates. We wanted to ask whether in-
tragenomic mutation variability in the genome could be predicted by 
features of the genome that previous work had shown to have potential 
or demonstrated relationships with mutations. To model mutation rate 
genome-wide at the level of individual genes, we created a generalized 
linear model. The response variable was the untransformed (that is, 
assuming normality, to avoid risk of increased false positives caused 
by transformation73,74) observed mutation rate across every genic fea-
ture (upstream, UTR, coding, intron and downstream). The predictor 
variables were GC content, classes of cytosine methylation, histone 
modifications, chromatin accessibility and expression of each gene. 
From this full model, a limited predictive model was selected on the 
basis of forward and backward selection with the lowest AIC value by the 
stepAIC function in R. These models were created separately for indels 
(adjusted R-squared: 0.001791; F-statistic: 34.6 on 16 and 299635 d.f.;  
P < 2.2 × 10−16) and SNVs (adjusted R-squared: 0.0009687; F-statistic: 
37.32 on 8 and 299643 d.f.; P < 2.2 × 10−16). For downstream analyses, 
we used the predicted mutation probability (the mutation probability 
score) based on these models (predicted SNVs + indels) for genes, exons 
and other regions of interest from the TAIR10 genome annotation. 
While the linear regression approach used here enables hypothesis 
testing to some extent (one can generate confidence intervals and  
P values describing the level of significance of individual effects), our 
primary goal was to create a predictive model of mutation bias as a 
function solely from genomic and epigenomic features; the causality of 
the associations uncovered in these analyses for individual predictors 
must be confirmed with future functional work.

Variance inflation factor. To test whether our results were skewed by 
overly correlated predictor variables (included in the model even after 
model reduction by minimizing AIC), we explored models where pre-
dictor variables were manually removed on the basis of their variance 
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inflation factor score. Specifically, we used the vif function from the R 
package car to calculate variance inflation factor scores for each vari-
able in our best AIC models for SNVs and indels. We then removed all 
variables with scores below 3. We recalculated mutation probability 
scores for every genomic feature. Because the resulting predicted 
mutation probability scores were very similar, with Pearson correla-
tion r = 0.95 between gene-level mutation probability scores from the 
full model and the reduced model, we report only results based on 
the full model.

Analysis of natural polymorphism rates
Rates of polymorphism among genic exons. We calculated rates 
of natural polymorphism across exons in TAIR10 gene models from 
sequence variation among 1,135 natural A. thaliana accessions35. These 
analyses revealed elevated polymorphism rates in peripheral (first and 
last) exons. To test whether this is an artefact unique to A. thaliana, 
we calculated rates of natural polymorphism across exons from se-
quence variation among 544 P. trichocarpa accessions75. Specifically, 
we downloaded VCF and annotation data from Phytozome (v3.0) and 
calculated rates of variation across exons grouped by order (from 5′ to 
3′) and total exon number.

Signatures of selection and constraint from natural populations. 
We calculated gene-level summary statistics for signatures of selection 
and constraint in the following way. Synonymous and non-synonymous 
polymorphism among natural A. thaliana accessions and divergence 
from A. lyrata (Pn, Ps, Dn and Ds, respectively) were calculated using 
mkTest.rb (https://github.com/kr-colab). The alpha test statistic for 
evidence of selection, which is a derivative of the McDonald-Kreitman 
test76–78, was calculated from these values for each gene where data were 
available (not all genes have orthologues assigned in A. lyrata) as 1 −  
(Ds × Pn)/(Dn × Ps). Positive values of alpha are conventionally interpret-
ed as evidence of positive selection because non-synonymous variants 
in genes with such values tend to become fixed. For each decile of genes 
classified according to mutation probability, we calculated the propor-
tion for which alpha is positive. Enrichment of non-synonymous vari-
ants compared to genome-wide average were confirmed by independ-
ent calculation of Waterson’s diversity estimate (θ) of non-synonymous 
variation. The frequency of loss-of-function mutations was calculated 
as before79,80, where loss of function was defined as premature stop 
codons and frameshifts disrupting at least 10% of the coding region 
of the canonical gene model. Genes experiencing purifying selection 
should exhibit lower levels of natural polymorphism than what would 
be predicted by mutation rate alone. To test this, we built a linear model 
of coding region polymorphisms as a function of predicted mutation 
rates. We calculated scaled residuals for each gene and tested whether 
they are more negative in genes expected to be under purifying selec-
tion. To estimate constraints on gene regulatory function, we looked 
at average expression across diverse genotypes. We also tested for 
relationships between predicted mutation rates and the coefficient 
of variation in gene expression, additive genetic variance for gene 
expression across diverse genotypes, and environmental variance in 
gene expression71.

