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Abstract We consider the evolution of populations under the joint action of
mutation and differential reproduction, or selection. The population is mod-
elled as a finite-type Markov branching process in continuous time, and the
associated genealogical tree is viewed both in the forward and the backward
direction of time. The stationary type distribution of the reversed process, the
so-called ancestral distribution, turns out as a key for the study of mutation–
selection balance. This balance can be expressed in the form of a variational
principle that quantifies the respective roles of reproduction and mutation for
any possible type distribution. It shows that the mean growth rate of the popu-
lation results from a competition for a maximal long-term growth rate, as given
by the difference between the current mean reproduction rate, and an asymp-
totic decay rate related to the mutation process; this tradeoff is won by the
ancestral distribution. We then focus on the case when the type is determined
by a sequence of letters (like nucleotides or matches/mismatches relative to a
reference sequence), and we ask how much of the above competition can still
be seen by observing only the letter composition (as given by the frequencies of
the various letters within the sequence). If mutation and reproduction rates can
be approximated in a smooth way, the fitness of letter compositions resulting
from the interplay of reproduction and mutation is determined in the limit as
the number of sequence sites tends to infinity. Our main application is the quasi-
species model of sequence evolution with mutation coupled to reproduction but
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independent across sites, and a fitness function that is invariant under permu-
tation of sites. In this model, the fitness of letter compositions is worked out
explicitly. In certain cases, their competition leads to a phase transition.

Keywords Mutation–selection models · Branching processes · Quasispecies
model · Variational analysis · Large deviations
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1 Introduction

Evolution is often understood as an optimization process of some kind, and
there is a long tradition to consider evolutionary models, particularly those
from population genetics, from a variational perspective. The most popular
result in this context is known as the fundamental theorem of natural selec-
tion (FTNS). In its simplest form it states that, in the deterministic selection
equation for a single locus in continuous time, mean fitness can only increase
along trajectories (i.e., it is a Lyapunov function), and the rate of this increase
equals the variance in fitness, cf. [5, Ch. I.10.3]. More sophisticated versions
in the context of quantitative genetics and multiple loci, along with a general
discussion of optimality principles for the selection equation, are discussed in
[5, Ch. II.6.3–II.6.6] and [11, Ch. 2.9, 7.4.5 and 7.4.6]; see also [8].

If, rather than selection alone, the joint dynamics of selection and mutation
is considered, results become sparse. The FTNS may be generalized to house-
of-cards mutation (i.e., mutation rates are independent of the parent type),
see [1] and [19]. If mutation is reversible, a Lyapunov function is available for
a certain L2-renormalized version of the dynamics, but not for the original
mutation–selection equation [33].

The above approaches refer to the genetic (or, more generally, type) com-
position at the population level. In contrast, this article is concerned with a
variational principle in mutation–selection models (and closely related branch-
ing processes) from the point of view of individual lineages through time, their
ancestry and genealogy. This principle is related to the (stochastic) processes
that take place along such lines of descent, with a special emphasis on the rela-
tion between the present and the past. We will, however, not include genetic
drift (i.e., resampling) into our models; therefore, our backward point of view
differs from that of the coalescent process (see [17] for a recent review of this
area).

The paper is organized as follows. In Sect. 2, we will set up our model(s) and
recapitulate a few fundamental facts. Section 3 provides an informal preview
of the results that will be detailed (and proved) in the remainder of the arti-
cle. Section 4 will develop the lineage aspect that will be required furtheron.
Looking at the mutation process along individual lines, we will obtain a fairly
general variational principle (Sect. 5, Theorem 1), which quantifies the tradeoff
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Fig. 1 The parallel
mutation–reproduction model

between the mean reproduction rate along a line and the asymptotic rate at
which it is lost; it further implies a connection between the type processes that
emerge in the forward and backward directions of time. In Sects. 6 and 7, we
will specialize on the case where types are sequences over a finite alphabet. If
mutation is independent and fitness is additive across sites, the original high-
dimensional variational principle may be reduced to a simpler, low-dimensional
one (Sect. 6.3, Theorem 2). The same holds asymptotically if mutation rates and
fitness function allow for a suitable smooth approximation when the number
of sites gets large (Sect. 7, Theorems 3, 4 and 5). The corresponding approxi-
mate maximum principle will be derived explicitly for the quasispecies model
of sequence evolution (Sect. 8, Theorem 6).

The paper ties together, unifies and generalizes various aspects that have
appeared in previous publications. Special cases of the low-dimensional maxi-
mum principle were first described in [18], and applied to concrete examples.
An extension appeared in [3]; it relies on methods from linear algebra and
asymptotic analysis, but makes no connection to the stochastic processes on
individual lines, nor does it include worked examples. The connection to the
backward point of view relies on earlier work on branching processes [22,23]
and was investigated in [18] and [15]. These results will reappear here as parts
of a larger picture.

2 Models and basic facts

2.1 Models

Consider a finite set of types S (with |S| > 1) and a population of individuals,
each of which carries one of these types. (We think of individuals as haploid,
and of types as alleles.)

2.1.1 The parallel mutation–reproduction model

Let us start with the most basic mutation–reproduction model in which muta-
tion and reproduction occur in parallel, that is, independently. As depicted in
Fig. 1, an individual of type i ∈ S may, at every instant in continuous time,
do either of three things: it may split, i.e., produce a copy of itself (this hap-
pens at birth rate Bi ≥ 0), it may die (at rate Di ≥ 0), or it may mutate to
type j (j �= i) (at rate Uij ≥ 0). Different meanings may be associated with
this verbal description. Probabilists will take it to mean a multi-type Markov
branching process in continuous time (see [2, Ch. V.7], or [25, Ch. 8] for a general
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overview). That is, an i-individual waits for an exponential time with parameter
Ai = Bi + Di + ∑

j:j �=i Uij, and then dies, splits or mutates to type j �= i with
probabilities Bi/Ai, Di/Ai, and Uij/Ai, respectively. The number of individuals
of type j at time t, Zj(t) ∈ Z≥0 := {0, 1, 2 . . . }, is a random variable; the col-
lection Z(t) = (

Zj(t)
)

j∈S is a random vector. The corresponding expectation is
described by the first-moment generator A = U + R. Here, U is the Markov
generator U = (Uij)i,j∈S, where the mutation rates Uij for j �= i are comple-
mented by Uii := −∑

j:j �=i Uij for all i ∈ S. Further, R := diag{Ri | i ∈ S},
where Ri := Bi − Di is the net reproduction rate (or Malthusian fitness). More
precisely, we have E

i(Zj(t)) = (etA)ij, where E
i(Zj(t)) is the expected number of

j-individuals at time t in a population started by a single i-individual at time 0.

2.1.2 Deterministic aspects

Ignoring stochastic effects and focussing on the mean behaviour of the popula-
tion, one often considers the deterministic mutation–reproduction model

ẏ(t) = y(t)A, y(0) = y0, (1)

where y(t) = (yi(t))i∈S is the row vector associating to each type i its abundance
yi(t) ∈ R≥0 (i.e., the size of the subpopulation of type i). As y(t) = y0etA, the
deterministic model describes the expectation of the corresponding branching
process, provided the initial condition is chosen accordingly.

However, the independent reproduction of individuals as implied so far is
unrealistic for large populations. They usually experience density regulation; in
the simplest case, this is modelled by an additional death term γ (t) ≥ 0, that
is, Di is replaced by Di + γ (t) (for all i ∈ S), where γ (t) may depend on time
(maybe through total population size), but not on the type. Then, of course, (1)
generalizes to

ẏ(t) = y(t)(A − γ (t)I), (2)

where I is the identity matrix. In theoretical ecology, a wide variety of mod-
els is in use that specify γ for the many biological situations that may arise.
In population genetics, however, one is usually more interested in the relative
frequencies qi(t) := yi(t)/

∑
j yj(t). Differentiating this and inserting (2) leads to

q̇i(t) = qi(t) (Ri − 〈q(t), R〉)+
∑

j∈S:
j �=i

(
qj(t)Uji − qi(t)Uij

)
, (3)

independently of γ . Here we think of the row vector q = (qi)i∈S as a probability
measure, of the column vector R = (Ri)i∈S as a function on S (known as the
fitness function), and of the scalar product 〈q(t), R〉 = ∑

i∈S qi(t)Ri as the asso-
ciated expectation, namely, the mean fitness of the population at time t. Eq. (3)
is the well-known parallel (or decoupled) mutation–selection model, which goes
back to [6, p. 265]. Although we have derived it here for haploid populations
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Fig. 2 The coupled
mutation–reproduction model

(and will adhere to this picture), it is well known, and easily verified, that
the same equation describes diploids without dominance (in an approximation
using Hardy–Weinberg proportions). For a comprehensive review of the model
and its properties, see [5, Ch. III].

Rather than considering deterministic and stochastic models separately, we
aim at a unifying picture and note that the branching process is particularly
versatile: Its expectation fulfills (1), and the solution of (1), in turn, implies that
of (3) (via normalization). Properties of the branching process will, therefore,
immediately translate into properties of the mutation–selection equation (but
not, necessarily, vice versa). For this reason, we will consider the branching
process as our primary model throughout this paper. Let us, therefore, return
to branching populations and look at alternatives to the parallel model.

2.1.3 The coupled mutation–reproduction model

In this model one assumes that mutations occur on the occasion of reproduction
events (see Fig. 2): An i-individual again dies at rate Di and gives birth at rate
Bi, but every time it gives birth, the offspring is possibly mutated (of type j with
probability Pij), while the parent itself survives unchanged. The corresponding
first-moment generator A has elements

Aij = BiPij − Dj. (4)

An example of the coupled model will be studied in Sect. 8.

