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Abstract

Background: A subset of cutaneous malignant melanoma and dysplastic nevi (CMM/DN) families

is linked to 1p36. To date, no CMM/DN susceptibility gene has been identified at this locus. Data

from mouse studies identified chromodomain helicase DNA binding protein 5 (CHD5) as a tumor

suppressor affecting cellular proliferation and apoptosis via the CDKN2A/p53 pathway. Based on

these findings, we felt it was important to screen CHD5 as a familial CMM/DN susceptibility gene.

Methods: Eight unrelated CMM/DN families showing prior evidence of linkage to the 1p36 locus

were identified for CHD5 mutation screening. One CMM/DN affected and one unaffected individual

from each family were selected for sequencing of the CHD5 coding exons and their respective

intron-exon boundaries. CHD5 variants that were identified solely among affecteds in the screening

panel were further assessed by sequencing additional affected and unaffected members of these

families to determine if the variant co-segregated with the CMM/DN phenotype.

Results: Single nucleotide polymorphisms in the CHD5 intronic and coding regions were identified

among affecteds in the screening panel. None of these variants completely co-segregated with

CMM/DN affection status among these eight families.

Conclusion: There is no evidence to support CHD5 as a major melanoma susceptibility gene

among the eight CMM/DN families screened.

Background
Familial cutaneous malignant melanoma results from a
complex interplay of genetic and environmental compo-
nents. The etiologic complexity is compounded by the
presence of genetic heterogeneity [1]. Two major suscepti-
bility genes CDKN2A (MIM 600160), CDK4 (MIM
123829) and a modifier gene MC1R (MIM 155555) have
been identified [1]. Mutations in CDKN2A account for
20–40% of CMM kindreds [2], while CDK4 mutations
have been identified in < 10 CMM families [3-6]. MC1R

variants have been associated with melanoma risk among
individuals of European descent [7,8] and as a modifier of
melanoma risk in CDKN2A mutation-positive CMM fam-
ilies [9-11]. Two putative chromosome 1p melanoma sus-
ceptibility loci (1p22, 1p36) [12-15] have been identified
by linkage analysis in a subset of CMM families. In partic-
ular, families exhibiting CMM/DN phenotype showed
simultaneous linkage to both 1p36 and 9p21 [15]. To
date, no candidate genes have been identified at either
1p22 or 1p36.
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Deletion of chromosomal band 1p36 is frequently
observed in many human cancers including melanoma
[16,17] and has been hypothesized to contain a tumor
suppressor gene. In 2007, Bagchi et al. [18] engineered a
mouse with a deletion or duplication of a genomic inter-
val corresponding to human 1p36. Flow cytometry stud-
ies of mouse embryonic fibroblasts revealed that mice
with a heterozygous deletion exhibited enhanced cellular
proliferation whereas mice carrying a duplication showed
enhanced senescence. Gene knockdown/rescue experi-
ments identified chromodomain helicase DNA binding
domain 5 (Chd5) as the putative dosage-sensitive gene
responsible for the observed haploinsufficiency-associ-
ated cellular proliferation and duplication-associated
apoptosis. Subsequent experiments showed that Chd5
mediated apoptosis involved p53 and that Chd5 haploin-
sufficiency led to decreased expression of CDKN2A (p16)
and p19 (human p14ARF

-alternate-spliced exon 1β tran-
script of CDKN2A, aka ARF) [18]. These findings support
CHD5 (MIM 610771) as a putative candidate gene for
familial CMM kindreds mapping to 1p36.

To evaluate if CHD5 is a major melanoma susceptibility
gene in CMM/DN kindreds showing linkage to 1p36, we
selected a panel of 16 individuals from eight CMM/DN
families for sequencing of all CHD5 coding exons and
their respective intron-exon boundaries.

Methods
Patient selection

Eight familial CMM/DN kindreds with previous evidence
of linkage to 1p36 [14] were selected for CHD5 sequenc-
ing. The 1p36 linkage among the CMM/DN families were
based on three genotyped markers D1S47 (RFLP), Zmax

2.82 at θ = 0.1, D1S160, Zmax 3.71 at θ = 0.1 and PND
(RFLP located in the NPPA gene), Zmax 2.0 at θ = 0.1 [14].
D1S47 is located adjacent to CHD5, D1S160 and PND are
located 3 and 6 Mb (respectively) centromeric to CHD5.
Five of these families showed linkage to both 1p36 and
9p21. Among these five families, four have CDKN2A

mutations and one has an ARF mutation. Among the
three remaining families, two have CDK4 mutations and
one has no identified mutation in CDKN2A nor CDK4