Relationships between epigenomic and other features, mutation 
rates and gene function. The preceding analyses revealed significant 
associations between epigenomic and other features and signatures un-
der selection indicating that genes that experience purifying selection 
are enriched for features associated with low mutation rate. To further 
dissect the mechanistic basis of this pattern, we wanted to directly test 
for relationships between epigenomic states, mutation rates and gene 
function. We analysed gene ontology categories for genes in the top 
and bottom deciles ranked by predicted mutation rate81, reporting 
gene ontologies that were significantly enriched in these groups after 
Bonferroni adjustment of raw P values.

We also analysed a manually curated dataset of mutation-induced 
lethality obtained from phenotyping lines with loss-of-function muta-
tions37. Genes annotated as lethal effect when mutated (that is, required 
for viability) were compared with genes showing non-lethal phenotypic 
effects to assess differences in epigenomic and other features.

We analysed a dataset of phenotypes from 2,400 A. thaliana knock-
out lines38. Genes had been classified as being essential (such as an 
RNA processing gene where loss of function results in lethality82), 
causing morphological defects (for example, altered stomata and tri-
chome size), cellular biochemical defects (for example, intracellular 
transport of small molecules) and conditional defects (for example, 
effects depending on the environment). We then compared epigenomic 
and other features in essential genes to other classes of genes. These 
analyses showed that genes with essential functions were enriched for 
features associated with reduced mutation, whereas genes annotated 
as having non-essential functions were depleted for these features.

Estimating selection on different types of de novo mutations
Synonymous, non-synonymous and stop-gained variants are expected 
to have different effects on gene function, although they are of the same 
mutational class (SNVs). They are all from coding regions, which have 
an overall mutation probability that is distinct from other regions of 
the genomes, such as introns, in our model of de novo mutations. For 
comparison, we calculated the rates of synonymous, non-synonymous 
and stop-gained SNVs in natural populations of A. thaliana, which 
have been subject to long-term natural selection. We also derived an 
expected null ratio of non-synonymous to synonymous mutations using 
knowledge on the relative base composition of all coding regions in 
the reference genome, the relative proportion of coding region muta-
tions (for example, CG to TA mutations are most common), and the 
proportion of all possible codon transitions that lead to synonymous 
versus non-synonymous mutations. Ratios of non-synonymous to syn-
onymous and stop-gained to synonymous mutations were compared 
between observed de novo mutations and those observed in natural 
populations or the null expectation by chi-squared tests.

Expected non-synonymous-to-synonymous substitution ratios in 
the absence of selection. To further validate that the observed de novo 
mutations we used to train our mutation probability model were not 
subject to appreciable selection, we simulated 10,000 de novo muta-
tions across the Arabidopsis genome with custom scripts in R. Muta-
tions in coding regions were randomly assigned to non-synonymous 
or synonymous changes based on codon use and observed mutational 
spectra of coding regions. We then calculated the observed ratio of 
non-synonymous to synonymous mutations in the simulated data. 
We repeated this simulation 10,000 times to produce a distribution of 
expected non-synonymous-to-synonymous ratios. We then compared 
the non-synonymous-to-synonymous ratio in our observed de novo 
mutations to this distribution. Finally, we tested whether our observa-
tion fell within the 95% bootstrapped interval.