2.1.4 General splitting rules

Both the parallel and the coupled models are special cases of the general
Markov branching model as depicted in Fig. 3: An i-individual lives for an
exponential time τi with prescribed parameter Ai and then produces a random
offspring Ni = (Nij)j∈S with distribution pi on Z

S+ and finite means E(Nij) for
all i, j ∈ S. More precisely, Nij ∈ Z≥0 is the number of children of type j,
and pi(κ) = P(Nij = κj , ∀j ∈ S). The first-moment generator A has elements
Aij = Ai(E(Nij)− δij).

For the coupled and the general branching rules, the first-moment generator
may again be written in the ‘parallel’ form A = U + R where U is a Markov
generator and R is a diagonal matrix; this decomposition is uniquely given by

Fig. 3 General splitting rules
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Uij = Aij for i �= j, Uii = −∑
j:j �=i Uij, and Ri = ∑

j∈S Aij for all i ∈ S. At the
time being, this is a formal decomposition, but will receive its branching process
interpretation later in Sect. 4.2. The corresponding deterministic models then
all take the form (1) and (3), provided the parameters are interpreted in the
above way.

2.2 Fundamental facts

2.2.1 Forward view and long-time characteristics

We will assume throughout that A (or, equivalently, U) is irreducible. Perron–
Frobenius theory then tells us that A has a principal eigenvalue λ (namely a
real eigenvalue exceeding the real parts of all other eigenvalues) and associated
positive left and right eigenvectors π and h which will be normalized so that
〈π , 1〉 = 1 = 〈π , h〉, where 1 = (1)i∈S is the vector with all coordinates equal to
1. We will further assume that λ > 0, i.e., the branching process is supercriti-
cal. This implies that the population will, in expectation, grow in the long run,
as is obvious from (1); in individual realizations, it will survive with positive
probability, and then grow to infinite size with probability one, see (6) below.

The asymptotic properties of our models forward in time are, to a large
extent, determined by λ,π , and h, and provide further connections between
the stochastic and the deterministic pictures. The left eigenvector π holds the
stationary composition of the population, in the sense that limt→∞ q(t) = π for
the differential equation (3), and, for the branching process,

lim
t→∞

Z(t)
‖Z(t)‖1

= π with probability one, conditionally on survival, (5)

where ‖Z(t)‖1 := ∑
j∈S Zj(t) is the total population size. This is due to the

famous Kesten–Stigum theorem, see [27] for the discrete-time original, and
[2, Theorem 2, p. 206] and [15, Theorem 2.1] for continuous-time versions.
Furthermore,

〈π , R〉 = λ = lim
t→∞

1
t

log ‖y(t)‖1 = lim
t→∞

1
t

log ‖Z(t)‖1 (6)

is the asymptotic growth rate (or equilibrium mean fitness) of the population.
Here the first equality follows from the identity λ = 〈πA, 1〉 = 〈π , A1〉 = 〈π , R〉;
the second one is an immediate consequence of (1) and Perron–Frobenius the-
ory, and the third is from [15] and holds with probability one in the case of
survival. Finally, the i-th coordinate hi of the right eigenvector h measures the
asymptotic mean offspring size of an i individual, relative to the total size of the
population:

hi = lim
t→∞ E

i(‖Z(t)‖1
)
e−λt. (7)
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Fig. 4 The backward point
of view. The various types are
indicated by different line
styles. The fat lines mark the
lines of descent defined by
three individuals (bullets)
picked from the branching
population at time t. After
coalescence of two such lines,
the common ancestor receives
twice the ‘weight’, as
indicated by the extra fat line;
this motivates the factor hi in
the ancestral distribution

For more details concerning this quantitity, see [18] and [15] (for the determin-
istic and stochastic pictures, respectively).

2.2.2 Backward view and ancestral distribution

In the above, we have adopted the traditional view on branching processes,
which is forward in time. It is less customary, but equally rewarding, to look at
branching populations backward in time. To this end, consider picking individu-
als randomly (with equal weight) from the current population and tracing their
lines of descent backward in time (see Fig. 4). If we pick an individual at time t
and ask for the probability that the type of its ancestor is i at an earlier time t−τ ,
the answer will be αi = πihi in the limit when first t → ∞ and then τ → ∞. Thus
the distribution α = (αi)i∈S describes the population average of the ancestral
types and is termed the ancestral distribution, see [15, Theorem 3.1] for details.
Likewise, the time average along ancestral lines also converges to α in the long
run, see [15, Theorem 3.2].

If we pick individuals from the population at a very late time (so that its
composition is given by the stationary vector π), then the type process in
the backward direction is the Markov chain with generator Ḡ = (Ḡij)i,j∈S,
Ḡij = πj(Aji − λδij)π

−1
i , as first identified by Jagers [22,23]. The corresponding

time-reversed process has generator G = (Gij)i,j∈S, where

Gij = αjḠjiα
−1
i = h−1

i (Aij − λδij)hj; (8)

it has been considered in [15], has been termed the retrospective process, and
may be understood as the forward type process along the ancestral lines leading
to typical individuals of the present population. By definition, G and Ḡ both
have stationary distribution α.

3 Preview of results

In this Section, we will give an informal preview of the results that will be
obtained in the remainder of the article. This overview will not aim at full
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generality, nor will it dwell on specific technical conditions that are required to
make things precise. Rather, we will try and motivate the concepts and explain
the results in the context of the model. The details will be worked out in the
later sections.

We will work our way from the more general to the more specific. We will
start with a general variational principle, valid for all model variants of the
previous section, irrespective of the type space and of the parameters. Next,
we will specialize on the case where types are sequences, and mutation and
reproduction rates are invariant under permutation of sites. This will allow to
dissect the variational problem into two simpler problems, which are easier to
solve. Finally, we will treat one specific example, namely, the quasispecies model
of sequence evolution, in full detail.

3.1 The general variational principle

A main object of this paper is to show that the asymptotic growth rate λ of the
population can be understood as the result of a competition between the muta-
tion and reproduction processes along a typical ancestral line. In this informal
Section, however, we will avoid the family tree picture, and rather imagine we
are observing just one line. To start with, we even ignore reproduction, and
consider only the simple Markov process {M(t)}t≥0 on S with generator U; i.e.,
the type process which associates with t the type at time t under the mutation
model U. A crucial quantity in what follows will be the corresponding empirical
measure

L(t) := 1
t

t∫

0

δM(τ )dτ , (9)

i.e., the random vector with components Li(t) := 1
t

∫ t
0 I{M(τ ) = i}dτ , where I{.}

denotes the indicator function. This quantity measures the fraction of time the
process spends in the various states, and hence is also known as occupation time
measure. Clearly, L(t) is a random element of P(S), the set of all probability
measures on S. It is well-known by the ergodic theorem for Markov chains that,
for t → ∞, one has L(t) → ρ with probability one, where ρ is the stationary
distribution of U. It is, perhaps, less well-known that the rate of convergence
may be characterized asymptotically by a so-called large deviation principle,
which may be informally put as

P(L(t) ∼ ν) ≈ e−tIU (ν) for large t, (10)

that is, the probability that L(t) is close to some measure ν decays exponentially,
for large time, with a decay rate (or rate function) IU(ν) which can be written
down explicitly (see (25) and (30) below). IU is nonnegative, and IU(ν) = 0
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precisely for ν = ρ, in line with the above fact that, in the long run, only the
stationary measure ρ will survive.

Let us now add reproduction, i.e., turn to the branching process. As a con-
sequence of the above large deviation principle, we will obtain, in Theorem 1,
a link between the forward-time stationary distribution π of the branching
process, the reproduction rate R, the asymptotic growth rate λ, the mutation
process U and the ancestral distribution α, namely, the equation

〈π , R〉 = λ = max
ν∈P(S)

[〈ν, R〉 − IU(ν)
] = 〈α, R〉 − IU(α) . (11)

This variational principle may be understood in terms of a competition between
all possible distributions for a maximal long-term growth rate, as given by the
difference between the current mean reproduction rate 〈ν, R〉, and the asymp-
totic decay rate IU(ν). The first quantity is maximized by those measures that
put mass only on the fittest type(s); the second one is minimized by ρ; the trade-
off is won by α. Furthermore, (11) connects the forward and the retrospective
point of view in that the maximum equals the mean fitness 〈π , R〉 of the station-
ary population. Note that the mean fitness of the ancestral population exceeds
the mean fitness of the stationary one by IU(α), which is positive unless α = ρ

(which implies Ri = const., i.e., there is no selection). This reflects the fact that
the present population carries with it a tail of (mainly unfavourable) mutants
that are present at any time, but do not survive in the long run.

We will see in Sect. 5 that this ‘competition of distributions’ can be made
more concrete, namely, in terms of a competition of lines of descent, by con-
sidering the empirical distributions Lω(t) of types along distinct lines ω. But
before we can embark on this, we must first develop a way of constructing trees,
lines, and processes on lines, in a consistent way; this will be taken up in the
next section.

It is interesting to note that the above variational principle resembles the
thermodynamic maximum principles in statistical physics. Indeed, our repro-
duction rates may be identified with an energy, and the rate function with an
entropy; in fact, the rate function for the continuous-time Markov chain M(t)
can be naturally derived from the usual entropy governing the so-called pair-
empirical measure of a discrete-time Markov chain, cf. [20, Ch. IV].

3.2 Sequence space models

The variational principle (11), valuable as it is conceptually, is not very useful
if one aims at an explicit solution; this is because maximization is over a large
space (the set of probability measures on S). However, it turns out that, in
certain models of sequence evolution, this task boils down to a much simpler
one if the original problem is dissected into two, one of which can be solved
explicitly. Let us first describe this ‘divide and conquer’ strategy.