(Table 1). The families averaged seven CMM patients
(minimum, four). The median age at first CMM diagnosis
was 31 years; half the CMM patients had multiple
melanoma tumors. One affected and one unaffected fam-
ily member was selected for CHD5 mutation screening
except for family G in which two affecteds were selected
because both the paternal and maternal lineages showed
CMM/DN (Table 1). The affecteds were selected based on
sharing the putative 1p36 haplotype and the unaffected
were chosen who did not share the 1p36 haplotype. All
study subjects are of Caucasian descent. This study was
approved by the institutional review board of the US

National Cancer Institute and adheres to the tenets of the
Helsinki Declaration. Written, informed consent was
obtained from all participants.

Mutation analysis

Genomic DNA from a panel of 16 individuals (Table 1)
was analyzed for CHD5 mutations by bi-directional
sequencing of all coding exons. Intron-exon boundaries
were determined by aligning the reference CHD5 mRNA
(NM_015557) sequence to the genomic sequence
(AL031847, AL035406) with NCBI Spidey [19]. We
looked for potentially damaging changes that affect splice
donor/acceptor sites or caused in- or out-of-frame dele-
tions/duplications, non-conservative amino acid coding
changes and nonsense substitutions. PCR primers were
designed to amplify exons and flanking introns. Primer
sequences and PCR conditions for each exon are detailed
in Table 2. Taq Gold (Applied Biosystems, Foster City,
CA) or Advantage GC-2 polymerase (Clontech, Mountain
View, CA) were used to amplify the genomic DNA from
each subject. Sequencing reactions were performed on
PCR purified products using BigDye v3.1 chemistry and
analyzed with an automated 3130XL Genetic Analyzer
(Applied Biosystems).

Sequence-derived electropherograms from the 16 individ-
uals were compared with the published CHD5 sequence
using Sequencher v4.6 software (Gene Codes Corp., Ann
Arbor, MI).

Table 1: CHD5 mutation screening panel from eight CMM/DN 

kindreds linked to 1p36

Family Individual Affection CMM+DN Mutation status

R 3002 Unaffected No None

R 3003 Affected Yes CDK4+

K 1001 Affected Yes CDKN2A+

K 1003 Unaffected No None

D 1001 Affected Yes CDKN2A+

D 1003 Unaffected No None

G 2005 Affected Yes CDKN2A+

G 2006 Affected Yes None

J 1002 Affected Yes CDKN2A+

J 3005 Unaffected No None

AH 3005 Affected Yes ARF+

AH 3006 Unaffected No None

S 1001 Affected Yes CDK4+

S 1003 Unaffected No None

A2 1001 Affected Yes None

A2 1019 Unaffected No None

ARF, CDKN2A alternative-spliced exon 1β transcript, CDKN2A, cyclin-
dependent kinase inhibitor 2A, CDK4, cyclin-dependent kinase 4, 
CMM, cutaneous malignant melanoma; DN, dysplastic nevi.
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Table 2: Primers and PCR conditions used for mutation screening of the coding exons of CHD5.

Exon Primer (forward/reverse) Annealing Product size (bp)

2 5'-CTCTCACTTCACTGGGTTTG-3'
5'-GAAACCCTCAAACTCCAAGG-3'

58 393

3 5'-CTCTGATGATGAGTGGAGTG-3'
5'-AACATACAGGCAAGAGGCTCAG-3'

58 394

4 5'-TTTCCTAGGGTGGGTGAGAATG-3'
5'-TTGCTCAGTCGGTCTGACAGAG-3'

58 400

5 5'-CTCTCTAATCAGGAACCTGG-3'
5'-GGCTTCTCCTATAGGGTCTGAAAG-3'

58 441

6 5'-CCCTTTCCTTATTGGGTAACCG-3'
5'-GCCCCAGCTAGTTTGTAATG-3'

58 335

7 5'-GAATCACAGAGAGCACTGTG-3'
5'-TCCTTGTTCTTTCCTTACTGGG-3'

58 491

8 5'-ACATCTACTCTGTGCCTGTCTG-3'
5'-GCATTCTGCCCCCAAATGAG-3'

58 347

9 5'-TGTAGGGGAGGGAGGGAGTC-3'
5'-TTTTGAGGAGGGCAGGCCTTC-3'

67 387

10 5'-CGTGGTACTGTTCTGACTTG-3'
5'-CTCAGTCAGAGGCGCTTCAG-3'

58 435

11 5'-CTGAAGCGCCTCTGACTGAG-3'
5'-TGCGCTGCACCCATTTTACAG-3'

