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N-myristoylation is a common form of co-translational protein
fatty acylation resulting from the attachment of myristate
to a required N-terminal glycine residue1,2. We show that
aberrantly acquired N-myristoylation of SHOC2, a leucine-rich
repeat–containing protein that positively modulates RAS-MAPK
signal flow3–6, underlies a clinically distinctive condition of
the neuro-cardio-facial-cutaneous disorders family. Twenty-five
subjects with a relatively consistent phenotype previously
termed Noonan-like syndrome with loose anagen hair
(MIM607721)7 shared the 4A4G missense change in SHOC2
(producing an S2G amino acid substitution) that introduces
an N-myristoylation site, resulting in aberrant targeting of
SHOC2 to the plasma membrane and impaired translocation
to the nucleus upon growth factor stimulation. Expression of
SHOC2S2G in vitro enhanced MAPK activation in a cell type–
specific fashion. Induction of SHOC2S2G in Caenorhabditis
elegans engendered protruding vulva, a neomorphic phenotype
previously associated with aberrant signaling. These results
document the first example of an acquired N-terminal lipid
modification of a protein causing human disease.

Dysregulation of the RAS-MAPK signaling pathway has recently been

recognized as the molecular cause underlying a group of clinically

related developmental disorders with features including reduced

growth, facial dysmorphism, cardiac defects, ectodermal anomalies,

variable cognitive deficits and susceptibility to certain malignancies8,9.

These mendelian traits are caused by mutations in genes encoding

RAS proteins (KRAS and HRAS), downstream transducers (RAF1,

BRAF, MEK1 and MEK2) or pathway regulators (PTPN11, SOS1, NF1

and SPRED1). For Noonan syndrome, the commonest of these

disorders, mutations are observed in several of these genes, underlying

approximately 70% of cases.

To rationalize further candidate gene approaches to Noonan

syndrome gene discovery, we used a systems biology approach based

on in silico protein network analysis. By applying a graph theory

algorithm on a filtered consolidated human interactome, we derived

a subnetwork of proteins generated from an integrated network of

mammalian protein interaction databases and cell-signaling network

datasets by seeding with the known disease-causing mutant proteins

(Supplementary Fig. 1a). To identify potential Noonan syndrome

disease genes, we computed Z scores using a binomial proportions

test, which ranked the significance of the intermediate nodes within

the subnetwork based on their connections to the seed proteins10

(Supplementary Table 1). We resequenced coding exons for the

best gene candidate, SHOC2, in a Noonan syndrome cohort that

included 96 individuals who were negative for mutations in known
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Nazionale delle Ricerche, Naples, Italy. 3Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA. 4US Department of Energy Joint

Genome Institute, Walnut Creek, California, USA. 5Department of Pharmacology and Systems Therapeutics, Systems Biology Center New York (SBCNY), Mount Sinai

School of Medicine, New York, New York, USA. 6Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza, San Giovanni Rotondo and Istituto

Mendel, Rome, Italy. 7Department of Experimental Medicine, University ‘La Sapienza’, Rome, Italy. 8Dipartimento di Biologia Cellulare e Neuroscienze, Istituto
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Medical Genetics, University of Zurich, Schwerzenbach, Switzerland. 14Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
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disease genes and who were opportunely selected to represent the wide

phenotypic spectrum characterizing Noonan syndrome; this revealed

an A-to-G transition at position 4 of the gene, predicting the substitu-

tion of a glycine for serine at position 2 (S2G), in four unrelated

individuals (Supplementary Fig. 1b). All cases were diagnosed as

sporadic, and genotyping of parental DNA available for three of the

four subjects documented the absence of the sequence variant and

confirmed paternity in each family, providing evidence that the change

was a de novomutation associated with the disease. For these subjects,

DNA samples from several tissues were available, and all harbored

the S2G mutation, providing evidence that the defect was inherited

through the germline. We then analyzed SHOC2 in a cohort of

410 mutation-negative subjects with Noonan syndrome or a related

phenotype. We observed 21 individuals with the 4A4G missense

change and proved that the causative mutations were de novo in

12 families from which parental DNA was available. No additional

disease-associated SHOC2 sequence variant was identified in this

cohort, strongly suggesting a specific pathogenetic role for the S2G

amino acid substitution.