Assume that the type of an individual is characterized by a sequence of nucle-
otides, amino acids, matches/mismatches with respect to a reference sequence of
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Fig. 5 Lumping a sequence
space

nucleotides, or, in general, letters from some alphabetΣ . ThusΣ = {A, G, C, T},
{1, . . . , 20}, {0, 1}, or any other finite set.1 The natural type space is thenΣN , the
set of possible sequences of length N, where N is typically large. However, if the
mutation and reproduction rates are invariant under permutations of sequence
sites, all relevant information on a sequence σ = (σk)1≤k≤N ∈ ΣN is already
contained in its letter histogram (or letter composition)

H(σ ) = (H
(σ ))
∈Σ , H
(σ ) =
N∑

k=1

I{σk = 
}, (12)

which indicates how often each letter 
 shows up in σ . In other words, it is
sufficient to look at the reduced type space

S = H(ΣN) =
{

i ∈ Z
d | i
 ≥ 0 for 
 ∈ Σ ,

∑


∈Σ
i
 = N

}
, (13)

with d = |Σ |, which consists of all possible letter compositions.
This lumping procedure induces a model on S that is again a Markov branch-

ing process; its reproduction rates R = (Ri)i∈S and mutation generator U =
(Uij)i,j∈S are uniquely determined by the corresponding rates of the original
process on ΣN . Many models of sequence evolution allow for such a lumped
representation; as a particularly realistic example, let us mention the mutation-
selection model for regulatory DNA motifs [16], which also involves analysis of
sequence data.

To get back to the variational problem, we will classify the possible distribu-
tions ν ∈ P(S) according to the value of their mean 〈ν, id〉 ∈ R

d; here id denotes
the identity function on S defined by idi = i for all i ∈ S, and, in line with
previous usage, the scalar product gives the expectation of this vector-valued
function under the measure ν. Keeping in mind that S arises from lumping a
sequence space ΣN as in Fig. 5, we think of 〈ν, id〉 as the expected value of
a random letter composition with distribution ν, i.e., the mean histogram if
histograms have distribution ν.

Let us now foliate the variational problem (11) according to these mean
letter frequencies. That is, we write

λ = max
z ∈ conv S

�(z), (14)

1 As in the case of matches/mismatches, the formal alphabetΣ need not coincide with the alphabet
used in the biological description. The letters in the original biological sequence may, for example,
even be replaced by n-tuples of matches/mismatches relative to n reference sequences, as required
in the treatment of Hopfield fitness functions [3,13].
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with � : conv S → R given by

�(z) := max
ν∈P(S):〈ν,id〉=z

[〈ν, R〉 − IU(ν)]. (15)

Here we write conv S for the convex hull of S, that is, the set of convex com-
binations of elements of S, or, in other words, the set of all possible mean
letter compositions. The (unique) maximizer of � is ẑ := 〈α, id〉, i.e., the mean
ancestral letter composition.

The function �(z) describes the growth rate resulting from the competition
between all distributions with mean letter composition z; we will therefore call
it the constrained mean fitness of z. In analogy with the interpretation of the
unconstrained variational principle (11), the competing distributions may be
identified with empirical letter compositions along lines of descent, and �(z)
will turn out as the asymptotic growth rate of the lines with empirical letter histo-
gram (close to) z; this will be shown in Proposition 2. It follows that the growth
rate of the total population coincides with the growth rate �(ẑ) of the subpop-
ulation consisting of all lines with empirical letter histogram close to the mean
ancestral one.

Now, the main point is that�(z) can be calculated explicitly in two interesting
situations, namely:

(1) All sites of the sequence mutate independently and according to the same
Markov process in continuous time, and fitness is additive across sites. Thus
Ri = R(i) and Uij = Uj−i(i) are linear functions on S (that will be extended to
conv S). In Theorem 2, we then obtain �(z) explicitly, and exactly, as

�(z) = R(z)− 1
2

∑

k

(√
Uk(z)− √

U−k(z)
)2 = 〈ν(z), R〉 − IU(ν

(z)), (16)

where the sum is over all possible mutational steps, and ν(z) = MultN,z/N is the
multinomial distribution with mean z.

(2) The reproduction and mutation rates have a continuous approximation of
the form

Ri = r
(

i
N

)
+ O

(
1
N

)
and Uij = uj−i

(
i

N

)
+ O

(
1
N

)
(17)

with functions r and uk that are smooth enough. Under further technical condi-
tions, an analogue of (16) will be obtained in Theorem 4, namely,

�(z) = e(z)+ O(N−1/3), (18)

where

e(z) = r(z)− 1
2

∑

k

(√
uk(z)− √

u−k(z)
)2. (19)
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Strictly speaking, the approximation (18) is only true when e(z) is concave;
otherwise e(z) has to be replaced by its concave envelope, and the distribu-
tion attaining the constrained maximum �(z) will show distinct peaks. This
behaviour, which indicates some kind of phase transition, will be the subject of
Theorem 5. For z = ẑ, this phenomenon means that the total growth rate λ is
determined by two or more coexisting subpopulations with distinct empirical
letter histograms.

3.3 The quasispecies model

We will finally consider the coupled sequence space model on {0, 1}N , known as
the quasispecies model; more precisely, we will use a slightly adapted version of
the original in [9]. It will be assumed that births and deaths occur at rates that
are invariant under permutation of sites, and mutations occur on the occasion
of birth events, independent across sites, and at probabilities v = µ/N and
w = ν/N from 0 to 1 and vice versa, where µ and ν are positive and indepen-
dent of N. Then, lumping may be performed into S := {0, 1, . . . , N} by counting
the number of 1s in a sequence. If the birth and death rates of the resulting
model on S have a continuous approximation analogous to that of (17), namely,

Bi = b
(

i
N

)
+ O

(
1
N

)
and Di = d

(
i

N

)
+ O

(
1
N

)
,

then

e(z) := b(z) exp
[ − (√

µ(1 − z)− √
νz

)2] − d(z) (20)

takes the role of e(z) in (19).

4 Trees, lines, and processes on lines

To understand the probabilistic significance of the variational principle pre-
viewed above, it is necessary to develop a detailed picture of the branching
process that includes the full family tree. However, to keep technicalities at a
minimum we confine ourselves, in the first subsection, to the parallel model;
in this case, a particularly simple construction is available which is sufficient
for our needs. A more versatile procedure for general splitting rules will be
sketched in Sect. 4.2.

4.1 The parallel model

Let us explain the construction for the parallel model, as illustrated in Fig. 6.
The population is started by a single individual (the root) of type i. In a first
step, we ignore all death events and consider only the splitting events. Then all
lines are infinite and can be labeled by a sequence ω ∈ {0, 1}Z≥1 =: �, where
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Fig. 6 The branching process with mutation and binary splitting. Bullets mark death events;
line segments that are alive are shown in black, virtual ones in grey, types are indicated
by various line styles. The (randomly chosen) representative line is marked fat; its initial
segment shown here is the first child of the second child of the first child of the root,
i.e., the individual x = (0, 1, 0). Since it has experienced three splitting events, it is a
third generation individual; but it is virtual, as in fact already its mother (0, 1) died. The
‘black’ tree is a realization of the branching process. The individuals alive at time t con-
stitute the population X(t) (a mixture of various generations); here, X(t) = {(0, 0), (1, 1, 0),
(1, 1, 1)}; the other individuals at time t are virtual

ωn tells us whether the n-th offspring corresponds to the upper (0) or lower (1)
branch in the graphical representation of the tree, or, equivalently, whether it
is counted as ‘first’ or ‘second’ at birth. Next, individuals are defined as (finite)
initial segments of the infinite lines, i.e., x = (ω1, . . . ,ωn) is an n-th generation
individual. The empty initial string ∅ of length 0 corresponds to the root and
is counted as generation 0. The set X := {∅} ∪ (⋃n≥1{0, 1}n) then comprises all
individuals that may possibly occur (and do occur as long as death events are
ignored).

A realization of the Markov branching process described informally in Sect. 2
may then be specified by associating with every lineω the times at which it splits,
its type (as a function of time), and the time it dies (by a death event). For con-
venience, the construction proceeds in two steps: we first grow a tree by splitting
and mutation alone (with the appropriate exponential waiting times); the death
events are then superimposed in a second step to determine which lines are still
alive. This way, lines that have already died live on virtually and may continue
to divide and mutate. However, this does not influence the lines that are alive;
only these constitute the realization of the branching process. In particular, we
denote by X(t) ∈ X the set of individuals alive at time t; note that this is a
mixture of various generations. (We remain a bit informal here; for one of the
various possible ways of a rigorous construction, see [15].)

For each line ω, we consider now the following families of random variables:
{Mω(t)}t≥0, the type process, which associates with t the type of ω at time t;
{βω(t)}t≥0, the number of birth events along ω before t; and Tω, the time line
ω dies (if ω survives forever, this time is infinite). Both the birth and the death
process depend on the type process, but not vice versa. The crucial information
on {Mω(t)}t≥0 is contained in its empirical measure
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Lω(t) := 1
t

t∫

0

δMω(τ) dτ , (21)

cf. (9). For an individual x at time t, the empirical measure only depends on the
initial segment of ω that describes x. With this in mind, we will sometimes also
write Lx(t) rather than Lω(t).

The above families of random variables are not independent between lines
(they are dependent through common ancestry), but, by symmetry between the
two offspring at every splitting event, they share the same marginal laws for
all ω ∈ �. In particular, since mutation is not influenced by the reproduction
events, the type process on any given line (regardless of the others) is a copy
of the mutation process generated by U. Let us choose one particular such line
ω∗, for example, by setting ω∗ = (000 . . .), or by tossing a coin. The line ω∗
may or may not survive, but it will always be present at least virtually. We will
call it the representative line for reasons to become clear in a moment, and set
β(t) := βω

∗
(t), M(t) := Mω∗

(t), T(t) := Tω
∗
(t), and L(t) := Lω

∗
(t). We will now

see that, once we know the laws of these quantities, they can tell us a lot about
the entire tree.