Expected number of synonymous mutations under random varia-
tion. Because we had found that observed mutations were less frequent 
in coding regions, we wanted to determine whether this difference 
was significantly higher than expected by chance. We therefore asked 
how the number of synonymous mutations observed compared with 
that expected under a random process, starting with a simulated set 
of random mutations across the genome. We calculated the number 
of these mutations in coding regions that are expected to lead to a 
synonymous nucleotide substitution based on codon use and observed 
mutational spectra of coding regions. We repeated this simulation 
1,000 times to generate a distribution of expected synonymous muta-
tions. Comparing our observed de novo synonymous mutations to the 
mean of this distribution, we calculated the reduction in the observed 
synonymous mutation rate.

https://github.com/kr-colab


Non-synonymous-to-synonymous ratios and mutation probabilities 
in more deleterious (‘lethal effect versus non-lethal effect’) genes. 
We wanted to test whether the rates of non-synonymous-to-synonymous 
variation were lower in genes that are predicted to experience strong-
er negative selection. We split genes with a high-essentiality and 
low-essentiality prediction score (see above) or empirically deter-
mined lethal versus non-lethal effects of loss-of-function alleles (see 
above)37. We then calculated the differences in the observed mutation 
rate between these groups of genes and compared them with a t-test. 
We also calculated the number of observed non-synonymous and syn-
onymous SNVs in these groups of genes and compared their ratios by 
a chi-squared test.

Non-synonymous-to-synonymous ratios in mutation probability 
deciles. We wanted to test whether mutation probability deciles pre-
dicted by our model differed in their rates of non-synonymous to syn-
onymous mutations in our observed de novo mutations. If there was a 
strong gradient (for example, if genes predicted to have low mutation 
rate had lower rates of non-synonymous variation than genes predicted 
to have high mutation rate), this could suggest an effect of purifying 
selection acting directly on the detected mutations. To improve the 
power to detect differences among genes differing by mutation prob-
ability scores, we also assigned mean expression values to genes for 
which expression could not be called in our expression dataset71 and 
calculated mutation probability score. We binned genes into mutation 
probability deciles and compared mutation deciles and their corre-
sponding non-synonymous-to-synonymous ratio to confirm that there 
was no relationship suggestive of selection.

Minor allele frequencies in natural populations. Our results had 
indicated that mutation rates were high upstream and downstream of 
genes relative to the gene bodies, not only in observed and predicted 
de novo mutations but also in natural polymorphisms. If this pattern 
was driven by mutation bias, we would expect to see lower minor allele 
frequencies upstream and downstream of genes, because this would 
indicate the presence of newly derived alleles from recent mutation 
rather than lower minor allele frequency caused by greater negative 
selection since we expect a priori that gene bodies (particularly cod-
ing regions whose code makes them sensitive to mutation) are subject 
to greater constraint. Conversely, lower minor allele frequencies in 
gene bodies would be consistent with the action of purifying selection 
in gene bodies, because lower allele frequencies are expected when 
negative selection had an opportunity to reduce allele frequencies. 
We therefore calculated the minor allele frequency (vcftools --freq) 
and their mean for every polymorphic position in the genome of 1,135 
natural A. thaliana accessions35 in relation to TSSs and TTSs across the 
entire genome.

Tajima’s D around gene bodies. Tajima showed that reduced muta-
tion and purifying selection, while having the same effect to reduce 
the number of polymorphisms, have opposite effects on his statistic, 
D36. That is, mutation rate has a scaling effect on D such that reduced 
mutation rates lead to less negative D, whereas purifying selection leads 
to more negative D. Therefore, analysis of D can be used to quantify the 
relative importance of these alternative, but not mutually exclusive, 
forces shaping rates of sequence evolution. D is, on average, negative 
across the A. thaliana genome, and D also scales with mutation rate. 
Thus, if D is more negative in regions with lower polymorphism, this 
could indicate that purifying selection is the dominant force underlying 
lower rates of variation. By contrast, if D is less negative in regions of 
low polymorphism, this would indicate that lower mutation rate is the 
primary force responsible for lower rates of variation. Therefore, to fur-
ther investigate whether the observed rates of polymorphism around 
gene bodies in 1,135 natural A. thaliana accessions were driven at least 

in part by mutation biases or only by selection, we calculated Tajima’s 
D (vcftools --TajimaD) in 100-bp windows across the entire genome 
and averaged these values in relation to TSSs and TTSs for every gene.  
We used bootstrapping (n = 100) to calculate the confidence interval 
(±2 s.e.m.) around this mean value.