Review of the clinical features of individuals with the SHOC2

mutation revealed a consistent phenotype, previously termed Noonan-

like syndrome with loose anagen hair7. Although their facial features

seemed typical of Noonan syndrome (Fig. 1a), phenotypic analysis of

these subjects was notable in that they showed reduced growth that

was frequently associated with proven growth hormone deficiency,

cognitive deficits, distinctive hyperactive behavior that improved with

age in most subjects, and hair anomalies including easily pluckable,

sparse, thin, slow-growing hair. In 12 subjects, a diagnosis of loose

anagen hair was confirmed by microscopic examination of pulled

hairs. Most of the subjects also had darkly pigmented skin with

eczema or ichthyosis. Cardiac anomalies were observed in the majority

of the subjects, with dysplasia of the mitral valve and septal defects

considerably overrepresented compared with the general population

of individuals with Noonan syndrome. The affected individuals’ voices

were characteristically hypernasal. Of note, the referring pediatricians

felt that several of these subjects had features suggestive of Costello

syndrome or of cardiofaciocutaneous syndrome as newborns or young

infants. Overall, these subjects appeared to share a phenotype that was

characterized by an unusual combination of features observed in

disorders of the neuro-cardio-facial-cutaneous disorders family (Sup-

plementary Table 2).

SHOC2 is a widely expressed protein composed almost entirely of

leucine-rich repeats (LRR), with a lysine-rich sequence at the N terminus

(Fig. 1b). In C. elegans, where SHOC2 (also called SUR-8 and SOC-2)

was discovered, the SHOC2 protein acts as a positive modulator of

the RAS-MAPK signaling cascade, which is elicited by EGL-15 and

LET-23 and mediated by LET-60 (homologs of vertebrate FGFR,

EGFR and RAS family members, respectively3,4). Because LRRs can

provide a structural framework for protein-protein interactions,

SHOC2 is believed to function as a scaffold, linking RAS to down-

stream signal transducers4–6. Based on the N-terminal position of the

S2G substitution, we hypothesized that co-translational processing

might be perturbed in the mutant protein, making it a substrate

for N-myristoyltransferase (NMT). N-terminal myristoylation is an

irreversible modification generally occurring during protein synthesis,

in which myristate, a 14-carbon saturated fatty acid, is covalently

added to an N-terminal glycine residue after excision of the initiator

methionine residue by methionyl aminopeptidase1,2. For this to occur,

glycine at codon 2 is absolutely required, small uncharged residues at

positions 3 and 6 are generally needed, and basic residues at positions

7–9 are preferred11. Except for the presence of serine at position 2, the

N-terminal sequence of SHOC2 satisfies those consensus rules, and

in silico analysis predicted myristoylation of the SHOC2S2G mutant

with high confidence. To verify this, we evaluated the myristoylation

status of wild-type and mutant SHOC2 proteins transiently expressed

in Cos-1 cells (Fig. 2a). We found that SHOC2S2G incorporated

[3H]myristic acid, whereas the wild-type protein and the disease-

unrelated SHOC2S2A did not.

N-myristoylation facilitates the anchoring of proteins to cellular

membranes. To explore whether this process conferred membrane

targeting to mutant SHOC2, the subcellular localization of V5-tagged

SHOC2 proteins was analyzed in Cos-1 cells (Fig. 2). Confocal laser

scanning microscopy analysis showed that SHOC2wt was uniformly

distributed in the cytoplasm and nucleus in starved cells, but that

it was restricted to the nucleus following epidermal growth factor

(EGF) stimulation, implying an unexpected role for this protein in

signal transduction. In contrast, SHOC2S2G was specifically targeted to

the cell membrane both in starved cells and after EGF stimulation.

This aberrant localization of SHOC2S2G was confirmed in 293T

and Neuro2A cell lines and using a Myc-tagged protein (data not

shown) as well as by cell fractionation (Fig. 2c). Growth factor–

stimulated nuclear translocation of the endogenous SHOC2 protein

was confirmed in primary skin fibroblasts (Fig. 2e). Treatment with

2-hydroxymyristic acid, an NMT inhibitor, at varying doses reduced or

abolished the membrane localization of SHOC2S2G (Supplementary

Fig. 2), confirming a dependency upon myristoylation. In addition,

b 44 kb ATG
2

557 124 560

Leucine-rich repeats

3 4 5 6 7 8 9
TGA

1

a Figure 1 The germline 4A4G mutation in the SHOC2 gene causes a

distinctive phenotype of the neuro-cardio-facial-cutaneous syndrome family.