The basic observation is that, in generation n, there are 2n possible (real
or virtual) individuals, all with the same marginal laws for the random vari-
ables just discussed. This allows us to express the expected population size of a
population started by a single i individual at time 0 as follows:

E
i(‖Z(t)‖1

) = E
i(|X(t)|) =

∑

n≥0

2n
E

i(I{β(t) = n, T > t})

= E
i(2β(t)I{T > t}) . (22)

Now, conditionally on L(t), the random variables {T > t} and β(t) are indepen-
dent, having probability exp(−t〈L(t), D〉) resp. the Poisson distribution Poit〈L(t),B〉
with parameter t〈L(t), B〉. Therefore,

E(2β(t) | L(t)) = exp(t〈L(t), B〉), and

E(I{T > t} | L(t)) = exp(−t〈L(t), D〉)

(both independently of the type of the root), where the former relies on the
fact that, for a random variable Y with distribution Poiλ, one has E(2Y) = eλ.
Therefore, (22) turns into

E
i(‖Z(t)‖1

) = E
i
(
E
(
2β(t)I{T > t} | L(t)

))

= E
i
(
E
(
2β(t) | L(t)

)
E
(
I{T > t} | L(t)

))

= E
i(et〈L(t),B〉e−t〈L(t),D〉) = E

i(et〈L(t),R〉). (23)
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Fig. 7 A realization of a size-biased tree with its trunk (the fat line). An individual of type j,
off the trunk, has offspring Nj with distribution pj after an exponential waiting time τj with mean

1/Aj; an individual of type i along the trunk bears offspring Ñi with biased distribution p̃i after an
exponential waiting time τ̃i with mean 1/AiE(‖Ni‖1)

Note that the remaining expectation (and the outer one where expectations
are nested) is with respect to L(t). We also remark that the underlying tree
construction lurks behind the above derivation, but in the simple case at hand
it need not be made more explicit.

4.2 General splitting rules

We have, so far, restricted ourselves to the decoupled model with parallel muta-
tion, reproduction and death. The crucial simplifiying feature here is the fact
that, forward in time on every line, we have a copy of the mutation process
generated by U. Therefore, we could consider any line as representative.

Outside the parallel model, the decomposition A = U + R is formal to start
with, and the generator U has no immediate interpretation. But with the help
of a more advanced tree construction, one can again obtain a representative
line with its type process M(t) generated by U. We will only give a rough sketch
here; for the full picture we refer the reader to [15].

The construction relies on a so-called size-biased tree with random spine (or
trunk). The general concept was introduced in [21,30] and [28]; the particu-
lar (continuous-time) version required here can be found in [15, Remark 4.2].
Informally, one constructs a modified tree with a randomly selected, distin-
guished line (called the trunk or spine), along which time runs at a different
rate and offspring are weighted according to their size; in particular, there is
always at least one offspring along the trunk so that the trunk survives forever.
The children off the trunk get ordinary (unbiased) descendant trees; see Fig. 7.

More precisely, for each type i ∈ S, we introduce the size-biased offspring
distribution

p̃i(κ) = ‖κ‖1pi(κ)

E(‖Ni‖1)
, κ ∈ Z

S
≥0.

Starting at the root, an individual of type i on the trunk waits for an exponential
time with parameter AiE(‖Ni‖1) and then produces offspring Ñi according to
p̃i; one of these offspring is chosen randomly (with equal weight) as the suc-
cessor on the trunk. It is easily verified that the type process on the trunk is a
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Markov chain generated by U. The trunk takes the role of the representative
line, and the considerations of the previous Subsection carry over. We do not
spell this out here explicitly; for the complete picture and many details, in par-
ticular on how the trunk may be used to extract further information about the
tree, see [15]. To avoid misunderstandings, we would like to emphasize that the
size-biased tree as applied to the parallel model does not reduce to the simple
special construction of the previous Subsection. In particular, unlike the rep-
resentative line of this construction, the trunk of the size-biased tree is certain
to survive forever. However, both constructions share the essential property
that the mutation process along the trunk or representative line, respectively,
is generated by U, and the fact that many properties of the entire tree may be
extracted from this distinguished line.

5 Variational characterization of the asymptotic growth rate

We are now in a position to derive the variational characterization (11) of the
asymptotic growth rate λ. The idea is to observe both the mutation process and
the reproduction rate along the representative line of the tree. The appropriate
tool for analyzing the tradeoff between these processes is the large deviation
principle for the mutation process.

5.1 Using the large deviation principle

Let us, for the moment, restrict ourselves to the parallel model; we will see later
that our results hold automatically for general splitting rules. For the parallel
model, we can combine (6) and (23) to obtain

λ = lim
t→∞

1
t

log E
i(et〈L(t),R〉) = lim

t→∞
1
t

log E
i



exp





t∫

0

RM(τ ) dτ







 , (24)

that is, the growth rate can be determined by observing the types and the associ-
ated reproduction rates along the representative line. The competition between
reproduction and mutation will lead to a variational formula for λ, which can
immediately be derived from the variational formulas of large deviation theory.
The basic fact is the following large deviation principle for L(t), see [20, Ch. III.1
and IV.4] or [7, Ch. 1.2 and 3.1]).

Proposition 1 The empirical measure L(t) of a continuous-time Markov
chain on a finite state space S with irreducible generator U satisfies the large
deviation principle (LDP) with rate function

IU(ν) := sup
v>0

[
−

〈
ν,

Uv
v

〉]
, ν ∈ P(S), (25)
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where the supremum is taken over all v ∈ R
S
>0, and the fraction is to be under-

stood component-wise, i.e., Uv/v is the vector with components (Uv)i/vi. More
explicitly, the LDP means that

lim sup
t→∞

1
t

log P
(
L(t) ∈ C

) ≤ − inf
ν∈C

IU(ν)

for any closed set C ⊂ P(S), and

lim inf
t→∞

1
t

log P
(
L(t) ∈ O

) ≥ − inf
ν∈O

IU(ν)

for any open set O ⊂ P(S). Furthermore, IU is continuous, strictly convex and
nonnegative, and IU(ν) = 0 precisely for ν = ρ, the stationary distribution of U.

For an informal statement of the LDP recall (10). (Although we have stated
the LDP here only for the special case we need, it is indeed quite a general
principle that applies to many common types of random variables. We refer the
interested reader to the monographs [7] or [20].)

Returning to (24), we now see that, on the right-hand side, the exponential
factor et〈L(t),R〉 is integrated over a probability measure that behaves essentially
like e−tIU . It may thus be evaluated by Varadhan’s lemma on the asymptot-
ics of exponential integrals, which is a far-reaching generalization of Laplace’s
method; see [20, Theorem III.13] or [7, Theorem 4.3.1]. Specifically, we obtain
the key formula

λ = lim
t→∞

1
t

log
∫

P(S)

et〈ν,R〉
P

i(L(t) ∈ dν) = max
ν∈P(S)

[〈ν, R〉 − IU(ν)
]
, (26)

which may be understood as a ‘largest exponent wins’ principle. Let us continue
with a series of comments.

5.1.1 Relation to the retrospective process

The maximum principle (26), though derived by considering the branching pro-
cess forward in time, is directly connected to the retrospective process of (8).
In analogy with (25), the rate function for the empirical measure of the retro-
spective process (generated by G of (8)) reads IG(ν) = supw>0[−〈ν, (Gw)/w〉].
This, however, is closely related to IU(ν). Indeed, setting v = (vi)i∈S with vi =
hiwi we can write 〈ν, (Gw)/w〉 = ∑

i,j∈S νi(Aij − λδij)hjwj/hiwi = ∑
i,j∈S νi(Aij −

λδij)vj/vi = 〈ν, R〉 − λ+ 〈ν, (Uv)/v〉, whence

IG(ν) = sup
w>0

[−〈ν, (Gw)/w〉] = λ− 〈ν, R〉 + sup
v>0

[−〈ν, (Uv)/v〉]
= λ− 〈ν, R〉 + IU(ν) . (27)
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Again, IG(ν) is nonnegative, strictly convex, and vanishes if and only if ν = α,
the stationary distribution of G. It follows that the ancestral distribution α is the
unique maximizer in (26). We may thus summarize our findings in the following
theorem (recall (6) for the first identity).

Theorem 1 The forward-time stationary distribution π , the reproduction rate R,
the asymptotic growth rate λ, the mutation process U and the ancestral distribu-
tion α are linked via the equation

〈π , R〉 = λ = max
ν∈P(S)

[〈ν, R〉 − IU(ν)
] = 〈α, R〉 − IU(α) . (28)

5.1.2 The mutation rate function at the ancestral distribution

Theorem 1 yields the additional relation

IU(α) = 〈α, R〉 − λ = 〈π , Rh − Ah〉 = 〈π , −Uh〉 =
∑

i,j∈S:
i �=j

πiUij(hi − hj),

i.e., the value of the mutational rate function at the optimum equals the long-
term loss of offspring due to mutation, wherefore it was previously termed
mutational loss function; see [18, Sect. 5 and Appendix A] for the biological
implications.

