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Abstract

Increasing interest in determining the effects of genetic variation for bioengineering, human health 
and basic biological research has propelled the development of technologies for high-throughput 
mutagenesis and selection. However, since designing functional assays is challenging and 
systematic testing of combinations of mutations is intractable, there is a parallel need to develop 
more accurate computational predictions.. Most computational methods have relied significantly 
on the signal of evolutionary conservation, but do not account for dependencies between positions 
in a sequence. We present an unsupervised method for predicting the effects of mutations 
(EVmutation) that explicitly captures residue dependencies between positions. We find that it 
improves the prediction accuracies of a comprehensive collection of recent high-throughput 
experimental fitness landscapes, biochemical measurements and human disease mutations. We 
suggest EVmutation may be useful to assess the quantitative effects of mutations in genes of any 
organism and provide precomputed predictions for ~ 7000 human proteins.

Introduction

Understanding the phenotypic effects of genetic variation is a central challenge for 
bioengineering and basic biology. Molecular technologists strive to engineer biologics that 
are safe and effective1, design new genomes2, 3, and develop ‘smart’ libraries of synthesized 
molecules4, 5. Biologists seek to pinpoint the genetic changes that underlie organism 
phenotypes or complex diseases6 from the ever-expanding catalog of variation in humans 
and model organisms. Propelled by these needs new technologies have emerged that 
simultaneously assess the effects of thousands of mutations in parallel4, 7–27 (sometimes 
referred to as “deep mutational scans”28 or ‘MAVEs’29 ). In these assays, the measured 
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attributes or processes vary, ranging from ligand binding, splicing and 
catalysis7, 11, 14, 16, 24, 30,26 to cellular or organismal fitness under selection 
pressure 8–10, 12, 15, 17, 20, 22, 23.

However, although high-throughput mutational scans have improved our understanding of 
the consequences of genetic variation, their relevance to organism fitness and physiology 
critically depends on the choice of the measured phenotype29, 31. It is reasonable that the 
relationship between a biochemical phenotype and organism fitness may be non-linear32 and 
even non-monotonic31. For the foreseeable future, scans are also limited in their scalability 
which limits researchers to focus either on a modest number of positions or alleles. Nature 
has not been subject to these limitations however, and proteins diverged by hundreds of 
positions can often functionally replace one another33.

Statistical models of natural sequence variation can complement experimental approaches. 
These models take advantage of the fact that evolution has been performing its own 
massively parallel mutagenesis and selection experiments over time. Most computational 
methods including SIFT, PolyPhen-2, and CADD exploit evolutionary conservation to 
predict the effects of mutations34–36 but their sequence analysis does not explicitly consider 
genetic interactions between mutations and the sequence background, despite widespread 
evidence for non-independence of the effects of mutations, known as epistasis37, 38.

Recent work has applied unsupervised statistical models based on the co-evolution of natural 
sequences to accurately predict 3D contacts in protein and RNA structures39–45, suggesting 
that dependencies between residues can be systematically captured from natural sequences. 
Although related models have been applied to predict the effect of mutations on a few 
proteins46–48, these methods have not been tested systematically across many proteins or 
against human disease mutations.

We present a method, EVmutation, which accounts for epistasis by explicitly modeling 
interactions between all the pairs of residues in proteins (and bases in RNAs) and which can 
then quantify the effects of mutations, including multiple mutations, simultaneously. We 
compare predictions generated by our models with measurements from 34 mutagenesis 
experiments and in classification of human disease mutations showing that the modeled 
mutational landscapes are in better agreement with experimental data than existing non-
epistatic methods.

Results

Probabilistic model captures residue dependencies

Extant proteins and RNAs exhibit strong signatures of selection throughout their evolution. 
It is not uncommon for genes separated by hundreds of millions of years, exhibiting 
negligible sequence identity, to nevertheless exhibit remarkable conservation of their 
structures and functions. Here, we aimed to build statistical models that can recover some of 
the dominant constraints that define families of homologous sequences.
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We model the evolutionary process that has produced each family as a sequence generator at 
equilibrium that produces a sequence σ with probability P(σ) as

Eq. 1

Different parametric forms of the “energy” function E(σ) enable the model to capture 
different types of constraints on the sequences (epistatic or not) and Z normalizes the 
distribution to sum to one over all possible sequences of a fixed length. E(σ) may be thought 
of as a (negative) energy of a model from statistical physics or as proportional to the scaled 
fitness NeF in toy, equilibrium models of population genetics49. We use an energy function 
E(σ) with two types of constraints: pairwise constraints that describe co-dependencies in 
combinations of amino acids or nucleotides for each pair of sites, and site-specific 
constraints reflecting bias towards or away from specific amino acids or nucleotides at each 
position. The total energy for a specific sequences E(σ) is the sum of coupling terms Jij 
between every pair of residues and a sum of site-wise bias terms hi (fields),

Eq. 2

Combining the sequence generator model (Equation 1) with our energy function (Equation 
2) produces a model that is known as a pairwise undirected graphical model in computer 
science and a Potts model in statistical physics. When fit to data, these models explain the 
global correlations observed between variables in a system in terms of direct pairwise 
interactions Jij that are typically simpler and more localized. Determining these interactions 
involves simultaneous accounting for all possible couplings between all pairs of positions, 
which is not possible with local measures of correlation such as Mutual Information50. 
When models of this form are fit to natural sequence families, the magnitudes of the Jij 
terms have consistently predicted contacts in the 3D structures of proteins, with sufficient 
accuracy to predict the folds of proteins41, 43, 51, 52.