Tajima’s D in exons. We used Tajima’s D to estimate the extent to which 
mutation bias rather than selection after random mutation could ex-
plain differences in rates of natural polymorphism in exons (elevated 
polymorphism in peripheral exons). We calculated Tajiima’s D in every 
exon and grouped genes according to their total number of exons and 
plotted the average Tajiima’s D in relation to exons ordered from 5′ to 
3′ ends. Tajima’s D was consistently more negative in peripheral exons,  
reflecting the effects of increased population mutation rate in these 
loci, so we further investigated the underlying causes by testing wheth-
er genes with and without (and longer or shorter) UTRs have differences 
in Tajima’s D in peripheral exons. Finally, we asked whether genes with 
more and longer introns have less negative Tajima’s D values, to test 
whether the lower rates of polymorphism observed in these genes was 
caused at least in part by reduced mutation rate, rather than selection 
after random mutation.

Simulations of mutation bias and selection using SLiM
Our observation that Tajima’s D is less negative in regions of low poly-
morphism, such as gene bodies, suggested that the reduced polymor-
phism therein is caused by a lower mutation rate, consistent with the 
mutation biases that we discovered in the analysed mutation datasets. 
To verify this interpretation, we conducted simulations using the soft-
ware SLiM (v3)83. These simulations modelled genic and intergenic 
space, based explicitly on the first 100 genes on chromosome 1. For each 
simulation, we modelled a population of 1,000 individuals for 10,000 
generations. The selfing rate was assigned to 0.98, a low estimate based 
on field observations84,85. The baseline mutation rate (per base and 
per generation) was derived from the empirically measured popula-
tion mutation rate13 (from Ne = ~300,000, u = ~1 × 10−9 and adjusted for 
Ne = 1,000). Recombination rate (probability per genome per genera-
tion) was 1 × 10−4. To investigate the effects of mutation bias and selec-
tion, we assigned a scaled mutation rate in gene bodies of 0.2, 0.5 or 1, 
reflecting an 80%, 50% or 0% reduction relative to the baseline mutation 
rate in intergenic spaces. We also assigned proportions of deleterious 
mutations to be 0, 0.1 and 0.3, reflecting a 0%, 10% and 30% frequency 
of deleterious mutations independently in gene bodies and intergenic 
regions. All possible combinations of the three parameters were then 
simulated 200 times. Tajima’s D was calculated across the entirety 
of each genome in 100-bp windows using VCFtools. The position of 
each window was calculated in relation to the TSSs and TTSs of each 
gene. Counts of polymorphisms and Tajima’s D were averaged across all 
genomes in 10-bp windows for regions 3 kb upstream and downstream 
of the TSS and TTS of each gene. The variation in polymorphism level 
and Tajima’s D values were compared with theempirical observations 
of natural polymorphisms in 1,135 natural A. thaliana accessions66 
using Pearson correlation.

Relationship between mutation probability, epigenomic and 
other features, and breadth of expression across tissues
Because we found that essential genes have higher levels of epigenomic 
and other features that lower predicted mutation rates, we wanted to 
further test the hypothesis that essential housekeeping genes were also 
enriched for such features and therefore experience a subsequently 
lower probability of mutation and lower de novo mutation calls. We 
used gene expression data from 54 tissues39. We calculated the cor-
relation between the number of tissues with expression of more than 
0 and either the predicted mutation probability score or the observed 
mutations for each gene. Because these results confirmed that genes 
expressed in more tissues have lower predicted mutation probability 
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scores, we examined epigenetic features H3K4me1, H3K36me3 and 
CG methylation, which are enriched in essential genes, finding that 
genes expressed in all tissues were also enriched for these features.