(a) Representative phenotypic features of affected subjects carrying the

SHOC2 mutation. Common features include macrocephaly, high forehead,

hypertelorism, palpebral ptosis, low-set and posteriorly rotated ears, short

and webbed neck, and pectus anomalies. Affected subjects also had easily

pluckable, sparse, thin, slow-growing hair. (b) SHOC2 genomic organization

and protein structure. The coding exons are shown at the top as numbered

filled boxes. Intronic regions are represented by dotted lines. SHOC2’s motifs

comprise an N-terminal lysine-rich region (in gray; Prosite motif score ¼ 8.8)

followed by 19 leucine-rich repeats (Pfam hits with an E value o0.5 are in

black and those with an E value 41 in white). Numbers above the domain

structure indicate the amino acid boundaries of those domains.
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even in the absence of efficient myristoylation, SHOC2S2G did not

translocate to the nucleus upon stimulation, indicating possible loss of

function. Efficient nuclear translocation was observed for the disease-

unrelated SHOC2S2A mutant following EGF stimulation (Supplemen-

tary Fig. 3), suggesting a specific effect of the mutation that causes

disease. To exclude the possibility that SHOC2S2G might exert a

dominant negative effect by sequestering the wild-type protein to

the cell membrane, thereby impairing its EGF-dependent transloca-

tion to the nucleus, we assayed SHOC2wt and SHOC2S2G hetero-

dimerization by confocal microscopy and coimmunoprecipitation

assays in Cos-1 cells transiently co-transfected with V5- and Myc-

tagged proteins (Fig. 3a,b). The experiments demonstrated that these

proteins do not heterodimerize, ruling out the possibility of a

dominant negative effect by SHOC2S2G. Next, we explored whether

SHOC2S2G altered signaling through MAPK by expressing SHOC2wt

or SHOC2S2G in Cos-1, 293T and Neuro2A cells. Although we did not

observe significant change in ERK activation in Cos-1 and 293T cells

(data not shown), SHOC2S2G expression promoted enhanced EGF-

dependent ERK phosphorylation compared to wild-type SHOC2 in

neuroblastoma Neuro2A cells (Fig. 3c,d).