5.1.3 Balance of mutation and reproduction

On every lineω, the mutation process runs randomly through a sequence of his-
tories, and hence determines an evolution of empirical measures Lω(t) ∈ P(S).
As t → ∞, the empirical measures ν = Lω(t) that differ from the stationary
distribution ρ of U become exponentially less probable at asymptotic rate IU(ν).
In particular, ρ is the (almost-sure) long-term time average on the line ω in the
forward direction of time. In spite of this, the long-term population average π
of (5) differs from ρ, in general. This is because mutation is counterbalanced
by reproduction, at rate RMω(t) at instant t, and at mean rate 〈Lω(t), R〉 for the
entire line segment up to time t. We note that in realistic biological models
the largest reproduction rates typically belong to types that are improbable
under the stationary mutation distribution ρ (‘good’ types are rare under muta-
tion alone, otherwise it would not require selection to establish them!). Hence,
empirical measures with a large mean reproduction rate tend to differ markedly
from ρ. The resulting tradeoff between the mean reproduction rate of a line
and its asymptotic rate of decay is won by those lines ω for which Lω(t) = ν

maximizes the difference, 〈ν, R〉 − IU(ν). According to Theorem 1, these are
precisely the lines having the ancestral distribution α as their time average. It is
therefore this α that is successful in the long run and that we see when looking
back into the past.
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5.1.4 Extension to general splitting rules

In our proof of Theorem 1 above, we used a probabilistic argument that relied
on the parallel model and the associated tree construction. So it might seem
that this theorem is limited to this particular model. Note, however, that all
quantities appearing in Theorem 1 are solely determined by the first-moment
generator A of the process, so that it is a property of A rather than the underly-
ing process. For an arbitrary Markov branching process, we can use the formal
decomposition A = U + R of its first-moment generator to build a parallel
model with the same A. Since the theorem holds for the latter process, it also
holds for the former; this is some kind of “invariance principle”. All that is lost
is the probabilistic interpretation given in the previous comment; such an inter-
pretation may be regained with the help of the size-biased tree construction of
Sect. 4.2, but is then more involved.

5.2 Reversible mutation rates, and symmetrization

We will now discuss the important special case that U is reversible, in that
ρiUij = ρjUji for all i, j ∈ S. This is assumed in most models of nucleotide evo-
lution, see, e.g., [12, Ch. 13]. The interest in this case comes from the following
facts.

5.2.1 Explicit form of the rate function

For reversible U, the maximization in (25) can be carried out explicitly, so that
the rate function takes the closed form [20, p. 50, Ex. IV.24]

IU(ν) = −
〈√

ν

ρ
, U

√
ν

ρ

〉

ρ
; (29)

here both the square root and the fraction are to be read componentwise,
and 〈u, v〉ρ denotes the Dirichlet form

∑
i uiviρi for vectors u, v, and ρ. (It is an

interesting fact that no such simplification exists for reversible Markov chains in
discrete time.) Noting that ρi > 0 for all i ∈ S by irreducibility, using the revers-
ibility in the form

√
ρi/ρj Uij = √

UijUji, and recalling that Uii = −∑
j:j �=i Uij,

one readily finds that Eq. (29) is equivalent to

IU(ν) = 1
2

∑

i, j∈S: i �=j

(√
νiUij −

√
νjUji

)2
. (30)

5.2.2 Estimation of the reproduction rate from the ancestral distribution

The reversibility of U immediately implies that the vector ρh := (ρihi)i∈S is a left
eigenvector of A = U + R for the principal eigenvalue λ, cf. [3]. Hence π = ρh
up to a normalization factor, and therefore α = ρh2, or h = √

α/ρ, again up to
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a normalization factor. (As before, the square root and the fraction are to be
read componentwise.) This in turn means that α, together with ρ, determines
the reproduction rate R up to an additive constant. Indeed, suppose that R and
R′ are two reproduction rates (for the same mutation matrix U) having the
same ancestral distribution α = α′. Then h = h′, whence (R − R′)h = (λ− λ′)h.
As h is strictly positive, it follows that all components of R − R′ agree.

5.2.3 Symmetrized mutation rates

For reversible U, one can introduce the matrix Ã := (Ãij)i,j∈S by Ãij = √
ρiAij/√

ρj, which is symmetric and has the same spectrum as A = U+R. The maximum
principle of Theorem 1 can therefore also be derived from the Rayleigh–Ritz
(or Courant-Fisher) variational principle for the leading eigenvalue of Ã; see
[3, Sect. 2]. We emphasize, however, that the large deviation approach to (26)
is not tied to reversible matrices and, as we have shown above, admits a natural
interpretation in terms of the underlying family tree. Nevertheless, we will take
advantage of the symmetrization Ã in Sect. 7 below. In particular, we will use
the (unique) decomposition Ã = F + E into a symmetric Markov generator
F = (Fij)i,j∈S, defined through

Fij =
{√

UijUji = Fji for i �= j,
−∑

k∈S\{i}
√

UikUki for i = j ,
(31)

and a diagonal matrix E := diag(Ei | i ∈ S) with elements2

Ei :=
∑

j∈S

Ãij = Ri + Uii − Fii = Ri +
∑

j∈S

√
UijUji . (32)

6 Unfolding the variational principle

As we have seen, the maximum principle of Theorem 1 provides some gen-
eral insight into the competition, and resulting tradeoff, between mutation and
reproduction. In general, however, it can not be solved explicitly. This is because
both the maximization over the space P(S), and the eigenvalue equations deter-
mining π , h and thus α, are |S|-dimensional, and S is typically large. It is thus
natural to ask whether one can obtain a low-dimensional variational principle
in a specific setting. In the rest of this paper we will therefore confine ourselves
to genetic models of sequence type where each type is specified by a sequence of
letters from a finite alphabet. The variational problem can then be split into two
simpler ones, a constrained variational principle with fixed mean letter compo-
sition, and a maximization over all possible constraints. In some cases, each of
these two subproblems may be treated explicitly or, at least, approximately.

2 The corresponding equation in [3, Sect. 2], namely, the second-last equation on p. 88, is erroneous
and should be corrected accordingly.
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6.1 Lumping of sequence types, or: Choice of a type space

As previewed in Sect. 3.2, we will now assume that the type of an individual
is characterized by a sequence of letters from some finite alphabet Σ , which
leads to the type space ΣN . If we assume that the mutation and reproduction
rates are invariant under permutations of sequence sites, as we will do in what
follows, this sequence space can be lumped into the smaller space

S =
{

i ∈ Z
d | i
 ≥ 0 for 
 ∈ Σ ,

∑


∈Σ
i
 = N

}
, (33)

recall Fig. 5. For example, this is possible for sequence space models with parallel
mutation and reproduction, in which

(L1) all sites mutate independently and according to the same (Markov) pro-
cess (a natural first assumption made in many models of sequence evo-
lution) and

(L2) the fitness function is invariant under permutation of sites (a less natu-
ral, but still common assumption that applies, for example, if fitness only
depends on the sequence through the number of mutated positions (i.e.,
the Hamming distance) relative to a reference sequence, often termed
the ‘wildtype’);

see, e.g., [18,14] or [16] for previous work on this case. (As an alternative to
the choice (33), one can use the constraint

∑

∈Σ i
 = N to remove an element

a ∈ Σ by setting Σ∗ = Σ \ {a} and work instead with

S∗ =
{

i ∈ Z
d | i
 ≥ 0 for 
 ∈ Σ∗,

∑


∈Σ∗
i
 ≤ N

}
, (34)

where now d = |Σ∗| = |Σ | − 1.)
Specifically, if the reproduction and mutation rates on ΣN are given by

Rσ and Uστ (σ , τ ∈ ΣN), then, by permutation invariance, there is a vector
R = (Ri)i∈S and a Markov generator U = (Uij)i,j∈S so that Rσ = RH(σ ) and
∑
τ :H(τ )=j Uστ = UH(σ ),j for all σ ∈ ΣN ; here H is as in (12). R and U then

define a Markovian branching process with type space S.3

In fact, assumption (L1) even implies that the mutation rates Uij of the
lumped model are linear in i ∈ S (or affine in i ∈ S∗). This is seen as follows:
If w
m is the mutation rate (at every site) from letter 
 to letter m, then the
corresponding transition in the lumped model (based on Σ) is i → i − e
 + em
(where ej is the unit vector in R

d having a 1 at coordinate j), and occur at rates

3 For a general description of lumping in Markov chains see [26, Ch. 6]; and for an extension to
the present (branching) context with specific applications to genetics, see [3, Sects. 5 and 6]. In the
present case, lumping is so immediate that it hardly needs to be formalized. But the procedure
becomes nontrivial if, for example, fitness functions are derived from Hopfield energy functions
(see [3, Sect. 6] and [13]).
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i
w
m, due to independence of the sites. If, instead, one removes one dimension
by setting ia = N − ∑


∈Σ∗ i
 and then works with Σ∗, one obtains the addi-
tional transitions i → i − e
 at rate w
ai
, and i → i + em at the (affine) rate
wam(N − ∑


∈Σ∗ i
).
Assumption (L2) is less specific than (L1); the fitness function in the lumped

model will, in general, be nonlinear due to interactions between sites. It will,
however, turn linear (or affine) if fitness contributions are additive across sites,
as is usually assumed in, e.g., models of codon bias (where Σ is the set of
possible codons). Additivity reflects independent fitness contributions of the
sites and means that, for i ∈ S, one has Ri = ∑


∈Σ r
 i
 (based on Σ), or
Ri = raN + ∑d


∈Σ∗(r
 − ra)i
 (if Σ∗ is used), where r
 ∈ R for 
 ∈ Σ . We will
examine such linear models in Sect. 6.3.

6.2 Fixing the empirical mean

The only property of the special choices (33) or (34) of the type space S we need
at the moment is that S ⊂ R

d. This provides S with the structure of an abelian
group (elements of S can be added and subtracted), and allows us to classify the
possible empirical distributions ν ∈ P(S) according to the value of their mean
〈ν, id〉 ∈ R

d. In particular, for the random measure Lω(t) of (21), 〈Lω(t), id〉
is a random vector in R

d, namely the empirical mean, or empirical mean letter
composition along the line ω up to time t. If S is obtained through lumping a
sequence space ΣN as in Fig. 5, the 
’th coordinate of Lω(t) indicates the total
fraction of time up to t for which some site in the sequence characterizing an
individual on the line ω shows letter 
 ∈ Σ . Note that this involves a twofold
averaging, namely an average over time and a (non-normalized) average over
sequence sites.