We apply these models to make sequence-specific predictions about the relative favorability 
of mutations. Starting from a multiple alignment of a sequence family, we estimate the site 
and coupling parameters h and J using regularized maximum pseudolikelihood 40, 53–56. 
After the parameters are inferred, we quantify the effects of single or higher-order 
substitutions on a particular sequence background with the log-odds ratio of sequence 
probabilities between the wild-type and mutant sequences (Fig. 1, Supplementary Fig. 1):

Eq. 3
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The summation over coupling terms Jij between all pairs of positions in the evolutionary 
statistical energy E directly incorporates sequence context, i.e. the effects of pairwise 
epistasis, into the calculation of mutation effects. We refer to this model, which is the basis 
of EVmutation, as the “epistatic model”.

Model captures experimental fitness landscapes

We assessed the extent to which the statistical energy landscapes of computed using 
EVmutation corresponded with experimentally measured changes of phenotypes. We 
collected data from both saturation mutagenesis experiments of proteins and RNA genes as 
well as focused low-throughput studies15, 46, 57–60 resulting in 34 datasets from 29 non-
redundant experiments (21 proteins, and a tRNA gene27; Supplementary Table 1) that 
includes all currently available mutation experiments where the protein or RNA had a 
sufficiently large and diverse alignment (Online Methods). For each protein or RNA tested, 
we generated a multiple sequence alignment of the sequence family, inferred the parameters 
h and J of the epistatic model, and compared the change in statistical energy (ΔE) to the 
corresponding experimental measurements of the effects of the mutations (Fig. 2; 
Supplementary Table 2). Since relationships between protein function and organismal fitness 
are not expected to be linear31, we focused on reporting rank correlations as the primary 
metric for evaluating predictive performance, but our results are robust to a variety of 
measures (Supplementary Table 3).

We found significant correlation between the computed ΔE of the epistatic model and the 
experimental measurements of phenotype and fitness for all high-throughput experimental 
datasets (Spearman’s ρ 0.4–0.7; p-values from <10−300 to <10−27 and ρ=0.2, p<10−12 for 
one of the BRCA1 experiments not expected to correlate well (see below)). We found that 
the agreement between ΔE and experimental data is higher if the assayed phenotype is 
closely linked to an essential process, and that agreement depends on the strength of 
purifying selection applied in the experiment (Fig. 3; Supplementary Table 3, 
Supplementary Fig. 2). For instance, some of the strongest correlations between ΔE and 
experimental data were for the enzymatic activity of a methyltransferase that protects DNA 
from degradation17, and of a β-glucosidase that hydrolyzes biomass4. Likewise, ΔE was 
more weakly correlated with data from experiments where the laboratory selection pressures 
may not match those in the natural environment and here the distribution of experimental 
mutation effects tends to be skewed towards mostly neutral effects (for example BRCA1 
binding to BARD1) or towards mostly very deleterious (a bacterial kinase subject to high 
doses of kanamycin) (Supplementary Table 4, Supplementary Fig. 3). The dependence on 
the strength of selection is nicely exemplified by the increasing correlation of our predictions 
with the experiments on β-lactamase and kanamycin kinase as the antibiotic doses are 
titrated to reveal the full dynamic range of effects (Supplementary Figs. 4 and 5).

The epistatic model also successfully captured the effects of mutations in low-throughput 
experiments on thermostability of Trypsin58 (ρ=0.77, N=23) and SH357 (ρ=0.69, N=48) and 
the catalytic efficiency of β-lactamase15 (ρ=0.87, N=30), including double and triple 
substitutions. Although these experiments consist of a biased choice of mutants that may 
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benefit our correlation, in principle, the results suggest EVmutation could be used to design 
stabilizing or catalytically stronger proteins.

To assess whether ΔE distinguishes human variants associated with diseases from putatively 
neutral variants, we compared predictions for 9008 variants (1553 proteins) annotated as 
pathogenic in ClinVar61, to variants in the 60,000 human exome sequencing collection 
(ExAC6) at increasing allele frequencies (AF; 2190 proteins; Online Methods). The ΔE 
scores for the disease variants are significantly different to those common alleles presumed 
mostly to be neutral from the ExAC collection (area under the ROC curve AUC=0.92–0.96, 
p-values <10−300, 2-sided sample KS tests; Fig. 3b).

Comparison of epistatic model with published methods

We sought to evaluate the utility of adding epistatic interactions to mutation prediction by 
comparing with commonly applied tools on both the assembled experimental data as well as 
human genetic variants. For the experimental data, we compared predictions from 
EVmutation with SIFT34 and PolyPhen-262, along with the substitution matrix BLOSUM62. 
The rank correlations of ΔE (epistatic model) are higher than the other methods for the 
majority of the analyzed mutation experiments (Fig. 3c; Supplementary Table 5). The 
average increase in ρ is 0.30 over the BLOSUM62 matrix (EVmutation better on 30/31 
datasets) and 0.18 over SIFT (better on 29/31 datasets) and 0.18 over PolyPhen-2 (better on 
26/29 datasets). Whilst this work was in review, another study used an epistatic model to 
predict effects of mutations in β-lactamase 48, but using different statistical inference and 
alignment generation protocols. EVmutation predictions are mildly more accurate when 
compared directly across the four proteins tested (average increase in correlation: 0.04) and 
on a par with a computationally expensive approach for inference for a small number of HIV 
protein mutations46 (EVmutation ρ=0.81 vs. ρ=0.80; Supplementary Table 6).

We compared predictions from the unsupervised EVmutation method with PolyPhen-2, a 
supervised mutation predictor, on human disease variants. Despite no training on clinical 
variants, the performance of ΔE predictions are comparable with those of PolyPhen-2 and 
SIFT on the HumVar benchmark set62–64 (ΔE: AUC=0.89; PolyPhen-2: AUC=0.88; SIFT: 
AUC=0.85) and better than PolyPhen-2 with the subset of variants that are predicted 
differently by PolyPhen-2 and SIFT (AUC 0.71 versus AUC 0.61; Supplementary Fig. 6). It 
has been reported that prediction methods, such as PolyPhen-2, that use supervised machine 
learning, can have inflated measures of accuracy due to multiple routes of circularity in the 
training and test sets16, 64. Therefore it is surprising that our unsupervised model performs as 
well, or better than, supervised methods that have been directly trained to segregate 
deleterious human variants.