To further explore the functional effects of the SHOC2S2G mutant,

we used C. elegans as an experimental model. In C. elegans, reduced

SUR-8 function (sur-8rf) causes no identifiable phenotype by itself but

can suppress the gain-of-function LET-60 (let-60gof)-induced multi-

vulva phenotype (Muv)4. We tested whether expression of SHOC2

proteins could rescue the suppressed Muv phenotype in the sur-8rf,

let-60gof genetic background (Supplementary Table 3). Although

SHOC2wt was able to replace SUR-8 functionally, SHOC2S2G failed

to do so. Expression of the mutant in let-60gof worms did not suppress

the Muv phenotype (Supplementary Table 3), excluding dominant

negative effects for SHOC2S2G. In worms with a wild-type genetic

background, SHOC2S2G expression at embryonic and early larval

stages of development caused no visible phenotype. In contrast, at

the early L3 stage, it caused abnormal vulval development, resulting

in protruding vulva (Pvl), decreased egg laying efficiency (Egl) and

accumulation of larvae inside the mother with the formation of

bag-of-worms adults (Bag phenotype) (Supplementary Table 4

and Fig. 4). These neomorphic phenotypes were absent in animals

expressing SHOC2wt but were observed when SHOC2wt tagged

with an N-myristoylation sequence (myrHSHOC2wt) was expressed

(Supplementary Table 4 and Fig. 4). The SHOC2S2G and myrH

SHOC2wt proteins were targeted to the cell membrane in various

C. elegans cell types, whereas SHOC2wt was observed diffusely

throughout the cytoplasm and nucleus (Fig. 4e–j). The defects in

vulva formation were not due to increased induction of the vulva cell

fate in vulval precursor cells (VPC), as expression of SHOC2S2G did

not reduce the penetrance of the vulvaless phenotype of a let-23rf

hypomorph mutant (Supplementary Table 5), nor did it increase the

penetrance of the Muv phenotype of let-60gf animals (Supplementary

Table 3). At the late L3 to early L4 stage, vulva morphogenesis

normally begins with the descendants of VPC P6.p detaching

from the cuticle and forming a symmetric invagination. Animals in

which the expression of SHOC2wt had been induced at early L3

maintained this pattern. In contrast, in larvae expressing SHOC2S2G

(17/48) or myrHSHOC2wt (10/22), descendants of VPCs P5.p and/or

P7.p also detached from the cuticle, resulting in larger and more

Immunoprecipitates

Membrane fraction

Whole lysates

WT WT S2G S2G
EGF– + – +

Anti-V5

Anti-ERBB2

Anti-V5

Anti-β–actin

Immunoprecipitates Whole lysates

WT S2G S2A

76 kDa
SHOC2

52 kDa

WT S2G S2A WT S2G S2A

a

c

d e

b

Figure 2 The disease-causing 4A4G change in SHOC2 promotes protein myristoylation and cell membrane targeting. (a) [3H]Myristic acid incorporation

(middle) occurs in SHOC2S2G but not in SHOC2wt or SHOC2S2A. Equivalent levels of SHOC2 proteins in immunoprecipitates (left) and [3H]myristic acid

incorporation in cells (right) are shown. (b) SHOC2wt is uniformly present in the cytoplasm and nucleus in starved Cos-1 cells (upper left) and is restricted

to the nucleus following EGF stimulation (upper right), whereas SHOC2S2G is targeted to the cell membrane basally (lower left) and after stimulation

(lower right). Confocal microscopy visualized SHOC2 (anti-V5 monoclonal, then Alexa Fluor 594–goat anti-mouse; red), actin cytoskeleton (Alexa Fluor

488–phalloidin; green) and nuclei (DAPI; blue). (c) Cell fractioning assay documenting preferential membrane targeting of SHOC2S2G. The protein ERBB2

is shown to demonstrate equivalent fractionation efficiency, whereas anti-V5 blots from cell lysates show equivalent transfection efficiency. (d) Colocalization

of V5-tagged SHOC2S2G and ganglioside M1 to the plasma membrane in Cos-1 cells. Subcellular localization of V5-tagged wild-type SHOC2 (left) and

V5-tagged SHOC2S2G (right) is shown. Ganglioside M1 was detected by using the Vybrant Lipid Raft Labeling kit (green). SHOC2 proteins and nuclei

are visualized as reported above. (e) Subcellular localization of the endogenous SHOC2wt protein in primary skin fibroblasts, basally (left) and after

stimulation (right). Confocal microscopy was performed using an anti-SHOC2 polyclonal followed by Alexa Fluor 594–goat anti-rabbit (red), whereas

the actin cytoskeleton was detected by Alexa Fluor 488–phalloidin (green). All images are single optical sections representative of 450 transfected

cells observed in each experiment. Bars, 20 mm (b,d) or 40 mm (e).

1024 VOLUME 41 [ NUMBER 9 [ SEPTEMBER 2009 NATURE GENETICS

LET TERS

 

©
2
0
0
9
 N

a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.



asymmetric invaginations (Fig. 4k–n). This morphogenesis defect was

the earliest detectable neomorphic effect of the SHOC2S2G mutation

on vulval development.

We discovered that a SHOC2mutation promoting N-myristoylation

of its protein product causes Noonan-like syndrome with loose anagen

hair. This acquired fatty acid modification is unique in inherited

human disease and results in constitutive membrane targeting that

leads to increased MAPK activation in a cell context–specific manner.