Determining the effect of strong purifying selection on coding 
sequences. Our results had revealed significant biases in mutation 
probability in relation to gene bodies. Because we had found that mu-
tations were significantly higher upstream of genes and significantly 
lower within gene bodies in five independent datasets, we considered 
the possibility that this overwhelming bias was the result of extremely 
strong purifying selection on de novo mutations (that is, removal of 
lethal mutations before they could be detected by us). We therefore 
simulated 10,000 random mutations across the TAIR10 genome. If mu-
tations fell within coding regions, we randomly assigned them to be re-
moved by selection (that is, dominant lethal). For this, we explored three 
levels of selection: s = 0.01 where 1% of mutations were removed (that 
is, had lethal effects), s = 0.1 where 10% of mutations were removed, 
s = 0.2 where 20% of mutations were removed, or s = 0.3 where 30% of 
mutations were removed. While s = 0.3 represents an exceptionally and 
unexpectedly high level of selection, especially in soma, evidenced by 
empirical estimates of the extent of gene essentiality in A. thaliana, this 
served as a positive control for observing the effects of extraordinarily 
strong selection on the expected distribution of mutations in a random 
mutation model.

Comparing expected and observed levels of synonymous muta-
tion. Because we had observed a significant reduction in mutation rate 
in coding regions, we wanted to test whether this was driven only by 
functionally impactful mutation (for example, amino acid substitu-
tions). To do so, we simulated 6,182 random SNVs. For each variant, 
we asked whether it was found within the coding region of any gene. 
We counted the total number of coding region variants and multiplied 
this number with the expected fraction, 0.28, of synonymous variants 
based on A. thaliana codon usage and mutation spectrum. We iterated 
this simulation 100 times to produce a confidence interval of expected 
synonymous variants in our training set of de novo mutations.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
A complete table of called mutations is available in Supplementary 
Data 1. Genic feature (that is, upstream, UTR, intron, CDS, and so on) 
level data (mutation and epigenomic features) are available in Supple-
mentary Data 2. Gene-level data (for example, mutation, epigenomic 
and other features, function, expression and selection) are available 
in Supplementary Data 3. Derived data objects used to create figures 
can be found as Source Data for individual figures, and additional 
intermediate data files are available on GitHub (https://github.com/
greymonroe/mutation_bias_analysis). Raw mutation data used as our 
training set were deposited in Figshare (https://doi.org/10.25386/
genetics.6456065). Previous raw Illumina sequencing reads from 64 A. 
thaliana leaves are available under NCBI SRA BioProject PRJNA497989. 
Raw Illumina sequencing reads from additional mutation accumulation 
experiments (European lines) are available under NCBI SRA BioProject 
PRJNA770533. Raw reads from the ATAC-seq experiments are available 
under ENA Project PRJEB48038. Raw reads from resequencing MA73 are 
available under ENA Project PRJEB48100. Variant data of natural A. thali-
ana accessions are available at http://1001genomes.org/data/GMI-MPI/
releases/v3.1/. The TAIR10 reference genome and annotation are avail-
able at www.arabidopsis.org. The P. trichocarpa reference genome, 
annotation and variant data are available at https://phytozome-next.
jgi.doe.gov/info/Ptrichocarpa_v3_1. Chromatin state data are available 

through the Plant Chromatin State Database (http://systemsbiology.
cau.edu.cn/chromstates). Tissue-specific expression data are available 
at https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7978/. 
There are no restrictions on the availability of data used in this study.

Code availability
Functions to characterize Tajima’s D and polymorphisms in relation to 
TSSs and TTSs are available on GitHub (https://github.com/greymon-
roe/polymorphology). The annotated code for models and statisti-
cal analyses is available on GitHub (https://github.com/greymonroe/
mutation_bias_analysis).
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Extended Data Fig. 1 | Workflow and quality control of de novo mutation 
identification. a, Filtering pipeline. b, High-quality de novo mutations called  
in this study on the original mutation accumulation experiment data  
(107 replicate lineages of Col-0, total number = mutations from this study  

plus ref. 12). c, Visualization of raw data and properties of high-confidence set. 
d, Estimated probability of mutation calls being erroneous based on 
alternative and total read depths in the high-confidence set and variants 
removed by filtering.