Interactions terms underlie improved predictions

In order to understand whether the improved predictions of our epistatic model result from 
the added pairwise interactions J, we used a control, non-epistatic, “independent” model that 
is identical to ΔE but lacks interactions between sites. We fit this model to the same 
alignments as the epistatic model (Methods). The independent model is closely related to the 
log-frequency, Position-Weight Matrices and other scores of conservation 16, 34, 36, 65 that 
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are commonly used by existing methods. The ability of ΔE (epistatic model) to capture 
mutational effects is better (difference in ρ ≥ 0.05) than the independent model across 23 of 
34 of the analyzed experiments (Fig. 3c; Supplementary Table 5; average increase of ρ: 0.14, 
including high-throughput fitness experiments with well-defined selective pressures such as 
β-lactamase10, 15, 18, 48, kanamycin kinase13 and DNA methyltransferase M.HaeIII)17 and is 
also more accurate for human disease mutations (AUC 0.92 versus 0.88 for AF≥0.1), despite 
the ascertainment bias of these mutations64.

One particularly striking contrast between the epistatic and independent models is for the 
toxin-antitoxin complex ParED25, especially when the two proteins are modeled jointly as a 
protein interaction 40. In this case the epistatic model captured the experimental effects with 
much higher correlation (ρ=0.51 for singles, doubles and triples, N=3335 and ρ=0.43, 
N=9194 for all mutations) than the independent model, which hardly correlated at all (ρ=
−0.05 for all up to triplets). Interestingly, if ΔE is computed on couplings from ParD alone, 
the match to experiment is lower (ρ=0.33) and when computed only on couplings between 
(but not within) the complex subunits, the predictions are comparable to the full model 
(ρ=0.53 vs ρ=0.51). Hence the interactions learned in the epistatic model support accurate 
prediction of the interaction specificity of the complex25.

Experiments where the epistatic model performs comparably to the independent model 
(11/34 sets) tend to be where the correlations are below average for either method 
(Supplementary Table 5). This includes three of the four viral proteins and may be a 
consequence of the limited diversity of the sequence alignments or alternatively, a 
discrepancy between the proxy for viral fitness in the laboratory and the in vivo fitness of the 
virus22.

We next asked how the results for the epistatic and independent models depend on the 
evolutionary depth of the alignments used for inference. As sequence alignments become 
narrower around the mutated protein, i.e. evolutionarily distant sequences are progressively 
excluded, the epistatic model and independent model make similar predictions that both 
perform less well against experimental data. For specific alignment depths of some proteins, 
the independent model can capture the experimental data as accurately as the epistatic model 
(Supplementary Table 7). However, since we do not know which alignment depth to choose 
a priori, the ability of the epistatic model to capture constraints without prior knowledge of 
the optimal alignment depth may be an advantage. The choice of alignment in our method is 
blind to the mutation experiments and is based on the algorithm used for alignment choice 
when computing 3D structure contacts using EVfold41 (Methods).

Where is the epistatic model better?

To investigate where inclusion of epistatic interactions leads to improved predictions, we 
compared the epistatic and independent models on a mutation-by-mutation basis. Direct 
comparison of residuals can be misleading when the functional relationship between 
predictions and experimental measurements is unknown and/or nonlinear, so we computed 
deviations between the epistatic and independent models after mapping through a quantile-
quantile transformation. This allowed us to identify specific mutations that have the largest 
reduction of prediction error when using the epistatic model. For instance, in an RNA-
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recognition motif of the poly(A)-binding protein, the 3 mutations with the largest reduction 
in error using the epistatic model are H172T, N127R and S154D. The epistatic model agrees 
with experimental data showing deleterious effects of these mutations, but the independent 
model suggests that the same mutations are neutral or even beneficial (Fig. 4a, 
Supplementary Table 8). Although these substitutions are frequently observed in other 
sequences in the protein family alignment, only the epistatic model captures that they are not 
acceptable in the background of the target sequence. These three residues form a network of 
spatially proximal residues that contact RNA (Fig. 4a), and are highly coupled when their 
total coupling is summarized across all amino acid combinations (Supplementary Table 9). 
The predictions that differ most between the epistatic and independent models (defined as 
>2σ of error change distribution) are in 8 positions that are within 6 Å of the bound RNA, 
which includes the positions identified above (Fig. 4b).

We then explored whether these observations generalize to other proteins by applying the 
above analysis for all proteins with single substitution high-throughput scans in which the 
epistatic and independent models differed (ρ(ΔE(epistatic)) − ρ(ΔE(independent)) > 0.05) 
but still showed reasonable correlation to the experimental data (ρ>0.50; Fig. 4c, 
Supplementary Fig. 7). Comparison of predictions made by the two models suggests that the 
advantages of the epistatic model stem at least in part from more accurate modeling of 
positions that facilitate interactions with ligands or other proteins, and show strong 
deleterious effects in experiments (Fig. 4c; Supplementary Fig. 7).

Discussion

We report here that a prediction method built on natural sequence variation can partially 
capture the experimental effects of mutations in a variety of biological contexts. This can be 
applied to predict or interpret the effects of genetic variation in any species of interest, and 
for higher-order mutations that change multiple positions at the same time.