Cell-specific activation of the RAS pathway has also been observed in

Noonan syndrome–associated SHP-2 mutants12–14. Although not well

understood, this phenomenon explains why, despite the ubiquitousness

of RAS signaling, development is perturbed in certain tissues in these

disorders. It has recently been reported that SHOC2 functions as a

regulatory subunit of the catalytic subunit of protein phosphatase 1

(PP1C)6. By binding GTP-MRAS, SHOC2 promotes PP1C transloca-

tion to the membrane, allowing PP1C-mediated RAF1 dephosphoryla-

tion at residue Ser259, which is required for stable RAF1 translocation

to the plasma membrane and catalytic activation. Of note, the portion

of RAF1 encoding Ser259 and adjacent residues, which represent a

14-3-3 protein binding site with inhibitory function, is a major hot

spot for Noonan syndrome–causing mutations affecting RAF1 (ref. 9).

According to this model, constitutive membrane translocation of

Figure 4 Consequences of SHOC2S2G

expression in C. elegans vulva development.

(a–d) Nomarski images of vulvas of adult

animals. A normal vulva is observed in

animals expressing SHOC2wt (a), whereas

in worms expressing SHOC2S2G (b,c)

or myrHSHOC2wt (d) a protrusion of the

vulva is visible. (e–j) Subcellular localization

of V5-tagged SHOC2 proteins in C. elegans

cells. In excretory canal cells (e–g) and

intestinal cells (h–j), SHOC2wt protein is

present throughout the cytoplasm (e,h),

whereas both SHOC2S2G (f,i) and

myrHSHOC2wt (g,j) are enriched in or

restricted to the plasma membrane. Anti-V5

(red) was used to visualize SHOC2 proteins.

In intestinal cells, nuclei express GFP

due to pelt-2HGFP plasmid used as a marker

for transformation. (k–n) Nomarski images

of vulval precursor cells at the L3 stage.

In animals expressing SHOC2wt only P6.p

descendants invaginate (k), whereas in

SHOC2S2G- (l,m) and myrHSHOC2wt-expressing

(n) animals, P5.p (l–n) and P7.p descendants

(m,n) also detach from the cuticle. Black arrowheads point to P6.p descendant invagination, whereas white arrowheads point to P5.p and P7.p

descendant invagination. Anterior is to the left and dorsal is up in all images.
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Figure 3 Functional characterization of the disease-causing 4A4G change in SHOC2. (a) Subcellular localization of coexpressed SHOC2wt (green)

and SHOC2S2G (red) documenting that SHOC2S2G does not impair EGF-stimulated SHOC2wt translocation to the nucleus. Imaging of V5-tagged

(anti-V5 monoclonal, then Alexa Fluor-594 goat anti-mouse) and Myc-tagged (anti-Myc, then Alex Fluor 488 goat anti-rabbit) SHOC2 proteins and nuclei

(DAPI, blue). Panels above show Myc-tagged SHOC2wt and V5-tagged SHOC2S2G, and those below show V5-tagged SHOC2wt and Myc-tagged SHOC2S2G.

Cells were imaged basally (left) and after EGF stimulation (right). Bars indicate 20 mm. (b) Lysates of Cos-1 cells coexpressing Myc-tagged SHOC2wt

and V5-tagged SHOC2S2G were immunoprecipitated using anti-Myc (above) or anti-V5 (below), and immunoprecipitated proteins were visualized by protein

blotting. These results indicate that SHOC2 proteins do not form heterodimers. (c,d) ERK phosphorylation in V5-tagged SHOC2wt or SHOC2S2G transiently

expressed Neuro2A cells basally or following EGF stimulation. Phosphorylation levels are reported as a multiple of basal ERK phosphorylation in cells

not transfected with a SHOC2 construct, averaged from four replicates ± s.d. (c). Results for cells expressing the S2G mutant were compared with

those overexpressing the wild-type protein (below) or untransfected cells (above) at the same time points using two-tailed t-test. *P o 0.05, **P o 0.01,

***P o 0.001. Representative blots are also shown (d).

a

e

k l m n

f g h i j

b c d

NATURE GENETICS VOLUME 41 [ NUMBER 9 [ SEPTEMBER 2009 1025

LET TERS

 

©
2
0
0
9
 N

a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.



the disease-causing SHOC2S2G is expected to promote prolonged

PP1C-mediated RAF1 dephosphorylation at Ser259 and, consequently,

sustained RAF1-stimulated MAPK activation, which is consistent with

our findings.

