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ABSTRACT The quantification of spontaneous mutation rates is crucial for a mechanistic understanding of
the evolutionary process. In bacteria, traditional estimates using experimental or comparative genetic
methods are prone to statistical uncertainty and consequently estimates vary by over one order of
magnitude. With the advent of next-generation sequencing, more accurate estimates are now possible. We
sequenced 19 Escherichia coli genomes from a 40,000-generation evolution experiment and directly
inferred the point-mutation rate based on the accumulation of synonymous substitutions. The resulting
estimate was 8.9 · 10211 per base-pair per generation, and there was a significant bias toward increased
AT-content. We also compared our results with published genome sequence datasets for other bacterial
evolution experiments. Given the power of our approach, our estimate represents the most accurate
measure of bacterial base-substitution rates available to date.
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Mutations and genetic recombination provide the variation that fuels
adaptation. Knowledge of mutation rates is therefore an important
component of a quantitative evolutionary theory (Lynch 2010). In
bacteria, spontaneous base-substitution rates have been estimated by
Luria-Delbrück fluctuation tests using selective conditions (Drake
1991; Lynch 2006, 2010 and references therein) and by comparing

DNA sequences from lineages with approximately known divergence
times (Ochman et al. 1999). Both methods have limitations. The
former requires knowledge of the mutational target size for the rele-
vant phenotype and makes assumptions concerning growth and se-
lection that do not always hold in practice (Sniegowski and Lenski
1995). The latter assumes that synonymous substitutions are selec-
tively neutral, requires estimates of generation times in nature, and is
subject to additional uncertainty when there is recombination or se-
lection on codon usage and GC-content (Balbi et al. 2009; Sharp et al.
2010; Touchon et al. 2009). Given these uncertainties, it is not sur-
prising that the mutation rates estimated for E. coli using these two
approaches differ by more than an order of magnitude (Drake 1991;
Ochman et al. 1999).

More direct measurements of mutation rates are now possible
using whole-genome sequences of isolates sampled from evolution
experiments. We have previously applied this approach to one
population from the long-term evolution experiment with E. coli
(Barrick et al. 2009; Barrick and Lenski 2009) in which 12 populations
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have been propagated independently for over 40,000 generations
(Lenski 2004; Philippe et al. 2007). Here, we resequenced genomes
of 19 clones that were sampled from 8 populations (Table 1 and sup-
porting information, Table S1) that did not evolve elevated mutation
rates early in the experiment (Cooper and Lenski 2000; Sniegowski
et al. 1997).

MATERIALS AND METHODS
Mutation identification
Genomes were resequenced on the Illumina Genome Analyzer
platform using one lane of single-end 36-bp reads per genome.
Candidate point mutations were identified in comparison to the
ancestral genome of REL606 [GenBank:NC_012967.1] using three
computational approaches: (i) the SNiPer pipeline (Marchetti et al.
2010); (ii) the breseq pipeline (Barrick et al. 2009, freely available
online at http://barricklab.org/breseq); and (iii) an unpublished algo-
rithm (O. Tenaillon). All candidates were then examined manually to
account for local misalignment errors relative to the reference genome
that resulted from gene conversion events, mobile element insertions,
and large insertions and deletions. Table S1 presents the resulting

consensus list of all synonymous substitutions arranged by population
and clone. The dN/dS ratios were calculated for each clone according
to Comeron (1995) as implemented in the libsequence library (Thornton
2003).

Synonymous target site calculations
For whole-genome studies of mutations in bacterial evolution experi-
ments, we used in-house scripts to calculate the exact number of
protein-coding sites in the ancestral genome according to gene
annotations. The effective number of synonymous target sites was
approximated as one-third of this number, as three mutational
changes are possible from any ancestral base. This analysis does not
take into account base composition effects or the small changes in
genome size during these experiments. The sequence records used for
other published studies were downloaded from Genbank (Accessions:
NC_000913.2, AC_000091.1, NC_008095.1, and NC_003197.1). For
our dataset, we used the Genbank sequence record for E. coli B strain
REL606 (Accession: NC_012967.1) with updated gene annotations.
Data files and Perl scripts for performing this analysis are available
on J.E.B.’s web site (http://barricklab.org/amr).

n Table 1 Description of 35 synonymous mutations observed in 19 genomes sampled from eight evolving populations

Population Genome Positiona Gene Base Change Sequenced Clonesb

Ara–1 – – – 20K-A, 20K-B, 20K-C
Ara–3 756,799 tolR C/T 30K-B, 40K

2,613,609 purL G/A 30K-B
2,642,843 yfiQ G/T 30K-B
2,983,794 yggW C/T 40K
3,141,566 ygjE C/T 40K
3,407,922 kefB C/A 40K
4,111,342 metL C/T 30K-A
4,177,963 hemE T/G 30K-A
4,107,018 ECB_03822 T/A 30K-B, 40K
4,313,510 eptA C/T 40K