58 459

12 & 13 5'-TGCCCTTCATCAAACCTGTG-3'
5'-CCTGCACATTCAAGTCTGAG-3'

58 472

14 5'-GAATTGCATGTGCAAAGGCCTG-3'
5'-CGCGTTCCCAGTTGATGATG-3'

58 397

15 5'-CCTTTACTCCCTCTACAAGG-3'
5'-ACCCGTGGTCCCTGAACTAG-3'

58 373

16 & 17 5'-TTGGCTCTTTGTCTCCTGGG-3'
5'-CAGGATGGGCTATTGATCCG-3'

58 504

18 5'-TGAGACGATATCCAGGGCAATG-3'
5'-AAAGCATTAGCCGAGACCTCAG-3'

58 431

19 5'-GGTCTCTCTGTAAATGGGTGCTTG-3'
5'-AAACCTACCATGACAGCCACAG-3'

58 396

20 5'-CAGCACTTGTCTGTTCCCTG-3'
5'-ACACAGTCACATGACCCACATG-3'

58 357

21 5'-GGGTGAGGTTGGAAGCTTTG-3'
5'-GTCTTTAGCTGTTTGTGAGGCTG-3'

58 419

22 5'-TTGCTGCAGTTCCTTCTCTCTG-3'
5'-ATGGCAAGAAGGGCATGAAG-3'

58 311

23 5'-TCCATGCTCTTGAGCTCATG-3'
5'-AGAAGAGAGGCTGTGTGTTG-3'

58 429

24 5'-AACACACAGCCTCTCTTCTG-3'
5'-AGGAAACTGCGCTGTAACAG-3'

58 393

25 5'-GCAGTTTCCTCTGTCTGGTCAC-3'
5'-TCACAGCTTGGAGGGCTGGCTG-3'

58 442

26 5'-GGCCATCCCATTAATCCTTG-3'
5'-GATGCCCTGACAGAATCCTG-3'

58 370

27 & 28 5'-CCTGGGCATGCTTGAACTTG-3'
5'-CAGACCAAGTTCTGTCCAAG-3'

58 522

29 5'-CTTGGACAGAACTTGGTCTG-3'
5'-CATCCTGGCGGAAGCAAATG-3'

58 419

30 5'-AGCCCTCTCAGAGGGTTCTTG-3'
5'-ACAGCACCAGGAGCCCAGGCAG-3'

58 249

31 5'-CAAGCCTGTGACACTTTCAG-3'
5'-GATTGTGGGTTAGACTAGGG-3'

58 351

32 5'-CCTCACTTTGGTCTTACTGG-3'
5'-CGATTCAGAGCCCCGAAAAG-3'

58 440

33 5'-CTTTTCGGGGCTCTGAATCG-3'
5'-CTCTCTGCCAGGGAGAAATG-3'

58 391

34 5'-TTGATGGATAGGGTTCCATGGG-3'
5'-AGGGCCTAGAGGTATGCAAAG-3'

58 488

35 5'-GCTTGTTTAAGACCCTTCTGGG-3'
5'-TAACCACTGGTCTAGACTCCTG-3'

58 363
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Computational analysis of single nucleotide 

polymorphisms

PMUT [20] online tool was used to assess the potential
functional effects of missense changes found in CHD5.
PMUT utilizes neural networks trained with a large data-
base of neutral and disease-associated human mutations
to predict the effects of single amino acid substitutions.
The user inputs the reference amino acid sequence of the
protein and designates the position of the amino acid sub-
stitution of interest. The output is a pathogenicity index
ranging from 0 to 1 (indices > 0.5 predict a pathologic
change and < 0.5 a neutral change) and a confidence
index ranging from 0 (low) to 9 (high) [20].

ESEfinder 3.0 [21] was used to scan the genomic region
containing SNPs found only among affected individuals
in the screening panel for the identification of splice
enhancer binding sites in the wildtype sequence. A com-
parison was then made with the variant sequence to deter-
mine if the single nucleotide substitution created a new
splice enhancer binding site or destroyed an existing bind-
ing site.