In C. elegans, N-myristoylated SHOC2 expression altered morpho-

genesis during vulval development, a process for which the involve-

ment of Ras signaling is well established. Specification of VPCs,

however, was not altered. Rather, perturbation of the morphogenetic

movements of the VPC descendant cells was observed. Although

numerous mutations that alter vulval specification and morpho-

genesis have been identified, far less is known about processes affecting

only morphogenesis15,16. It is possible that SHOC2S2G alters RAS

signaling in steps downstream of the induction of the vulval fate.

Alternatively, SHOC2S2G-induced vulva defects might arise through

perturbation of signaling pathways other than RAS-MAPK, such as

signaling mediated by the Rho GTPase, Rac, which are critical for

vulval morphogenesis17.

A unique feature of the SHOC2 mutation is its association with

loose anagen hair (LAH). This phenotype occurs in isolation or

with Noonan syndrome and has been without molecular cause.

Hair shafts from affected individuals show features of the anagen

stage of hair follicle development, during which epithelial stem cells

proliferate in the hair bulb18. In individuals with LAH however,

hair bulbs lack internal and external root sheaths. Our findings

suggest perturbation in the proliferation, survival or differentiation

of epithelial stem cell–derived cells residing in hair follicles and

implicate SHOC2-mediated signal transduction in this aspect of

stem cell biology.

Finally, we successfully used the human interactome and a

network-based statistical method to predict the involvement of

a gene in human disease. Our leading candidate, SHOC2, was a

relatively obscure gene that caused no distinctive phenotype when

mutated in worms, providing evidence of the strength of this

approach. In future projects, it is anticipated that successful candi-

dates will not be deemed this favorable, necessitating resequencing

of many low-probability candidate genes. Emerging interactome

datasets and improved analytic methods are likely to enhance the

predictive power of systems biology.

METHODS
Methods and any associated references are available in the online

version of the paper at http://www.nature.com/naturegenetics/.

Accession Codes. GenBank: SHOC2, NM_007373.3; SHOC2,

NP_031399.2. Ensembl: SHOC2, ENSG00000108061.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Constructing a mammalian protein-protein interaction network from

available resources. The protein-protein and signaling networks we chose were

all literature-based ‘legacy’ direct biochemical mammalian interactions from

low-throughput functional experiments that had been extracted manually

(literature curated). We did not include interactions from high-throughput

methods, orthologous interactions from lower organisms or interactions pre-

dicted using in silico methods. We considered only direct biophysical binding or

enzymatic interactions and excluded interactions based on functional association.

The following available protein-protein interaction datasets were used: DIP19

(updated to 30 May 2006); IntAct20 (updated to 12 June 2006); MINT21

(updated to 21 May 2006); Ma’ayan et al.22 (updated to 21 May 2006); BIND23

(updated to 24 January 2006); PDZBase24 (updated to 25 September 2006). We

choose these datasets because components in those networks were annotated

with accession codes that permit data consolidation and those datasets were

provided freely for analysis and reuse. All interactions from these databases are

claimed to be direct biochemical interactions determined experimentally, and

all include the PubMed reference for the research article that described the

experiments used to identify the interactions. Consolidating interactions from

the different network databases was accomplished by combining human, mouse

and rat gene symbols using the xml version of Swiss Prot (21 June 2006).

Algorithm used to generate a list of Noonan syndrome candidate genes.

We began by considering the following problem: given a graph G in which a

small subset of vertices S, SCG, are identified as seed nodes, in this case known

disease genes that cause Noonan syndrome, find a close to minimum connected

subgraph G¢ that includes the seed nodes in S while pruning out intermediate

nodes and links that are not statistically significant for interacting with the

seed list. In order to consider this problem, we used an algorithm with six

instructional steps. (i) Combine available mammalian protein-protein inter-

action networks using as described10. (ii) Filter the merged network to prune

out interactions from publications reporting high-throughput interaction data

as described10. (iii) Find all shortest paths25 of length k1 between all pairs of

vertices in the merged seed list S¢ , S¢¢ of all known Noonan syndrome disease

genes. (iv) Find all edges between intermediate vertices identified in (iii).

Intermediate vertices, I, are vertices that fall on shortest paths between pairs

between all pairs in S¢ , S¢ ¢ such that IC G and Ig {S¢ , S¢ ¢ }. (v) Combine

all nodes and links found in (iii) and (iv) to create the subnetwork G¢.