Ara–5 157,626 htrE A/T 40K-B
307,594 yahC C/T 40K-A, 40K-B, 40K-C

3,107,610 ygiN T/A 40K-A, 40K-B, 40K-C
Ara–6 857,058 moeB C/T 40K-B

1,352,030 sapC G/T 40K-B
2,087,738 mdtA C/A 40K-A, 40K-B
2,095,621 mdtD G/A 40K-A
3,482,212 malT G/A 40K-B

Ara+1 132,062 lpd C/T 40K-A
239,002 dnaQ A/C 40K-B

3,124,208 yqiI G/A 40K-A
3,308,106 yhcB G/A 40K-A, 40K-B
3,409,316 yheS T/G 40K-A, 40K-B
3,527,027 livH C/A 40K-B
3,910,606 yifB T/G 40K-B
4,133,104 ppc G/A 40K-A, 40K-B

Ara+2 1,083,668 wrbA C/T 40K-A
– – – 40K-B

Ara+4 420,328 cyoB A/C 40K-A, 40K-B
2,772,320 Iap A/C 40K-A, 40K-B
3,061,109 ECB_02854 G/A 40K-A

Ara+5 122,591 ampE T/A 40K-A, 40K-B
212,865 ldcC T/C 40K-A, 40K-B

1,317,194 trpC G/A 40K-A, 40K-B
2,009,188 yoeF G/T 40K-A, 40K-B
2,251,393 napA G/A 40K-A, 40K-B

a Genome position in the ancestral reference strain REL606 [GenBank:NC_012967.1].
b 20K, 30K, and 40K indicate clones sampled after 20,000, 30,000, and 40,000 generations, respectively, and labels A, B and C indicate different clones from the same
generation.
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Mutation rate estimate
We used a maximum-likelihood approach to estimate the rates of all
six possible types of base-pair substitution mutations. This approach
assumed that synonymous substitutions of a given type accumulated
as a Poisson process with an expected number equal to the mutation
rate multiplied by the number of generations elapsed and the total
number of genomic sites at risk for synonymous substitutions of that
type. This last factor corrected for regions of the ancestral genome
where mutations could not be called in an evolved genome due to
deletions, low coverage, or repetitive sequences, as output by the
breseq pipeline.

We corrected for pseudo-replication due to shared evolutionary
history by averaging the calculated log likelihoods for genomes within
population blocks. The overall point-mutation rate was then calcu-
lated by weighting the separately estimated rates for each type of
mutation by the frequency of corresponding sites in the ancestral
genome. Tukey’s jackknife method was used to estimate overall con-
fidence limits from the statistics of resampled (delete–1) datasets that
each dropped all genomes from a single population. Data files and
Perl and R scripts for performing this analysis are available on J.E.B.’s
web site (http://barricklab.org/amr).

RESULTS AND DISCUSSION
We analyzed synonymous substitutions because, when examining all
mutations in the 19 clones, we found dN/dS ratios higher than 1.0 for
all but one (Table S1). This observation supports pervasive ongoing
positive selection through 40,000 generations in these experimental
populations (Barrick et al. 2009). Therefore, non-synonymous muta-
tions are inappropriate for estimating the point-mutation rate.

From population genetics theory, the expected number of syn-
onymous mutations in an evolved clone relative to its ancestor is equal
to the product of the intrinsic base-substitution rate, the number of
genomic sites at risk for synonymous mutations, and the number of
elapsed generations (Kimura 1983). The only requisite assumption is
that most synonymous mutations are selectively neutral. Importantly,
the expected rate of accumulation of neutral mutations in the lineage
leading to any particular clone is not affected by selection at other sites
in the genome, because an asexual lineage simply represents a chain of
replication events spanning the specified number of generations (Barrick
et al. 2009; Kimura 1983).

We observed a total of 52 synonymous substitutions in the 19
resequenced genomes (Table S1). However, multiple genomes sam-
pled from the same population are not independent because they
share some portion of their history; thus, there were only 35 muta-
tional events (Table 1). We used a resampling procedure to account
for this pseudo-replication of multiple genomes isolated from a single
population (see supporting information). The resulting estimate of the
point-mutation rate is 8.9 · 10211 per bp per generation (Tukey’s
jackknife 95% confidence interval, 4.0–14 · 10211 per bp per gener-
ation). This estimate corresponds to a total genomic rate of 0.00041
per generation given the ancestral genome size of 4.6 · 106 bp.