Limitations of the model include biases that arise from evolutionarily-younger families of 
limited diversity, non-uniform selective constraints across a sequence family and higher 
order epistasis. Although incorporating epistatic terms into the model results in a practical 
improvement over other methods, there are remaining challenges regarding the interpretation 
and inference of the model parameters. For interpretation, it is difficult to distinguish those 
couplings in the model that may be due to subfamily-specific selection from those that may 
be due to more universal epistatic constraints across the whole family66 and future methods 
may begin to address these issues by consideration of phylogeny. For inference of the 
parameters, the statistical challenge remains that the typical number of free parameters 
(~106–108) vastly exceeds the number of available sequences (~103–105) and since 
evolutionary sampling is highly correlated and consequently highly redundant, this may lead 
to significant challenges in extrapolating a reasonable space of possible sequences.

The success of this and other models based on sequence variation at recapitulating high-
throughput mutation experiments depends in part on the extent to which experimental assays 
capture phenotypes that are under direct, long-term selection (Fig. 5). For example, 
thermostability, activity, or binding energetics of a protein will generally not all contribute to 
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fitness in the same way, so even a perfect model and perfect measurements might have 
imperfect correlations. The excellent correlation between model and experimental data for 
β-lactamase plausibly reflects how survival ‘in the wild’ in the presence of β-lactam 
antibiotics depends directly on that specific protein. For other assays, such as nonessential 
peripheral enzymes or signaling proteins, the property being tested in the lab may have only 
indirect, context-dependent impact on the organism. So the evaluation of agreement between 
model and experiment is two-way, reliant on whether the model is effective as a method and, 
when multiple kinds of measurements are available for the same protein, to what extent the 
lab assay captures evolutionarily conserved properties.

Nevertheless, our probabilistic approach is readily applicable for analysis of specific variants 
and combinations thereof for numerous families of proteins and RNAs and the interactions 
between them. We anticipate that analyses of genetic variation and mechanisms of evolution 
will benefit from global probability models of sequence families that explicitly incorporate 
interactions between positions, such as the model presented here. The consistency of our 
predictions with prior biological knowledge on functional sites highlights how inclusion of 
epistatic interactions will facilitate more accurate assessment of mutations and aid the design 
of libraries of protein sequences. To enable the community to analyze ΔE for their proteins 
of interest, we make software (Supplementary Code) and pre-computed mutation effects for 
~ 7000 human proteins and available at evmutation.org.

ONLINE METHODS

Generation of multiple sequence alignments

For each analyzed protein (target sequence), multiple sequence alignments of the 
corresponding protein family were obtained by the default five search iterations of the 
profile HMM homology search tool jackhmmer67 against the UniRef100 database of non-
redundant protein sequences68 (release 11/2015). To control for comparable evolutionary 
depth across different families, we used length-normalized bit scores to threshold sequence 
similarity rather than E-values40. A default bit score of 0.5 bits/residue was used as a 
threshold for inclusion unless the alignment yielded < 80% coverage of the length of the 
target domain or if there were not enough sequences (redundancy-reduced number of 
sequences ≥10L); in the first case, the threshold was increased in steps of 0.05 bits/residue 
until sufficient coverage was obtained; in the second case, the threshold was decreased until 
there were sufficient sequences (≥10L). If these two objectives were conflicting, precedence 
was given to maintaining more than 10L sequences. Since the sequence diversity of viral 
protein families is typically much lower than that of bacterial and eukaryotic families, the 
alignment depth for viral proteins was chosen as a default of 0.5 bits/residue even if the 
redundancy-reduced number of sequences was lower than 10L. The alignments were post-
processed to exclude positions with more than 30% gaps and to exclude sequence fragments 
that align to less than 50% of the length of the target sequence. For the ParE-ParD toxin-
antitoxin interaction, a joint sequence alignment with matched homologs of both interaction 
partners was generated using our previously described approach EVcomplex40. Alignments 
for RNA sequence families were obtained from the Rfam database69 and redundancy-
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reduced at the same 80% identity cutoff as proteins. The tRNA alignment was filtered to 
contain only sequences with a CCU anticodon.

Inference of epistatic models of biological sequences

Model—Each family is modeled as a distribution over the space of all possible sequences 
that is parameterized by two types of constraints: site-specific constraints on the biases for 
specific amino acids or nucleotides at each position, and pairwise constraints for 
combinations of amino acids or nucleotides for each pair of sites. The use of such a global 
probabilistic approach is motivated by the idea that the induced correlations observed in a 
multiple sequence alignment can be explained by a simpler set of underlying couplings 
between positions. Local measures of coupling, such as the log ratios that define Mutual 
Information, cannot deconvolve these transitive correlations between positions50.

The form of the chosen distribution can be thought of as the least-structured (i.e. maximum 
entropy) distribution over sequence space that is consistent with the single-site and pairwise 
marginal distributions of amino acids or nucleotides observed in the alignment43, 50, 55, 70. 
Under the model, the probability of a sequence σ of length N is defined as

The partition function Z normalizes the distribution by summing over the relative weights 
(Boltzmann factors) of all possible sequences σ′. The strength of the Boltzmann factors for 
each sequence σ is defined by the evolutionary statistical energy E(σ) as the sum of all its 
pairwise coupling constraints Jij and single-site constraints hi (fields), where i and j are 
positions along the sequence:

In a Maximum likelihood fit without regularization, the site-specific parameters hi(σi) and 
pair-specific parameters Jij(σi,σj) implement the constraints that the marginal probability 
distributions of the model agree with the empirical marginal frequencies fi(σi) and fij(σi, σj) 
in the sequence data. This model is also as a Markov Random field or a Potts model in 
statistical physics.