Results
All coding exons and flanking intronic sequence were
examined. Six single nucleotide polymorphisms (SNPs)
located in introns and four in the coding region (cSNPs)
were detected in one or more affected individuals in the
screening panel (Table 3). Among the 10 SNPs detected,
four were previously identified in the dbSNP database and
have an assigned rs identification number [22] and six are
newly discovered (Table 3). Of the four cSNPs, three are
synonymous and one is a nonsynonymous nucleotide
change leading to a substitution of isoleucine for methio-
nine at position 1117 (I1117M, Table 3). I1117M variant
was detected in family AH in affected individual (AH-
3005) and was not present in the unaffected individual
(AH-3006) (Fig. 1a) or among the remainder of individu-
als in the screening panel (Table 1). Isoleucine 1117 is
located in the C-terminal DNA binding domain of CHD5.
Amino acid sequence alignment of the reference CHD5
protein (NP_056372) with mammalian Chd5 orthologs
and non-mammalian paralogs (i.e. Chd-3 C. elegans,

Chd4 in Danio and Xenopus) revealed high conservation
of isoleucine at position 1117 (Fig. 1b). Computational
analysis of the potential deleterious effects of the I1117M
variant using the online tool PMUT predicted that this is
a neutral substitution (index 0.049) with a reliability
index of 9 (high). Scanning the genomic region of the four
cSNPs (Table 3) with ESEfinder 3.0 [21] found a potential
change in the c.531G>A (P177P) variant. The G to A
nucleotide substitution at position 531 may potentially
eliminate two SF2/ASF binding sites and create a new
SC35 binding site in this region. There were no changes in
exonic splice enhancer binding sites detected by ESEfinder
3.0 among the other three cSNPs.

Among the six intronic SNPs associated with affected indi-
viduals in the screening panel, two located in introns 8
and 11 have been previously identified (rs41279496,
rs17489787) in dbSNP [22] and four are newly discov-
ered in this study (Table 3). Computational search of the
genomic region containing these six intronic SNPs for
exonic splice enhancer sequence with the online tool ESE-
finder 3.0 [21] found no destruction of existing splice
enhancer binding sites or creation of additional binding
sites by these SNPs.

Sequencing of additional affected and unaffected mem-
bers from family AH revealed that the I1117M variant is
present in the unaffected mother of AH-3005, but not in
his affected father nor in the four remaining CMM/DN
affected individuals in this family. Sequence analysis of
the remainder of the intronic SNPs and synonymous
cSNPs detected in the screening panel (Table 3) among
additional affected and unaffected family members from
each respective family revealed that these polymorphisms
did not co-segregate with the CMM/DN trait.

Discussion
The search for additional major susceptibility genes for
familial melanoma has remained elusive. Currently two
genes (CDKN2A, CDK4) have been identified and
together account for ≤ 40% of all CMM families. Thus, a
majority of CMM families do not have a defined CMM
susceptibility gene. Linkage analysis of CDKN2A, CDK4

36 5'-TTAGCCACCCTGGAACACTG-3'
5'-GGAAGATTGAGGAAGAACGAGG-3'

58 352

37 5'-TCCCTGAGCTGCCTCCCCCTAC-3'
5'-AGGGTCCTCCTGACACCGTC-3'

58 267

38 5'-TACGTCCTCTTTCCCTCCTTTCTG-3'
5'-TGCCCTCATCTACAGCCAAG-3'

58 393

39 5'-CATCCTTCCACTCCTCCATC-3'
5'-AGCTTCACAGGTGGTCTCAG-3'

58 325

40 & 41 5'-GTGCCCCTGGGTGGAGGCTG-3'
5'-ACTGTGGCCAGGCCTGGTTTG-3'

58 410

Exons 12 & 13, 16 & 17, 27 & 28, and 40 & 41 were amplified as a single amplicon.

Table 2: Primers and PCR conditions used for mutation screening of the coding exons of CHD5. (Continued)
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mutation negative families identified a susceptibility
locus at 1p22 [12], however, no candidate gene has been
identified. Prior linkage studies identified a subset of
CMM/DN families with simultaneous linkage to 9p21
and 1p36 [15]. Loss of heterozygosity at 1p36 was origi-
nally found in neuroblastoma [23] and has subsequently
been reported in many types of human tumors [24] sug-

gesting the presence of a tumor suppressor gene(s) in this
region. Somatic deletion of the 1p36 locus occurs in a
wide range of solid and lymphoid tumors [24] and has
been observed in nodular, metastatic and superficial
spreading melanomas [16,17]. Therefore the loss of a
common tumor suppressor gene or a combination of sev-

CHD5 sequence and amino acid alignmentFigure 1
CHD5 sequence and amino acid alignment. a. CHD5 exon 22 sequence variant c.3351C>G [I1117M] in affected individual 
AH-3005 compared to wildtype sequence in unaffected individual AH-3006. b. CHD5 amino acid consensus alignment at posi-
tion 1117. Comparison of human CHD5 protein with mammalian orthologs and nonmammalian paralogs. NP_001074845, 
Chd5 Mus musculus; NP_001038323, Chd4 Danio rerio; NP_001080504, Chd4 Xenopus laevis, NP_056372, CHD5 Homo 
sapiens; NP_510140, Chd-3 Caenorhabditis elegans; XP_001078944, Chd5 Rattus norvegicus; XP_525165, Chd5 Pan troglo-
dytes; XP_546747, Chd5 Canis lupus familiaris; XP_609360, Chd5 Bos Taurus.
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eral genes in this region may predispose to tumor devel-
opment or contribute to tumor progression [24,25].