Extended Data Fig. 2 | Summary of observed de novo mutations and 
distribution across original Col-0 mutation accumulation (MA) lines. a, 
De novo mutations detected in genic regions (genes ± 1,000 bp) in individual 
MA lines. SNVs in light blue, InDels in magenta. Our investigation was focused 
on mutations in and around genes, so for clarity mutations elsewhere (i.e., near 
centromeres) are not shown. b, Distribution of mutations across genic regions 
per 2 Mb windows. Vertical black lines in the lower plot mark the location of 
genes. c, Mutation rates in lethal- and non-lethal-effect genes (n = 27,206 genes, 

mean ± 2 s.e.m., two-sided t-test) d, Frequencies of single nucleotide 
transitions and transversions. e, Distribution of frequency of specific 
mutations across lines. f, Number of germline and somatic mutations detected 
in each MA line. g, Distribution of alternative allele read depth for putative 
somatic mutations. h, Relationship between number of detected mutations 
and total sequencing depth (total number of informative reads in variant sites) 
in MA lines. i, Size distribution of insertions and deletions.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Sequencing depth, mappability, and false positives 
do not explain observed biases in distributions of natural polymorphisms 
or observed mutations used to predict mutation probabilities.  
a, Sequencing depth around transcription start (TSS) and termination (TTS) 
sites in one randomly chosen mutation accumulation line. b, Mappability 
around TSS TTS site calculated with GenMap47. c, Rates of false positive SNP 
and InDel calls around TSS and TTS determined from 1,000 iterations of 
simulated Illumina reads. d, Simulation of effect of selection on gene bodies. 
Selection could take the form of mutations being dominant lethal or through 
somatic competition of mutations with small selection coefficients. 0 = 0%, 
0.01 = 1%, 0.1 = 10%, 0.2 = 20%, 0.3 = 30% of gene body mutations removed by 
purifying selection. 30% is estimated to be the approximate upper bound of 
constrained sites in gene bodies34. e–i, Resequencing of 10 siblings of one MA 
line from ref. 12. e, Overview of experimental design for testing the effect of 
sequencing depth on calling somatic mutations. f, Filtered heterozygous 
variants (SNVs and InDels) called in sibling #5 sequenced at ~600x depth 
overlap more with variants called from sibling #5 at ~60x sequencing depth 
than with other siblings at ~60 sequencing depth. The boxplots show the 

distribution of 20 iterations of sampling equal numbers of heterozygous 
variants (to account for differences in total number of variants called in 
different siblings) for each sibling sequenced at ~60x and compared to sibling 5 
sequenced at ~600x. Boxplots show median with maxima and minima 
reflecting interquartile range (IQR), whiskers = 1.5 * IQR (n = 20 iterations).  
g, Frequency distribution of unfiltered heterozygous variants called in 10 
siblings sequenced at ~60x depth each. Note that because these siblings are 
descendants of 25 generations of self-fertilization, the number of true 
heterozygous (inherited segregating) calls is expected to be very small 
compared to heterozygous variants that are chimeric somatic mutations.  
h, Average mappability of variants detected in different numbers of siblings 
out of the 10 sequenced siblings. i, Variants called independently in one sibling 
or, less so, in two to four siblings show signatures of mutation bias. In contrast, 
variants called in five or more siblings (which should more likely be false 
positives due to cryptic duplications or regions with poor mappability) do not 
show a biased distribution around TSS and TSS, with overall distribution 
similar to known false positives.
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Extended Data Fig. 4 | Variants called in additional mutation accumulation 
datasets. a, Germline and somatic mutations around gene regions in mutation 
accumulation lines derived from eight founder genotypes. For each founder, 
35-60 lines were propagated for 8-10 generations. b, The proportion of somatic 
variants detected in gene bodies (gene body/(gene body + upstream + 
downstream)) among descendants of the same founder. F- and p-values from 
one-way ANOVA. (n = 400 unique mutation accumulation lines, mean ± 2 

s.e.m.) c, Somatic variants detected from reanalysis of 64 individual leaves 
from two Col-0 plants21. d, Germline variants detected in a bottlenecked A. 
thaliana lineage following colonization of North America since ~1600 (ref. 32).  
e, Epigenome-predicted and observed mutation rates across all datasets for 
InDels and SNVs, comparing gene bodies (GB) with upstream/downstream 
(U/D) regions. P-values from chi-squared tests.