Insertions and deletions—While the model readily describes fixed-length sequences 
such as strings of 20 amino acids or 4 nucleotides, it is unclear how to meaningfully 
represent the insertions and deletions in a way that reasonably reflects the generative process 
occurring in evolution. Traditionally, statistical approaches have tended to model indels 
either as (i) an extra character or (ii) missing data. Both of these approaches are conceptually 
problematic, since the former partitions a single deletion event into many separate ‘gap 
characters’ while the latter forces the model to impute a hidden variable in gapped positions 
that can affect other variables in the system despite knowledge that no such coding variable 

Hopf et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2017 August 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



exists. We used an alternative approach for modeling indels that does not invoke a gap 
character and does not give missing data the ability to influence the system. We regard the 
indel process as a separate, observed process and instead model the conditional distribution 
of the amino acids given an indel pattern. If zi are Bernoulli indicators that are 1 when a site 
is coding and 0 when gapped the conditional energy function for coding regions is:

Given an observed set of gaps, the marginal distribution of the amino acids at the ungapped 
positions defines a conditional model for a sequence. In principle, this approach could be 
made fully generative by combining it with a model for gaps, but for the purposes of this 
study we only fit the conditional distribution.

Sample reweighting—Natural sequences descend from a common ancestry and 
consequently may be highly correlated. Moreover, uneven sampling of the family by both 
sequencing projects and natural processes may result in over-abundance of sequences from 
some parts of phylogeny (e.g. model organisms) and an under-abundance of others. To 
partially account for this redundancy, we use the established approach of reweighting 
sequences by a measure of their uniqueness43, 44. Briefly, we define the sequence weight πs 

of a given sequence as  where DH(σs,σt) is the normalized 
Hamming distance (i.e. 1.0 - percentage identity) between sequences s and t and θ is a 
threshold for the percent divergence of sequences classified as similar. We used an 80% 
identity cutoff (θ = 0.2 ) for all proteins except viral proteins, for which we used a 99% 
identity cutoff (θ = 0.01).

Inference—Given observed sequence data (with potential reweighting for redundancy), the 
model parameters hi and Jij could in principle be estimated by maximum likelihood, i.e. by 
finding the parameters that maximize the probability of observing the sequence data. This 
approach, however, is deterministically intractable due to the 4N (RNA) or 20N (protein) 
sequences in sequence space that must be to compute the partition function Z. As a 
replacement for the full likelihood, we used a site-factored pseudolikelihood 
approximation53.

Regularization—The number of parameters for the pairwise model, which for typical 
protein families of 50–500 amino acids will range from 105 to 107, outnumbers the typical 
number of sequences available (102 to 105) for even the largest families by several orders of 
magnitude. In this under-sampled regime, standard maximum likelihood estimation is highly 
prone to overfit the sample data. We penalized model complexity with l2-regularization55, 56, 
which may also be interpreted as maximum a posteriori (MAP) inference under zero-mean 
Gaussian priors on the parameters. The strength of l2-regularization was set as λh=0.01 for 
the single-site constraints hi and λJ=0.01·q(N−1) for the pairwise coupling constraints Jij, 
where N is the number of sites in the model and q corresponds to the number of possible 
states (q=20 for proteins, q=4 for RNA). Combining the pseudolikelihood approximation, 
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sequence reweighting, treatment of indels, and regularization, we estimate the parameters by 
maximizing the objective

where the log conditional likelihood  is defined whenever position i in sequence s is 
ungapped as

and is 0 otherwise. We solve this optimization problem with a quasi-Newton method (L-
BFGS), and make our C software implementing this available at github.com/
debbiemarkslab/plmc.

Calculation of context-dependent mutation effects (evolutionary statistical energy)

Using the inferred probability models, one can then quantify the effect of single or higher-
order substitution on a particular sequence background by computing the log-odds ratio of 
probabilities between the mutant sequence σmut and the wild-type sequence σwt. This ratio 
of probabilities is simply the difference of the evolutionary statistical energies of the two 
sequences, which is

For a given mutant, the evolutionary statistical energy difference ΔE will be the sum of 
differences of the single-site constraints hi for all substituted sites, plus the sum of 
differences of the coupling parameters for all pairs of positions involving at least one 
mutated site. By evaluating the change of couplings to other sites, the sequence context and 
therefore epistatic effects are explicitly incorporated into the computed mutation effects. 
Values of ΔE above 0 correspond to more probable mutant sequences (putatively beneficial), 
values below 0 to less probable mutant sequences (putatively deleterious) and values equal 
to 0 to equally probable sequences (putatively neutral).

Throughout the manuscript, mutation effects computed using this model are referred to as 
statistical energy differences from the epistatic model.

Calculation of evolutionary couplings

Between any two positions i and j in the protein family, the coupling matrix Jij describes the 
co-constraint on all possible 202 amino acid or 42 nucleotide combinations. To quantify the 
total epistatic constraint between pairs of sites across all sequences in the alignment, the 
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Frobenius norm was used to summarize each matrix Jij into a single number that is 
proportional to the standard deviation of the (zero-mean) matrix56. After computing the 
norm scores for every pair of sites, we remove background coupling that is presumed to be 
caused by limited sampling and phylogenetic relationships between sequences by applying 
the average product correction (APC)71. This is equivalent to setting the dominant singular 
value or eigenvalue of the coupling matrix to zero. Significantly constrained pairs 
(evolutionary couplings, ECs) were then selected by a mixture model-based strategy 
quantifying the probability of any pair to belong to the high-scoring tail of the score 
distribution rather than the background noise distribution40, 72.