(vi) Rank intermediates base on their links in background network versus

links in subnetwork using a binomial proportions test as described10.

Subjects and mutation analysis. Genomic DNAs from a cohort of 96 subjects

with Noonan syndrome or a phenotype suggestive of this disorder without

mutation in previously identified disease genes (PTPN11, SOS1, KRAS, HRAS,

RAF1, BRAF, MEK1 and MEK2) were screened for the entire SHOC2 coding

region using high-throughput resequencing as previously described26. All

sequence variants identified were verified by manual inspection of the chromato-

grams and putative causative mutations were verified using another independent

sequencing reaction. SHOC2 was then analyzed in a panel of 410 mutation-

negative individuals with Noonan syndrome or a clinically related phenotype by

denaturing high-performance liquid chromatography and direct sequencing26. In

this cohort, clinical features for the majority of subjects satisfied standardized

diagnostic criteria27–31, but a few individuals who lacked sufficient features

for a definitive diagnosis were also included. DNA from skin fibroblasts,

hair bulbs and/or epithelial cells from the oral mucosa was extracted using

standard protocols. Samples were collected under research projects approved

by the Institutional Review Boards at the Istituto Superiore di Sanità, Mount

Sinai School of Medicine, IRCCS-Casa Sollievo della Sofferenza, Università di

Bologna, Ospedale ‘Bambino Gesù’, Università di Torino, University of Erlangen-

Nuremberg and Universitatsklinikum Hamburg-Eppendorf, with informed

consent. Permission was obtained to publish the photographs of subjects shown

in Figure 1. When available, parental DNAs were sequenced to establish whether

identified changes were de novo. Paternity was confirmed using the AmpF/STR

Identifier PCR Amplification Kit (Applied Biosystems).

Functional analyses. In silico analysis of protein N-myristoylation was

performed using the Myristoylator, TermiNator and NMT softwares available

online. The nucleotide substitutions of interest were introduced in V5- and

Myc-tagged (C terminus) human SHOC2 cDNA expression constructs by site-

directed mutagenesis (QuikChange Site-Directed Mutagenesis Kit, Stratagene).

Cos-1, 293-T and Neuro2A cells were maintained in DMEM (Gibco) supple-

mented with 10% heat-inactivated FBS (Euroclone) and antibiotics and were

transfected at 60–70% confluency using Fugene6 (Roche) or Lipofectamine

2000 (Invitrogen). N-myristoylation was evaluated by [3H]myristic acid

(30 mCi/ml) incorporation as described elsewhere32. Proteins immunoprecipi-

tated with an anti-V5 antibody from cell lysates were separated by SDS-PAGE.

Gels were fixed, soaked in Amplify (Perkin Elmer) for 30 min, dried under a

GelAir drying frame (Bio-Rad) and exposed to X-ray film (Kodak) for 2 months.

Cellular fractionation and ERK phosphorylation assays were performed on Cos-1

cells transiently expressing the V5-tagged SHOC2wt or SHOC2S2G using standard

protocols26,33. Cells were serum starved for 16 h and then stimulated with EGF

(30–100 ng/ml) for the indicated intervals. In all experiments, a human NMT1

cDNA expression construct (Origene) was co-transfected to ensure that the

amount of endogenous NMT would not be limiting.

Confocal laser scanning microscopy. 3� 103 cells were seeded on glass coverslips,

transiently transfected, serum starved for 16 h and stimulated with EGF (30 ng/ml,

15 min). Cells were fixed with 3% paraformaldehyde (30 min, 4 1C), permeabi-

lized with 0.5% Triton X-100 (10 min, 25 1C), and stained as described in the

figure legends. Imaging was performed on a Leica TCS SP2 AOBS apparatus, using

excitation spectral laser lines at 405, 488 and 594 nm, tuned with an acousto-

optical tunable filter. Image acquisition and processing were conducted by using

the Leica Confocal Software (Leica Lasertechnik GmbH). Signals from different

fluorescent probes were taken in sequential scanning mode.