As indicated in (14) and (15), we will now foliate the variational formula (26)
by prescribing the mean of the underlying type distribution. That is, we write

λ = max
z∈conv S

�(z), (35)

where

�(z) := max
ν∈P(S):〈ν,id〉=z

[〈ν, R〉 − IU(ν)] (36)

is the constrained mean fitness of z ∈ convS. As before, the maxima are attained
by continuity, and the maximizer in (36) is unique by the strict convexity of IU .
The function� is strictly concave; this follows again from the strict convexity of
IU , together with the linearity of 〈 · , R〉 and 〈 · , id〉. In particular,� is continuous
on

rint conv S = {〈ν, id〉 | ν ∈ P(S), νi > 0 for all i ∈ S
}

,

the relative interior of conv S [32, p. 82]. In general, the relative interior rint D
of a set D ⊂ R

d is defined as the interior of D relative to the smallest affine
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subspace containing D.4 Moreover, since α is the unique maximizer in (28),
there exists a unique ẑ ∈ conv S that maximizes �, namely

ẑ = 〈α, id〉, (37)

i.e., the unique maximizer ẑ in (35) is the ancestral type average.
If U is reversible, we may restrict the maximization in (35) to those z that

are strict convex combinations of the elements of S. This is obvious from the
explicit form of IU in (30): If at least one component of ν vanishes, one has
(∂/∂νi)IU(ν) = +∞ for some i. Therefore, the maximum will be located in
rint conv S, so that Eq. (35) can be replaced by

λ = max
z∈rint conv S

�(z). (38)

If the function�(z) were known explicitly, the variational problem of Theo-
rem 1 would boil down to a maximization over a subset of R

d; for small d one
could aim at explicit solutions. Such low-dimensional variational principles for
λ were recently derived for several examples, by methods from linear algebra
and asymptotic analysis [3,13,14,18]. However, a plausible understanding for
the resulting function to be maximized has been lacking so far. The next Propo-
sition reveals the probabilistic meaning of�(z): it is nothing but the asymptotic
growth rate of the lines having empirical type average (close to) z. Together
with (37), this shows that the growth rate of the total population coincides with
the growth rate �(ẑ) of the subpopulation consisting of all individuals with
empirical type average close to the ancestral one.

Proposition 2 For all z ∈ rint conv S, the solution of the constrained variational
problem (36) satisfies

�(z) = lim
ε→0

lim
t→∞

1
t

log E
i




∑

x∈X(t)

I
{‖〈Lx(t), id〉 − z‖1 ≤ ε

}


 .

Proof Consider first the parallel model. By the reasoning leading to (23), the
growth rate of the subpopulation consisting of all individuals with empirical
mean close to z, up to some maximal deviation ε > 0, is equal to

lim
t→∞

1
t

log E
i




∑

x∈X(t)

I
{‖〈Lx(t), id〉 − z‖1 ≤ ε

}




= lim
t→∞

1
t

log
∑

n≥0

2n
E

i
(
I
{
β(t) = n, T > t, ‖〈L(t), id〉 − z‖1 ≤ ε

})

4 Recall that the simplex (33) is contained in a hyperplane, so that the usual interior of its convex
hull is empty.
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= lim
t→∞

1
t

log E
i
(

et〈L(t),R〉
I
{‖〈L(t), id〉 − z‖1 ≤ ε

})

= lim
t→∞

1
t

log E
i
(

exp
[

t
(〈L(t), R〉 − ∞ · I{‖〈L(t), id〉 − z‖1 > ε})]

)

= max
ν∈P(S): ‖〈ν,id〉−z‖1≤ε

[〈ν, R〉 − IU(ν)
] = max

y∈conv S: ‖y−z‖1≤ε
�(y). (39)

Here we have used the conventions ∞ · 1 = ∞ and ∞ · 0 = 0 in the third step,
and Varadhan’s lemma in the fourth, in analogy with (26); the maximum over
ν is attained since the condition ‖〈ν, id〉 − z‖1 ≤ ε defines a compact subset of
P(S). As � is continuous on rint conv S, the last expression converges to �(z)
as ε → 0, as asserted.

For a general splitting rule, the argument is the same except that the par-
ticular tree construction of Sect. 4.1 has to be replaced by the size-biased tree
described in Sect. 4.2. In fact, one simply has to omit the second line of (39)
above and instead invoke Eq. (4.4) of [15] which shows that the first line of
(39) coincides with the third; the random measure L(t) in the third line is then
again the empirical measure of a Markov chain with generator U, namely the
mutation process along the spine of the size-biased tree. ��

Like the unconstrained variational problem (26) leading to λ, the constrained
problem (36) defining � provides insight into the mutation–reproduction pro-
cess, but does not, in general, lead to an explicit solution if S is large. From the
point of view of explicit calculations, it rather expresses one difficult problem
(the leading eigenvalue of a large matrix) in terms of another difficult problem
(the maximization over a large space). But if U is reversible, there are two cases
in which (36) may be solved explicitly or, at least, asymptotically. These are the
cases when fitness and mutation are linear (already hinted at in Sect. 6.1), or
when they allow a continuous approximation in the limit as the number N of
sequence sites grows large. These will be discussed in the next subsection and
in Sect. 7.

6.3 Exact results for linear reversible models

In this subsection we have a closer look at the sequence space models of Sect. 6.1
that describe the independent evolution of N sites with a finite alphabet Σ and
lead, after lumping, to models with state space S as in (33), with linear fitness
and mutation, and mutational transitions i → i + k restricted to those with
k ∈ S := {em − e
 | m, 
 ∈ Σ , m �= 
}. In line with standard assumptions on
sequence evolution (see, e.g., [12, Ch. 14]), we posit that the mutation process
acting at the sites is reversible, that is, the mutation rates (w
m)
,m∈Σ define
an irreducible and reversible Markov generator with a reversible distribution
γ on Σ . After lumping, the associated mutation process on S then has rates
Uij = Uj−i(i) , i, j ∈ S, given by
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Uk(z) =






w
mz
 if k = em − e
 ∈ S,
−∑


 �=m w
mz
 for k = 0,
0 otherwise

for z ∈ R
d, d = |Σ |. The reversibility of (w
m)
,m∈Σ readily implies that the

mutation generator U = (Uij)i,j∈S is also reversible; its reversible distribution is
ρ := MultN,γ , the multinomial distribution for N samples from the distribution
γ on Σ . As motivated in Sect. 6.1, we will also assume here that the reproduc-
tion rates are linear, in that Ri = R(i) for all i ∈ S, for a linear function R of the
form R(z) = r ·z, r, z ∈ R

d. Here and below we write ‘·’ for the scalar product of
vectors in R

d, in contrast to 〈., .〉, which we have reserved for scalar products of
vectors in R

S. In this setting, the constrained variational problem (36) admits an
explicit solution as follows. Due to (38), we may—and will — restrict ourselves
to considering means in

rint conv S =
{

z ∈ R
d | z
 > 0 for 
 ∈ Σ ,

∑


∈Σ
z
 = N

}

.

Theorem 2 In the situation described above, for every z ∈ rint conv S the re-
strained maximum of (36) is given by

�(z) = R(z)− 1
2

∑

k∈S

(√
Uk(z)− √

U−k(z)
)2 = 〈ν(z), R〉 − IU(ν

(z)), (40)

where ν(z) = MultN,z/N is the multinomial distribution with mean z.

Proof Let z ∈ rint conv S be given, and consider any ν ∈ P(S) with 〈ν, id〉 = z.
It is then clear that 〈ν, R〉 = R(z) by linearity. Let us rewrite Eq. (30) in the
form IU(ν) = 1

2
∑

k∈S‖xk −yk‖2
2, where xk = (xk,i)i∈S and yk = (yk,i)i∈S are the

vectors with components

xk,i = √
Uk(i)νi, yk,i = √

U−k(i + k)νi+k ,

i ∈ S, k ∈ S. In the boundary case when i ∈ S but i + k /∈ S, we have
Uk(i) = 0 by definition, and likewise U−k(i + k) = 0 when i /∈ S but i + k ∈ S.
Hence xk,i = yk,i = 0 unless i, i + k ∈ S. By linearity of the Uk, it follows that
‖xk‖2

2 = Uk(z) and ‖yk‖2
2 = U−k(z) for all k ∈ S. As the distance between any

two vectors is minimized when the vectors are parallel, we conclude further
that

‖xk − yk‖2
2 ≥ (‖xk‖2 − ‖yk‖2

)2

with equality if and only if there is a positive constant Ck so that

Uk(i)νi = CkU−k(i + k)νi+k
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whenever i, i + k ∈ S. This, however, is the case when ν = ν(z) because, for each
i ∈ S, ν(z)i = eβ·iρi for β = log(z/Nγ ) (where the fraction and the logarithm
are taken componentwise), and ρ is reversible; in fact we have Ck = e−β·k.
Combining the preceding observations we get the result. ��

If we turn from the linear model to the affine one, by removing one coordi-
nate as indicated at the close of Sect. 6.1, Theorem 2 clearly remains true, with
the middle expression in (40) expressed in terms of the reduced coordinates.
Equation (40) has been derived previously for certain specific choices for the
mutation rates [14,18]; remarkably, the above result provides both an extension
(to arbitrary reversible models), and a simplification of the proof.