Inference of independent statistical models

To assess the contribution of epistatic interactions to ΔE, additional maximum entropy 
models were inferred that describe protein sequences using only site-specific amino acid 
constraints hi, without considering explicit inter-dependencies between sites (i.e., predict 
mutation effects independently of the sequence context). Since the parameters of each 
independent model were inferred from the same sequence alignment as the epistatic model, 
it serves as a direct control for the contribution of epistatic interactions. The probability of 
any amino acid sequence σ under this “independent” model is given by

Consistent with the regularization applied to the epistatic model, the strength of the l2 
penalty was set to λh=0.01 when estimating the model parameters hi. The statistical energy 
difference between two sequences can be analogously inferred by calculating the statistical 
energy difference between the mutant and the wild-type sequences, which again corresponds 
to the logs-odds ratio of their probabilities. This formalism is closely related to the log-odds 
conservation scores used in many methods to predict mutation effects from sequence36,73.

Mutational landscape datasets

Mutation effect datasets were identified by a comprehensive literature search for quantitative 
high-throughput mutagenesis experiments of entire proteins, protein domains or RNA 
molecules. All experiments that targeted proteins or RNAs with insufficient sequence 
diversity (redundancy-reduced number of sequences <10L, where L=length of protein or 
domain), covered only small subregions, or tested synthetic wild-type proteins were 
excluded from the final compilation of datasets (Supplementary Table 1). For further 
comparisons, the dataset was extended with low-throughput measurements of molecular 
phenotypes (stability, catalytic activity, binding), with a focus on sequence co-evolution 
studies. If a dataset reported more than one measurement for the wild-type sequence (as was 
the case for 11 of the high-throughput scans with one wild-type value per position in the 
sequence), we averaged these redundant experimental measurements into a single value 
(Supplementary Table 2).
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Classification of experimental mutation effects

18 of the experimental mutation scans had visible bimodality in their effect distribution. 
Since this can lead to biased Pearson and Spearman correlations, we tested these with a 
binary classification measure, Mathews Correlation Coefficient, in addition to the other 
analyses. We classified mutations as damaging or neutral by (i) fitting a two-component 
Gaussian mixture models to each data set, and (ii) by assigning individual mutations to the 
mixture model component returning the higher posterior probability. (Mutation effects 
(enrichment ratios of sequencing reads before and after functional selection) were 
transformed into log-space where the experiment was reported in linear space.)

Correspondence between computed and experimental mutational landscapes

The agreement between computational and experimental mutation effects was evaluated 
using standard metrics of bivariate dependence. Due to strongly ed experimental effect 
distributions and the expected non-linear relationships between protein function and 
organism fitness we focused on Spearman’s rank correlation coefficient with dense ranking 
as our main evaluation metric. To test the robustness of our results, we additionally evaluated 
all relationships using distance correlations74 and, where applicable, Pearson correlation 
coefficients and the corresponding linear regression R2 values. For datasets showing bimodal 
effect distributions, we also tested prediction quality in a binary setting using the Matthews 
correlation coefficient75. Quantitative ΔE values from the epistatic and independent models 
were assigned as damaging or neutral if they were below or above the median of the 
respective effect distribution, respectively.

Analysis of properties of distributions

Systematic biases in experimental or computed effect distributions can influence which 
correlation measures are applicable, and what bivariate relationship between the two can be 
expected. To describe the overall shape of distributions, in particular deviations from 
normality and strong biases towards damaging or neutral effects, for each distribution we 
calculated its skewness (scipy.stats.skew) and the R2 of the sample data against a normal 
distribution in a probability plot (scipy.stats.probplot). The latter quantity corresponds to the 
test statistic of the Shapiro-Francia test for normality.

Comparison to existing mutation effect prediction methods

For the comparison of ΔE to existing approaches for the prediction of mutation effects, we 
computed mutational landscapes using local installations of SIFT and PolyPhen-2 applied to 
the same input sequences as for our sequence alignments. Quantitative effect scores and 
binary classifications (neutral/damaging) were obtained from the respective columns in the 
output files. Mutation effects computed using the BLOSUM62 matrix correspond to the 
respective matrix entry of wild-type and substituted residue. Correlations were calculated on 
the joint set of variants that could be predicted by all methods.

Human gene and disease variant analysis

Besides the evaluation on quantitative mutation effect data, we assessed the ability of ΔE to 
discriminate between known disease mutations and neutral amino acid variants in a binary 
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classification setting. For this evaluation, we computed quantitative effect scores and tested 
how well both types of variants are separated by ΔE. Unlike the existing method PolyPhen-2 
which trains on known disease variants, our mutation effects are purely based on sequences 
without learning on the outcome variable.

Alignments for protein sequences with disease and/or neutral variants were generated by 
identifying Pfam domains in the respective sequence using hmmscan from HMMER and 
running our own alignment protocol for each domain region. If possible, regions were 
extended by 10 residues on either side to correct for the lack of N- and C-terminal coverage 
often observed in Pfam. Following the same protocol as for mutational scans, alignments 
were inferred at a bitscore threshold of 0.5 bits/residue. Families where the number of 
sequences in the alignment exceeded our computational resources were run at a bitscore of 
0.8 bits/residue. Alignments were filtered at a 95% sequence identity cutoff to reduce 
computation time. Epistatic and independent models were then inferred for all alignments 
and used to compute the effect of amino acid substitutions. In the evaluation, we used all 
variants in domains that had alignments with Meff/L ≥ 1 and could be unambiguously 
mapped to UniProt sequences.

To assess if ΔE separates disease and neutral variants, we derived a dataset based on high-
confidence disease and neutral variants. We obtained 15405 amino acid variants in 2387 
proteins from ClinVar61 that were unambiguously annotated with clinical significance 
“pathogenic”. Similarly, we derived sets of amino acid variants assumed to be neutral 
because of their high allele frequency in the ExAC exome sequence dataset6, at increasing 
levels of stringency (allele frequency (AF)≥0.1: 13643 variants/6993 proteins; AF≥0.25: 
8595 variants/5193 proteins; AF≥0.5: 4700 variants/3282 proteins). Of the pathogenic 
ClinVar variants, 10556 were covered by an alignment (in 1848 proteins), and 9008 (1553 
proteins) had sufficient sequences (Meff/L ≥1) and were used for evaluation. Of the ExAC 
variants, 3514 variants (2190 proteins) remained at AF≥0.1, 2193 variants (1524 proteins) at 
AF≥0.25 and 1182 variants (937 proteins) at AF ≥0.5.