Recently, CHD5 was identified as a candidate tumor sup-
pressor gene [18,24] by the use of Cre-loxP site-specific
recombinant technology to generate a region of gain or
loss of mouse chromosome 4 corresponding to the
human 1p36 locus. Bagchi et al [18,24] was able to dem-
onstrate that mouse cells with an extra copy of chromo-
some 4 corresponding to human 1p36 exhibited enhance
cellular senescence. The observed cellular senescence was
rescued by RNAi-mediated knockdown of p53. Mouse
cells deficient in Chd5 due to loss of one copy by Cre-loxP-
mediated recombination expressed decreased levels of
p53, p16 and p19. Subsequent experiments showed that
cellular proliferation can be restored by depletion of p19
suggesting that Chd5 regulated p53 expression and that
cell growth was directed through chromatin remodeling
and control of gene expression at the CDKN2A (p16/p19)
locus.

Among the eight CMM/DN families screened for CHD5

mutations in this study, only one family (AH) was found
to have a missense coding change. However, upon in
depth mutation analysis of family AH with additional
affected and unaffected family members, the I1117M var-
iant was found to be inherited from the unaffected
mother. Family AH consists of six CMM/DN affected indi-
viduals. The CMM/DN phenotype is inherited through
the paternal side of the family. Neither the affected father
nor additional affected individuals carried the I1117M
variant. This finding strongly suggests that the I1117M
variant is not associated with the CMM/DN phenotype.
Sequence analysis of the remaining intronic SNPs and
synonymous cSNPs found in the screening panel (Table
3) among additional affected and unaffected individuals
from their respective CMM/DN kindreds revealed that
none of these variants showed complete co-segregation
with the CMM/DN phenotype. Taken together, these

results did not support CHD5 as a melanoma susceptibil-
ity gene in these eight families.

Limitations of this study include small sample size. Also
we did not possess a source of mRNA to study CHD5

expression in tumor or compare melanocyte expression of
CHD5 between affected individuals and controls. To our
knowledge, the eight families screened represent all the
known CMM families linked to 1p36. We limited our
CHD5 mutation screen to the coding regions and flanking
splice sites, thus changes to promoter, enhancer and
micro-RNA binding sites may have been missed. We cau-
tion that our findings pertain only to the eight families
screened in this study and should not be generalized to
other CMM families.

Conclusion
In conclusion, we have not found evidence that CHD5 is
a major melanoma susceptibility gene among the eight
CMM/DN families screened. We are not aware of addi-
tional CMM families linked to the 1p36 locus. Thus,
mutation screening of more 1p36-linked families may be
challenging. Given the small number of families ana-
lyzed, a rare mutation in CHD5 may have been missed.

Abbreviations
CDKN2A: cyclin-dependent kinase inhibitor 2A; CDK4:
cyclin-dependent kinase 4; CHD4: chromodomain heli-
case DNA-binding protein 4; CHD5: chromodomain hel-
icase DNA-binding protein 5; CMM/DN: cutaneous
malignant melanoma and dysplastic nevi; cSNP: coding
SNP; dbDNP: single nucleotide polymorphism database;
MC1R: melanocortin 1 receptor; p16: alternate designa-
tion for CDKN2A; p19/ARF: designation for alternate-
spliced exon 1β transcript of CDKN2A: SNP, single nucle-
otide polymorphism.
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Table 3: CHD5 sequence variants found among one or more affected in the screening panel

Location Nucleotide change Amino acid change db SNP ID

Exon 5 c.531G>A None [P177P] Not in database

Intron 8 IVS8+41C>A None rs41279496

Intron 11 IVS11-7G>C None rs17489787

Intron 13 IVS13-17C>T None Not in database

Exon 15 c.2379C>T None [N793N] rs2273032

Exon 22 c.3336G>A None [A1112A] rs17029184

Exon 22 c.3351C>G I1117M Not in database

Intron 36 IVS36-38C>T None Not in database

Intron 36 IVS36-49C>T None Not in database

Intron 39 IVS39+34C>T None Not in database

dbSNP, single nucleotide polymorphism database.
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