Extended Data Fig. 5 | Relationships between epigenome-predicted 
mutation probability, observed de novo mutations, polymorphisms in 
natural populations, and Tajima’s D in natural populations. These data 
show the quantitative relationships apparent in Fig. 2 of the main text. Each 
point reflects the value in one window of 1,200 calculated windows across all 
33,056 genes, in relation to genome-wide transcription start and termination 
sites (TSS, TTS). Error bars indicate ±2 s.e.m. confidence intervals. For 
epigenome-predicted mutation probability scores, each point reflects the 

mean ±2 s.e.m. across all genes. For observed de novo mutations, each point 
reflects the total number of mutations ±2 s.e.m. (bootstrapped). For 
polymorphisms, each point reflects the total number of variants ±2 s.e.m. 
(bootstrapped). For Tajima’s D, each point reflects the mean ±2 s.e.m. Tajima’s 
D is already predicted by existing theory to be negatively correlated with 
mutation rate, as regions with higher mutation rate will be enriched for newer 
and therefore rarer variants.
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Extended Data Fig. 6 | Effects of mutation rate and selection heterogeneity 
on polymorphisms and Tajima’s D along genes. Simulation results from 
SLiM83 for the first 100 genes of chromosome 1 using a population of 1,000 
individuals and 10,000 generations. a–c, Average correlation between 200 
permutations of simulated scenarios and observed patterns of variation in 
natural A. thaliana accessions. a, Parameter choice: Difference between 
mutation rate (dm) in gene bodies and intergenic space (e.g., 0.5 = 50% 
reduction in mutation rate) and proportion of mutations that are deleterious  
in the genic (gds) and intergenic (ids) regions. The parameter combinations 
shown in d–h are highlighted with red outlines. b, Pearson correlation 
coefficients (ppc) comparing Tajima’s D values from each simulation to that  
of observed data in natural A. thaliana accession. c, Pearson correlation 

coefficients (pcc) comparing number of polymorphisms accumulated in  
each simulation to that of observed data in wild Arabidopsis accessions.  
d–k, Examples of polymorphism (red) and Tajima’s D (blue) in relation to  
gene bodies (TSS, TTS) averaged from 200 permutations of a scenario 
approximating empirical estimates of mutation rate heterogeneity and 
selection heterogeneity between gene bodies and intergenic space. 
Parameters (see a) given for each scenario. Strong purifying selection in gene 
regions alone (with equal mutation rates between gene bodies and intergenic 
space), which also reduces levels of polymorphism in gene bodies, causes more 
negative Tajima’s D values in gene bodies, which is inconsistent with observed 
data in natural A. thaliana accessions.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Relationships between untranslated regions or 
introns and mutation rates. a, Distribution of epigenomic features in genes 
with different numbers of exons. b, Epigenome-predicted Mutation Probability 
Score (MPS), rates of natural polymorphism, and Tajima’s D in genes with 
different numbers of exons. c, Left: comparison of Mutation Probability Score 
(MPS) between genes with UTRs and those lacking 5’ or 3’ UTRs. Horizontal 
lines mark the mean difference between genes with and without UTRs. Vertical 
lines mark the mean +- confidence intervals of two-sided t-tests. Center: rates 
of natural polymorphism in natural A. thaliana accessions. Right: Tajima’s D in 
natural accessions. (n = 35,526 gene models). d, Left: Pearson’s correlation 
coefficients for relationship between predicted mutation probabilities and the 