For comparison to the existing mutation effect classifiers SIFT and PolyPhen-2, we chose 
the HumVar dataset (as provided by Grimm et al.)62, 64 as this is commonly used as a 
benchmark. However, using this benchmark set in the comparison to our unsupervised 
method is conservative, since most current supervised methods, including PolyPhen-2, train 
in a supervised way on these known variants and may have a tendency to over estimate their 
own accuracy64. Ideally, one would construct a truly unbiased test set by excluding these and 
related variants, but since this leads to a strong reduction in the number of variants that can 
be used for evaluation, we left the benchmark set as used by others64. We started from 40389 
variants (9231 proteins) in the dataset, and after using the above domain identification and 
alignment protocol, arrived at a set of 21915 variants in 5067 proteins jointly predicted by 
all methods. Of these, 18001 variants in 3912 proteins had Meff/L≥1 and were used for 
evaluation. In addition to the full set of variants with sufficient alignment depth, we also 
evaluated performance on “difficult” examples where the predictions between SIFT and 
PolyPhen-2 disagreed (3126 variants in 1459 proteins).
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The statistical energy distributions between neutral and disease variants were compared 
using two-sample Kolmogorov-Smirnov tests (two-sided; function scipy.stats.ks_2samp). To 
assess the discrimination both types of variants, the area under the receiver operating 
characteristic curve (AUC) was calculated using scikit-learn (function 
sklearn.metrics.roc_auc_score) and compared between the different methods. We also 
evaluated the discovery of damaging variants with high specificity by computing the partial 
AUC up to a false positive rate of 20% using the pROC R package76.

Pre-computed mutation landscapes for human proteins

Since we calculated epistatic models for all human proteins that have variants annotated as 
pathogenic, ExAC variants with allele frequency ≥ 0.1, and others in the course of this 
analysis, this results in a resource of models for 6955 unique human proteins (9957 
alignment regions, Meff/L≥1). For these proteins, we provide single substitution landscapes, 
sequence alignments, and evolutionary couplings (summarized epistatic constraint for pairs 
of positions) at evmutation.org. Mutational landscapes can be explored using interactive 
visualization. Together with the provided software (Supplementary Code), the downloadable 
files allow to reproduce our analyses and compute higher-order mutation landscapes for any 
of these proteins.

Error analysis of evolutionary statistical energy predictions

Besides the overall correlation analysis between prediction and experiment, we wanted to 
understand how large the prediction error is for individual mutations, and if particular 
mutations were predicted with lower error by either the epistatic or the independent, 
independent model. To calculate individual error terms, we need to compare the predicted 
value to the respective experimental value. In our case, this is however complicated by the 
fact that ΔE and the experimental data are on different scales and the relationships between 
both are often non-linear, with no particular expectation on the shape of the relationship. 
This problem prevents the use of standard regression approaches to calculate error terms.

Instead, we chose to transform predicted values into the space of the experiment by a 
quantile mapping strategy (a perfect prediction would mean that the normalized ranks of 
each variant in the predicted and experimental distribution agree). For any substitution S, let 
ΔE(S) correspond to the p-quantile of the predicted distribution. Then we transform a 
prediction ΔE(S) into experimental space by mapping it onto the respective p-quantile of the 
experimental distribution. We denote this mapping by Q(ΔE(S)). For robustness against a 
small number of experimental outliers, Q assigns the respective experimental 0.01/0.99 
experimental quantile for any value below/above the predicted 0.01/0.99 quantile. By 
defining a quantile-quantile mapping for each of the models, we can now calculate an error 
term ε(ΔE(S)) for each variant S by comparing the mapped prediction Q(ΔE(S)) to the actual 
experimental value y(S) of the variant S: ε(ΔE(S)) = Q(ΔE(S)) − y(S). The error term 
ε(ΔE(S)) is normalized by the range of the full experimental distribution between the 0.01 
and 0.99 quantiles to make it comparable between different experiments.

To evaluate if the use of epistatic interactions improves or decreases the error of individual 
variant predictions (i.e., variants that are predicted with different log-odds scores ΔE(S) 

Hopf et al. Page 15

Nat Biotechnol. Author manuscript; available in PMC 2017 August 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



compared to the independent model rather than similar log-odds scores), we had to modify 
the above approach because differently predicted, but wrong variants might bias the 
quantile-quantile mappings in favor of each method. Instead, we defined quantile-quantile 
mappings Q′ not on the full distributions but only on those variants that are predicted 
similarly between both models (|ΔE(epistatic) − ΔE(independent)| ≤ 2, threshold chosen so 
that there are enough variants to define a smooth curve). Q′ allows to map any arbitrary 
score based on the nearest quantile that was used during calculation of the mapping. 
Comparison of the respective absolute error terms ε(ΔE(S)) = Q′(ΔE(S)) − y(S) between the 
epistatic and the independent model allows to assess for any substitution S if the use of 
epistatic interactions increases or decreases the error compared to the experiment.