Generation of C. elegans strains and phenotypic analysis. Culture, main-

tenance and genetic crosses for nematodes were as described34. Nematode

strains were provided by the Caenorhabditis Genetics Center (University of

Minnesota). The following mutant alleles were used: sur-8rf: sur-8(ku167) IV;

let-60gof: let-60(n1046) IV; let-23rf: let-23(sy1) II. V5-tagged SHOC2wt and

SHOC2S2G cDNA were subcloned into the heat shock–inducible pPD49.83

vector (a gift of A. Fire, Stanford University School of Medicine). A chimeric

SHOC2 protein, myrHSHOC2wt, in which the first seven amino acid residues

were substituted by the N-terminal myristoylation signal (MGSCIGK) of src-2

was obtained via PCR amplification and cloned into the pPD49.83 vector.

Germline transformation was performed as described35. elt-2HGFP (pJM67,

a gift from J.D. McGhee, University of Calgary), which drives GFP expression

in intestinal cells, was used as co-injection marker. At least three independent

lines for each construct were tested for the Pvl phenotype after heat shock.

All the lines expressing SHOC2S2G or myrHSHOC2wt upon heat shock showed

a Pvl phenotype. Only the lines carrying the following transgenes were scored

quantitatively at the compound microscope and used for further analyses

and crosses: gbEx240[hsp16.2HSHOC2wt HV5; pelt-2HGFP], gbEx208a[hsp16.2

HSHOC2S2GHV5; pelt-2HGFP] and gbEx209[hsp16.2HmyrHSHOC2wtHV5;

pelt-2HGFP]. Genetic crosses were performed according to standard methods.

The presence of sur-8(ku167), let-60(n1046) and let-23(sy1) alleles was con-

firmed by sequencing the appropriate region of genomic DNA from each

transgenic strain. After each cross, isogenic worms that had lost the transgene

were cloned separately and used as controls. Animals were scored blindly at the

dissecting microscope to count the number of eggs in utero after cutting the

mother (Egl), to identify animals that had become bags of worms (Bag) and to

check for the presence of multiple ectopic pseudovulvae (Muv). A subset of

worms was also scored blindly at the compound microscope for vulva

morphology and VPC induction phenotypes.

C. elegans heat shock experiments, microscopy and immunocytochemistry.

At different developmental stages, worms carrying the transgenes were

subjected to heat shock at 33 1C for 30 min and then kept at 30 1C for 1 h.

Synchronized embryos were heat shocked to study the effects of transgene

expression on embryonic and early larval development, while synchronized

L1 and L2 larvae were heat shocked to study the effects on later larval

development, movement and fertility. To study VPC induction and vulva

morphogenesis, hermaphrodites were heat shocked at early L3 stages and

animals were scored for vulval induction at the L4 stage and for Pvl phenotype
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at the adult stage. Microscopy observations were performed with a Zeiss

Axioskop equipped with epifluorescence and differential interference contrast

on live animals anesthetized and mounted on 2% agarose pads containing

10 mM sodium azide. Images were collected with an Axiocam digital camera.

Confocal analyses were performed using a Leica TCS SP2 microscope. For

immunocytochemistry analyses, transgenic worms were heat shocked for

2 h and then were fixed with 2% PFA (25 1C, 5 min, 1 h on ice). They were

processed as reported36 and then incubated overnight in a dilution of

anti-V5 monoclonal (1:200). After repeated washing for 24 h, animals were

incubated overnight with secondary Texas Red–conjugated anti-mouse (1:100)

(Invitrogen), washed and mounted for observation on microscope slides.

URLs. DIP, http://dip.doe-mbi.ucla.edu/; IntAct, ftp://ftp.ebi.ac.uk/pub/

databases/intact/current; MINT, http://mint.bio.uniroma2.it/mint/; Iyengar

web resources, http://www.mssm.edu/labs/iyengar/resources; BIND, http://

www.bind.ca/; PDZBase, http://icb.med.cornell.edu/services/pdz/start; Prosite,

http://www.expasy.ch/tools/scanprosite/; Pfam database, http://pfam.janelia.

org/; Myristoylator, http://www.expasy.org/tools/myristoylator/; TermiNator,

http://www.isv.cnrs-gif.fr/terminator3/index.html; NMT, http://mendel.imp.

ac.at/myristate/SUPLpredictor.htm.
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