Our inferred point-mutation rate is intermediate to other previous
estimates based on experimental (Drake 1991) and comparative meth-
ods (Ochman et al. 1999). These earlier studies yielded estimates of
5.4 · 10210 per bp per generation and 1.5 to 4.5 · 10211 per bp per
generation, respectively. Given the limitations of these approaches as
noted above, our estimate is probably more accurate. This greater
accuracy derives from the accumulation of mutational events across
300,000 generations (summed over the eight replicate populations)
and over the entire genome, coupled with precise knowledge of the
number of elapsed generations and the reasonable presumption of
selective neutrality or near-neutrality for most synonymous muta-
tions. At the same time, it must also be emphasized that mutation
rates may differ between strains and species, and they may change
depending on the environmental conditions experienced by the cells
(Bjedov et al. 2003).

To put our estimate into context, we performed a similar analysis
of all other published whole-genome datasets for bacterial evolution
experiments with known numbers of generations (Table 2). Taking
the other experiments together, we found 10 synonymous SNPs in 18
independently evolved (nonmutator) clones in a total of 30,550 gen-
erations. These other datasets combined thus provide only �10% of
the power, in terms of cumulative generations, as the long-term data-
set that we have generated and analyzed. As a consequence, the esti-
mated point-mutation rates for these other experimental systems are
subject to much greater statistical uncertainty.

With 35 independent synonymous mutations, we were also able to
examine the mutational spectrum of base substitutions (Figure 1).
After correcting for the sequence composition of genomic sites at risk
for synonymous mutations in the ancestral genome, the observed

n Table 2 Base-substitution rates estimated from evolution experiments with whole-genome data

Study Bacterial Strain Clones
Cumulative
Generations

Synonymous
Sites (bp)a

Synonymous
Mutations

m · 10211

(per bp per
generation)b

This study Escherichia coli B REL606 19 300,000 941,000 25 (52)c 8.9 [5.7–13]
Conrad et al. (2009)
Lee and Palsson (2010)

Escherichia coli K-12 MG1665 12 10,700 930,000 5 50 [16–120]

Kishimoto et al. (2010) Escherichia coli W3110 4 13,850 945,000 2 15 [1.9–55]
Lind and Andersson

(2008)
Salmonella typhimurium LT2 1 5000 990,000 2 40 [4.9–150]

Velicer et al. (2006) Myxococcus xanthus DK1622 1 1000 2,140,000 1 47 [1.2–260]

For these calculations, we used only independently evolved end-point clones, and we pooled data from replicate lineages started from the same ancestral strain.
a The effective synonymous target size was calculated from the ancestral genome sequences (see Materials and Methods).
b The mutation rate m (per bp per generation) was calculated as the number of observed synonymous mutations divided by the product of the total number of
generations and the effective number of synonymous target sites. Brackets indicate 95% confidence limits estimated from a binomial distribution. These estimates
do not take into account base composition or changes in genome size.

c For comparison with the other datasets, we used only the first clone sequenced at the latest nonmutator time point from each of the eight long-term populations:
20K-A for Ara-1,40K for Ara-3, and 40K-A for the other six populations (Table 1). There were 25 synonymous mutations in these clones and 52 overall in the
dataset. A more accurate estimate of m and its uncertainty for the long-term lines takes into account the multiple clones sequenced from the same population, the
pseudo-replication of clones from the same population, the base signatures of the mutations, and changes in genome size. That comprehensive analysis yields
8.9 [4.0–14] · 10211 per bp per generation (see text).
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transition-to-transversion ratio of 1:1.99 did not differ significantly
from the 1:2 ratio expected if there were a uniform probability of all
six base-substitution mutations (two-tailed binomial test, P = 0.61).
However, transitions were highly skewed. Mutations from C:G to T:A
were 14.5 times as likely as A:T to G:C mutations after accounting for
sequence composition (two-tailed binomial test, P = 0.00027). This
finding is consistent with other recent studies that found a strong
mutational bias toward increased AT composition in bacteria (Balbi
et al. 2009; Hershberg and Petrov 2010; Hildebrand et al. 2010). This
bias in mutation pressure explains the pattern of synonymous muta-
tions seen in our study, and it also implies that selection or gene
conversion must account for the characteristic GC-contents observed
in divergent groups of bacteria over much longer evolutionary time-
scales (Rocha and Feil 2010).
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Figure 1 Expected and observed mutational spectra for synonymous
point mutations. White and black bars show the expected and
observed base-pair changes, respectively. The expected values reflect
the actual base-pair frequencies in the genome and the probability
that a particular base-pair mutation (e.g., from C:G to T:A) produces
a synonymous change.
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