The computation of error terms for individual variants makes it possible to assess if certain 
groups of variants are systematically predicted more or less accurately using epistatic 
interactions. For this analysis, we compared the root mean square errors (RMSE, summing 
the individual error terms ε(ΔE(S))) across all individual substitutions within a particular 
group between the epistatic and the independent model. Subgroups were defined as follows: 
(1) High/low experimental effect: Gaussian mixture model of effect distribution as described 
above; (2) Frequent/Rare substitution: frequency of substitution in respective column of 
alignment ≥ 0.01 or < 0.001; (3) Ligand binding/protein interaction: all substitutions to 
residues within 4Å minimum atom distance of ligand or interaction partner, but excluding 
evolutionarily conserved cofactors; (4) Buried/Exposed: Relative solvent accessibility 
calculated using DSSP < 0.1 or > 0.25; (5) Conserved/Variable: Column conservation of 
position in alignment > 0.4 or < 0.2; (6) Strongly/weakly coupled: At least 4/no coupled 
pairs in list of N top-ranking long-range (|i − j|>5) evolutionary couplings.

Analysis of structural features

Evolutionary couplings calculated from multiple sequence alignments were compared to 
experimental protein 3D structures from the PDB77 to assess if the identified epistatic 
constraints correspond to structural contacts. Structures and mappings to the target sequence 
were obtained using jackhmmer-based searches against the PDB (one search iteration), and 
residue pair distances calculated for up to 10 of the most significant hits with a normalized 
bit-score of at least than 0.5 bits/residue to the target sequence. Two residues were 
considered to be in contact if any of their atoms are closer than 5 Å in any of the identified 
structures; a distance threshold of 4 Å was applied to interactions between amino acid 
residues and ligands.

Data analysis and method availability

All data analysis was conducted using Jupyter notebooks78 and the scientific Python 
stack79, 80. Supplemental Web Data, human protein predictions and code (Supplementary 
Code) to calculate statistical models and mutation effects from sequence alignments are 
available at evmutation.org.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editors summary

The global effects of epistasis on protein and RNA function are revealed by an 
unsupervised model of amino acid co-conservation in evolutionary sequence variation.
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Figure 1. Inferring context-dependent effects of mutations from sequences

Evolution has generated diverse families of proteins and RNAs with varied sequences that 
perform a common function. An unsupervised probabilistic model trained to generate the 
natural diversity in a multiple sequence alignment of a family can be used to predict the 
relative favorability of unseen mutations. Left: Existing models describe functional 
constraints on each position i in a sequence σ independently, averaging over the effect of 
background positions j. This can lead to incorrect predictions of neutrality. Right: Our 
approach infers a global probability model with pairwise interactions between positions i 
and j (Jij, see Methods) as well as background biases at single positions (hi). For a more 
detailed graphical schematic of the calculation, see Supplementary Fig. 1.
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Figure 2. Saturation mutagenesis experiments provide a quantitative test of context-dependent 
predictions

The computed ΔE mutational landscape of the DNA methyltransferase M.HaeIII (left, 
colour range from 5th percentile to 0) agrees quantitatively with experimental measurements 
of M.HaeIII fitness under selection for cleaving activity of a restriction enzyme (right, 
ρ=0.69, N=1634; marginal distributions in orange). The average mutational sensitivity per 
position shows improved correlation beyond individual effects (ρ=0.80, N=304).
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Figure 3. ∆E captures experimental fitness landscapes and identifies deleterious human variants

(a) Computed effects of specific mutations (difference in evolutionary statistical energy ΔE) 
based on the epistatic model agree with diverse experimental measurements of fitness and 
molecular function for 34 experiments for 20 proteins, a protein complex and an RNA 
molecule (underlined) as measured by Spearman’s rank correlation coefficient ρ (for 
equivalent site average plot, see Supplementary Figure 2; for correlations across all different 
assays tested in the experiments, see Supplementary Fig. 4). (b) Evolutionary statistical 
energies ΔE distinguish human disease-associated variants from common alleles in the 
population. This separation increases with the minimum allele frequency (AF) of the 
variants assumed to be neutral (area under the ROC curve (AUC)=0.92 for AF≥0.1, 
AUC=0.94 for AF≥0.25, AUC=0.96 for AF≥0.5). (c) The epistatic model shows stronger 
agreement with experiments than the established methods SIFT and PolyPhen-2, a baseline 
model based on the BLOSUM62 substitution matrix, and a corresponding independent 
model without pairwise interactions (differences of ρ of more than 0.6 were included in the 
bin at 0.6).
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Figure 4. Improvements of the epistatic model for functional sites

(a) Left: The RNA-binding residue H172 of PolyA-binding protein (PABP) is strongly 
coupled to other residues in the binding interface that are close in 3D. Right: The epistatic 
coupling leads to strong constraints on acceptable amino acids in position 172, as observed 
in an experimental mutation scan of PABP. Only the epistatic model correctly identifies 
these co-constraints, while a model without sequence context (independent model) suggests 
many more substitutions would be acceptable (range of experimental preferences scaled to 
range of predicted preferences based on full set of mutants for entire domain). (b) Positions 
in PABP for which prediction accuracy improves the most by considering epistasis (≥2σ 
difference in root mean squared prediction error, spheres) cluster around the RNA ligand 
(yellow sticks, PDB: 4f02). (c) For seven high-throughput datasets where the correlation ρ of 
the epistatic and independent models differs more than 0.05, the epistatic model is more 
accurate overall (1st column), specifically for the effects of mutations of residues in 
interaction and ligand-binding sites (2nd column), where the residue mutation is rare versus 
frequent in the evolutionary sequence alignment (3rd and 4th columns, and where the residue 
change is damaging versus neutral in the experiment (5th and 6th columns) (Methods and 
Supplementary Table 8).
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Figure 5. Computational predictions complement experimental measurements

Various molecular phenotypes (center) such as structure, thermostability, activity, and 
ligand-binding affinity are determined by genotype and contribute to fitness in a complicated 
manner that is not known a priori. However, the distribution of contemporary genotypes 
(left) provides a record of historical fitness values (right) which can roughly be inferred by 
computational methods. Identifying those phenotypes that connect to inferred fitness may 
shed light on which molecular phenotypes have historically been the most relevant to the 
organism.
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