6.4 Partial convex conjugation

On our way to the second case of an explicit version of�(z), we need a general
intermediate step: a relation between �(z) and the mean growth rate λ for a
suitably modified reproduction rate R. This relationship is based on partial con-
vex conjugation, a standard procedure of convex analysis which will be spelt out
here for our purposes. In Sect. 7, this will allow us to determine the asymptotic
behaviour of �(z) when the number N of sequence sites gets large.

Let us rewrite Eq. (26) in the form

λ(R) = max
ν∈P(S)

[〈ν, R〉 − IU(ν)
]

indicating the dependence on R; U will be considered as fixed. The following
proposition asserts that the function z → −�(z) of constrained extrema is a
partial convex conjugate of the function R → λ(R).

Proposition 3 Let S ⊂ R
d, z ∈ rint conv S, and U be an irreducible Markov gen-

erator on S (not necessarily reversible). Then the constrained variational problem
(36) has the solution

�(z) = inf
β∈Rd

[
λ(R + β · id)− β · z

]

= λ(R + βz · id)− βz · z = 〈αz, R〉 − IU(α
z) .

Here, βz ∈ R
d is the negative slope vector of any tangent plane to � at z, and

αz is the unique ancestral distribution corresponding to the reproduction rate
R + βz · id for any such βz. In particular, the function β → λ(R + β · id) is
differentiable on R

d, and ∇β λ(R + β · id) |β=βz = 〈αz, id〉 = z.

Proof For any z ∈ rint conv S and β ∈ R
d we have, writing νz for the maximizer

in (36) and using Theorem 1,

�(z) = 〈νz, R + β · id〉 − β · z − IU(ν
z) ≤ λ(R + β · id)− β · z .
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Taking the infimum over β we arrive at the inequality

�(z) ≤ inf
β∈Rd

[λ(R + β · id)− β · z] . (41)

To show equality we recall that � is strictly concave and finite on a (relative)
neigbourhood of z and therefore admits a tangent plane at z. That is, there
exists some β ∈ R

d such that

�(y) ≤ �(z)− β · (y − z) for all y ∈ conv S ,

with strict inequality for y �= z. Denoting by αβ the ancestral distribution for
the reproduction rate R + β · id and letting y = 〈αβ , id〉 we find

λ(R + β · id)− β · z = 〈αβ , R〉 + β · (y − z)− IU(α
β)

≤ �(y)+ β · (y − z) ≤ �(z) . (42)

Together with (41) it follows that equality holds everywhere in (42). Hence
y = z, (41) holds with equality, and the infimum is attained for any β deter-
mining a tangent to � at z. In general, there may be several such tangents,
e.g., if S is contained in a hyperplane of R

d. However, the associated ances-
tral distribution is uniquely determined. For, suppose there exist β1 �= β2 both
determining a tangent to� at z, and let α1 and α2 be the ancestral distributions
for the reproduction rates R+β1 · id and R+β2 · id, respectively. The preceding
argument then holds for every β in the segment [β1,β2], whence (42) holds with
equality everywhere for all these β. We can thus conclude that the function
β → λ(R + β · id) is affine on [β1,β2]. In particular, using Theorem 1 and the
shorthand fi(ν) = 〈ν, R + βi · id〉 − IU(ν) we find

max
ν

[
1
2

f1(ν)+ 1
2

f2(ν)

]

= 1
2

max
ν

f1(ν)+ 1
2

max
ν

f2(ν).

Since f1 and f2 are strictly concave, this is only possible if they have the same
maximizer. That is, α1 = α2. Finally, using the equality in (41) and the convex
duality lemma [7, Lemma 4.5.8] we find that the function β → λ(R+β · id) is the
convex conjugate of the strictly convex function −�, and thus differentiable;
see [32, Theorem 26.3, p. 253]. Its gradient at βz necessarily coincides with z. ��

In the case of a reversible mutation matrix U, the preceding proposition can
be complemented as follows. We write T = span(S − S) ⊂ R

d for the linear
space generated by the set of differences of elements of S.

Corollary 1 For reversible U the following additional statements hold.
(a) The function � defined in (36) is differentiable5 on rint conv S, and its con-

5 If T is a proper subspace of R
d, differentiability means that the directional derivatives in the

directions of T exist, and the gradient is the unique element of T determined by these directional
derivatives; its component orthogonal to T is thus set equal to zero.
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jugate function β → λ(R + β · id) is strictly convex on T. Moreover, for z ∈
rint conv S and β ∈ T we have β = −∇�(z) if and only if z = ∇β λ(R + β · id).
(b) The function� on rint conv S remains unchanged under symmetrization, i.e.,
by replacing U with the matrix F of (31), and R with the function E defined in
(32).

Proof (a) Let z ∈ rint conv S and β,β ′ be two negative slope vectors of � at
z. In view of the uniqueness of αz and the remarks in 5.2.2, the scalar product
(β−β ′) · i is then independent of i ∈ S. This means that β−β ′ is orthogonal to T,
so that there is a unique negative slope vector βz ∈ T. By concavity, the unique-
ness of the tangent plane is equivalent to differentiability; cf. [32, Theorem 25.1,
p. 242]. By the proof of Proposition 3, this is also equivalent to strict convexity
of λ(R + β · id) on T. The final statement comes from the observation that both
assertions are equivalent to the identity λ(R + β · id)−�(z) = β · z.

(b) For each β ∈ R
d, the matrix F + diag(Ei + β · i | i ∈ S) is similar to

U + diag(Ri + β · i | i ∈ S), so that their principal eigenvalues agree. The result
thus follows from Proposition 3 by minimization over β. ��

7 Smooth approximations

While still adhering to a lumped sequence model, we will now turn to a situa-
tion complementary to that of Theorem 2: we consider nonlinear reproduction
and mutation rates that allow for a continuous approximation if the number of
sequence sites becomes large; this approximation is only required locally, which
provides much more freedom, and, in particular, removes constraints imposed
by the boundary (recall the boundary conditions Uk(i) = 0 for i ∈ S, i + k /∈ S
in Theorem 2). For a large family of models with reversible U, an asymptotic
low-dimensional maximum principle for λ is available then [3], but no connec-
tion to the constrained mean fitness (36) has been made there, and the ensuing
probabilistic interpretation was still lacking. On the basis of Proposition 3, this
can now be provided.

In view of Corollary 1(b), the case of a reversible mutation matrix U can be
reduced to the case of a symmetric mutation matrix F. That is, instead of the
first moment generator A = U + R we can and will consider the symmetrized
version Ã = E + F defined in (31) and (32). In Sect. 7.1 we will present a slight
refinement of an asymptotic maximum principle derived in [3, Theorem 1]. In
Sect. 7.2 we will derive an approximation of�(z) in two particularly interesting
situations. An application to the quasispecies model follows in Sect. 8.

7.1 Approximation of the asymptotic growth rate λ

Consider the following setup. For each N let

– S = S(N) ⊂ Z
d be a state space as in (33) or (34).

The rescaled set 1
N S is then contained in a simplex D ⊂ R

d, viz. either D =
conv {e1, . . . , ed} or D = conv {0, e1, . . . , ed}, with e1, . . . , ed the unit vectors of
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Z
d. (In the first case, D is contained in a hyperplane, whence in the following we

will always consider the relative interior of D rather than simply its interior.) In
the limit as N → ∞, 1

N S becomes dense in D. For each N let also

– F be a symmetric Markov generator on S, and E := diag(Ei | i ∈ S) a
diagonal matrix.

We assume that F and E admit a continuous approximation as follows: There
exist real functions e and fk on D, and an “approximation domain” A ⊂ rint D
such that the following conditions hold.

(A1) e is C2 on A and, as N → ∞,

Ei = e
(

i
N

)
+ O

(
1
N

)
and Fij = fj−i

(
i

N

)
+ O

(
1
N

)
,

where the O(1/N) terms are uniform for all i, j ∈ S with i/N, j/N ∈ A.
(A2) Uniformly for all i with i/N ∈ A,

∑

k∈S−i

fk

(
i

N

)
|k
|k2

m ≤ C

for some constant C and all 1 ≤ 
, m ≤ d, where S − i := {j − i : j ∈ S}.
(A3) For suitable constants C′, C′′ < ∞ we have

−C′ ≤ Ei ≤ sup
z∈D

e(z)+ O
(

1
N

)
and Fij ≤ C′′

for all i, j ∈ S, i �= j, with a uniform error term O(1/N).

Theorem 3 Suppose the conditions (A1)–(A3) hold for a relatively open neigh-
bourhood A of a global maximizer z∗ ∈ rint D of e. Then the principal eigenvalue
λ of the matrix Ã = E + F admits the approximation

λ = e(z∗)+ O
(

1
N

)
.

The error term here only depends on the constants in (A1)–(A3) and the Hessian
of e at z∗ (via an upper bound on the modulus of its most negative eigenvalue).

We postpone the proof until Sect. 7.3, discussing first the significance of the
assumptions and the result.

7.1.1 Formal comments

The above approximation for the principal eigenvalue of Ã clearly also holds
for the similar matrix A = R + U. Note also that only the function e remains
relevant in the limit; the fk play no role. This means that Ã = E + F provides
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the ‘right’ decomposition into the ‘relevant’ E-term, and an F-term whose con-
tribution to the leading eigenvalue vanishes in the limit.

It is also interesting to observe that the approximation assumption (A1) is
only required in a neigbourhood A of a single maximizer z∗ ∈ rint D of e; fur-
ther maxima may appear, even on the boundary, but these do not matter. This
locality of the approximation domain is the main difference to Theorem 1 of
[3] which requires a globally uniform approximation. (As the example of linear
mutation in Theorem 2 shows, it often happens that the derivatives diverge at
the relative boundary of conv S, so that a global approximation is not feasible.
This is also the case for the quasispecies model considered in Sect. 8.) As a
global requirement we need only the bounds in (A3).