absolute length of 5’ and 3’ UTRs. Horizontal lines mark the means, and vertical 
lines mark the mean +- confidence intervals. Center: same for rates of natural 
polymorphism in natural accessions. Right: same for Tajima’s D in natural 
accessions. (n = 35,526 gene models). e, Left: Relationships between intron 
number and total intron length with predicted mutation probabilities. Points 
indicate mean values. Center: same for rates of natural polymorphism in 
natural accessions. Right: same for Tajima’s D in natural accessions. f, Results 
for 544 Populus trichocarpa accessions75. Horizontal lines mark the means, and 
vertical lines mark the mean ± confidence intervals of two-sided t-tests 
(n = 73,013 gene models).



Extended Data Fig. 8 | Epigenomic and other features and mutation rates of 
lethal-effect and constitutively expressed genes. a, Enrichment of features 
in coding sequences of “lethal-effect” genes (n = 2,720 lethal-effect genes, 
mean ±2 s.e.m.). b, Total mutation rate (±2 s.e.m., bootstrapped) in lethal- and 
non-lethal-effect genes (n = 27,206 genes). c, Enrichment of features in coding 

sequences of constitutively (across all tissues) expressed genes (n = 9,957 
genes, mean ± 2 s.e.m.). d, Total mutation rate (±2 s.e.m., bootstrapped) in 
genes binned according to the number of tissues in which they are expressed 
(n = 25,987 genes with tissue-specific expression data)39.
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Extended Data Fig. 9 | Predicted mutation rates and evidence of selection 
on natural polymorphisms versus de novo mutations across gene regions. 
a, Relationship between Tajima’s D of gene bodies and coding region selection 
estimated by Pn/Ps (n = 21,407 genes) and b, Dn/Ds (n = 21,407 genes).  
c, Epigenome-predicted mutation probability in different gene features.  
d, Scaled residuals ((Obs-Pred)/Pred) from S ~ u. Significantly negative 
residuals in coding regions are consistent with purifying selection in natural 
populations acting on new mutations. e, Relationships between 

epigenome-predicted mutation probability and other estimates of constraint. 
Residuals between predicted mutation rate and observed mutations are 
positively correlated with predicted mutation rate indicating that genes 
subject to purifying selection are predicted to mutate less. Genes with low 
predicted mutation rates are also less likely to have alpha > 0, a measure of 
variants under positive selection. Genes with low predicted mutation rate are 
depleted in natural populations for non-synonymous variants that reach 
fixation, as measured by the Neutrality Index, and for loss-of-function variants.



Extended Data Fig. 10 | Estimates of Lsegment for different regions. a, Length 
of sequence space (Lsegment) reflecting different types of regions. b, Test of 
parameter space that satisfies population genetic theoretical predictions  
for the possibility for targeted hypomutation to evolve. OOM = orders of 
magnitude. Selection on intragenomic mutation rate variation will be 
effective5,40 when Ne * u * s * du * pd * Lsegment > 1 where Ne is the effective 
population size, u is the mutation rate, s is the average selection coefficient on 
deleterious mutations, du is the degree of change in mutation rate, pd is the 
proportion of sites subject to purifying selection, and Lsegment is the region of the 
genome affected. Assuming an effective population size of ~300,000 (ref. 86–88), 
a mutation rate of ~10−8 (ref. 13), an average selection coefficient of 0.01 (ref. 5), 

an order-of-magnitude reduction in mutation rate5, and functionally 
constrained regions where 20% of sites are under selection5, the total length  
of the sequence affected, Lsegment, would have to be at least ~200 kb, which 
(accounting for differences in effective population size) is similar to previous 
estimates in humans5. For perspective, this minimum Lsegment is considerably 
shorter (~1.5%) than the sum of coding regions with elevated levels of H3K4me1 
(top quartile is ~13 Mb, or 15% of the genome), a feature enriched in gene bodies 
and essential genes and associated with lower mutation rate. Thus, selection is 
expected to act with high efficiency on variants that cause DNA repair and 
protection mechanisms to preferentially target such regions.
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