7.1.2 Significance of the assumptions for the model

Our setup implies that replacing i ∈ S by i/N ∈ S/N will yield a continuous
type variable z ∈ D in the limit. Accordingly, the matrix elements are required
to become smooth functions of z as N → ∞ – at least locally, in line with (A1).

Condition (A2) says that the mutation rates must decay fast enough with
distance to the target type—again, at least locally. This assumption may appear
to be rather special at first sight, but actually it is very natural: As we have seen
in Sect. 6.1, independent mutation at the sites of a sequence leads to nearest-
neighbour mutation on S, hence (A2) is trivially fulfilled. For the corresponding
quasispecies model (to be described below), still with independent mutation at
the sites, the decay of fk with k is exponential, rather than only cubic as required
in (A2); this will be shown in Sect. 8.

In many concrete examples, the reproduction and mutation rates have their
own continuous approximations each, i.e.,

Ri = r
(

i
N

)
+ O

(
1
N

)
and Uij = uj−i

(
i

N

)
+ O

(
1
N

)

with C2(D, R) functions r and uk. Moreover, the range of all mutational steps
is finite (on S, and independently of N); that is, there is a finite symmetric (i.e.,
S = −S) set S ⊂ Z

d with the property that, for all N, Uij = 0 whenever
j − i /∈ S. Then (A1) is automatically satisfied for any A on which

√
uk(z) is

C2 for all k ∈ S; inspecting the matrix elements of E in (32) and noting that∑
k∈S uk(z) = 0 one finds that

e(z) = r(z)− 1
2

∑

k∈S

(√
uk(z)− √

u−k(z)
)2. (43)

It is interesting to observe that the expression above is formally identical with
�(z) of Theorem 2, although we are considering quite a different situation
here. Special cases of (43) have appeared in [3,18] in the context of parallel
sequence space models, and the resulting maximum principle turned out as a
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key to determine the mutation load, genetic variance, and the existence of error
thresholds.

7.1.3 Locality of the ancestral distribution

Under the additional (but generic) assumptions that the function e admits
a unique maximizer z∗ ∈ rint D and the Hessian of e at z∗, restricted to T =
span(D−D), is (strictly) negative definite, one can also characterize the ancestral
distribution, which is connected to λ through the general variational principle
of Theorem 1. Namely, by Theorem 2 of [3], this distribution is concentrated in
a neighbourhood of z∗ whose width decreases with 1/

√
N. More precisely: For

every 0 < ε ≤ 1, there is a constant c > 0, independent of N, so that, for N
large enough,

∑

i∈S:
|i/N−z∗|≥c/

√
N

αi ≤ ε . (44)

By Corollary 3 of [3], it follows that 〈α, id〉 = z∗ + O(N−1/3), i.e., the ances-
tral type average coincides with the unique maximizer of e up to a small error
term. The constant in the error term here depends on those in the assumptions
and some bounds separating the spectrum of the Hessian (restricted to T) of
e at z∗ from −∞ and 0. The proofs given in [3] are solely based on a local
approximation and thus remain valid under our weaker assumptions.

7.2 Approximations of the constrained mean fitness �

Our next goal is an approximation for the partial maximum �(z) of (36). In
fact, the similarity of the expression (43) for e(z) and the expression for �(z)
in Theorem 2 leads one to ask whether the asymptotic identity of the global
maxima of� and e, as asserted by Theorem 3, can be extended to an asymptotic
relation between these functions as a whole. On the basis of Proposition 3 such
an approximation can indeed be given. We consider first the most salient points
of e, i.e., the points where e coincides with its concave envelope. Let us say
z ∈ rint D is an exposed smoothness point of e if

– e(y) < tz(y) := e(z)+ ∇e(z) · (y − z) for all y �= z, i.e., z is the unique point
where e hits its tangent plane tz at z.

– e is C2 on a neighbourhood of z, and the Hessian of e at z, as a bilinear form
on T = span(D − D), is negative definite.

If e is strictly concave on D, the first condition is trivially satisfied. If e is also C2,
the second condition just covers the generic case of strict concavity. In other
words, for a generic strictly concave C2-function e, every z ∈ rint D is an exposed
smoothness point.

To state the hypotheses of the next theorem we recall that the assumptions
(A1) and (A2) only involve an approximation on a local set A, while (A3)
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imposes some global bounds, including an upper bound on Ei in terms of sup e.
We now replace the constant sup e by suitable tangent planes of e, thereby
turning (A3) into the hypothesis

(A3′) For all z ∈ A and suitable constants C′, C′′ < ∞ we have

−C′ ≤ Ei ≤ tz
(

i
N

)
+ O

(
1
N

)
and Fij ≤ C′′

for all i, j ∈ S, i �= j, with a uniform error term O(1/N).
Theorem 4 Consider a relatively open convex subset A of rint D consisting of
exposed smoothness points of e and satisfying the hypotheses (A1), (A2), and
(A3 ′). Then one has the approximation

�(z) = e(z)+ O(N−1/3)

locally uniformly for all z ∈ A. The constants in the error term only depend on
the error terms in the assumptions, some locally uniform upper bounds on |∇e|,
and the Hessian of e (via some locally uniform bounds separating its spectrum
from −∞ and 0).

The proofs of this and the subsequent theorem follow in the next subsection.
Theorem 4 raises the question of what happens if e touches a tangent plane

at two or more distinct points of int D. Let z be a strict convex combination of
these points, and β the negative slope of this plane. The ancestral distribution
ᾱ for the reproduction rate Ē = E + β · id/N is then expected to split into
distinct peaks located at the competing maximum points of the associated ē;
its mean type 〈ᾱ, id〉 will remain close to z, but the reproduction rate �(z) will
be the corresponding convex combination of the values of e at the maximum
points of ē. So it may be conjectured that, in general, �(z) is approximated by
the concave envelope of e at z. The next theorem shows that this is indeed the
case. We note that this kind of behaviour is related to the phenomenon of error
thresholds and phase transitions described in detail in [18].

For a given function e on D we let

ê(z) := inf
{

a − β · z
∣
∣
∣ a ∈ R,β ∈ R

d, a − β · y ≥ e(y) ∀ y ∈ D
}

, z ∈ D,

be the concave envelope of e. (For an example see Fig. 8.) We consider the
situation when e deviates from strict concavity, so that ê is affine on a nontrivial
set B. Let us say that B is a basin of e if B has nonempty relative interior and

B = {z ∈ D | ê(z) = a − β · z} (45)

for suitable a ∈ R,β ∈ R
d. Note that a basin B is necessarily convex and com-

pact. We write ex B for the set of its extremal points. Let us say that a basin B of e
is determined by smooth hills of e if there exists a relatively open neigbourhood
H of ex B in D such that
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– H \ B consists of exposed points of e, and
– e is C2 on H, and its Hessian (restricted to T) is negative definite with a spec-

trum which is bounded from below and bounded away from zero uniformly
on H.

This is the situation one typically encounters when a smooth e deviates from
strict concavity. The theorem below provides an approximation of the restrained
maximum �(z) defined in (36).

Theorem 5 Consider a basin B ⊂ rint D of e that is determined by smooth hills
H of e, and suppose the assumptions (A1), (A2), and (A3 ′) are satisfied with
A = (H \ B) ∪ ex B. Then we have the approximation

�(z) = ê(z)+ O(N−1/3)

uniformly for all z ∈ B.

7.3 Proofs

We now turn to the proofs of the three Theorems of this section.

Proof of Theorem 3 The proof of Theorem 1 of [3] goes through with the
changes summarized below; we will refer to equations in the previous paper
by double brackets ((.)). Throughout, notation changes from x to z, E(x) to
e(z), and α to a; int D is replaced by rint D throughout. The upper bound on
λ remains unchanged in view of ((12)) and (A3). For the lower bound, let z∗
be given as required, and place the test function v = (vi)i∈S of ((32)) at this z∗.
The argument after ((40)) changes as follows. Due to (A1), ∃ 0 < δ ≤ ε and
0 ≤ γ < ∞ so that, for |z − z∗| < δ, e(z) ≥ e(z∗)− γ |z − z∗|2. Then one has

∑

i∈S

v2
i Ei =

∑

i∈S:|i/N−z∗|<δ

Ei v
2
i +

∑

i∈S:|i/N−z∗|≥δ

Ei v
2
i

≥
(

e(z∗)+ O
(

1
N

))(
1 + O(e−aNδ2

)
) − γ

∑

i∈S:|i/N−z∗|<δ

∣
∣
∣

i
N

− z∗
∣
∣
∣
2
v2

i

+O
(

1
N

)
+ min

k∈S
(Ek)

∑

i∈S:|i/N−z∗|≥δ

v2
i

≥ e(z∗)+ O
(

1
N

)
.

In the second step, we have used (A1), normalization (
∑

i v
2
i = 1), and ((39))

(which also holds for k = 0, cf. Lemma 2 and Corollary 2 of [3]); the last step
relies on ((39)), ((40)), and (A3).
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In the proof of Proposition 4 of the original article, starting from the second
display (p. 97), we split the sum into

∑

i,j∈S

viFijvj = −
∑

i∈S:|i/N−z∗|<δ

∑

k∈S−i:
η(i,k)>0

Fi,i+k(vi − vi+k)
2

−
∑

i∈S:|i/N−z∗|≥δ

∑

k∈S−i:
η(i,k)>0

Fi,i+k(vi − vi+k)
2 . (46)

We now note that the display in the middle of p. 97 implies that, for |i/N −z∗| ≥
δ, one has vi − vi+k ≤ caNe−aNδ2

η(i, k), where a and c are constants, and
η(i, k) = O(1) (by the first display on p. 97). The elements of F are asymptoti-
cally bounded (by (A3)), so the second sum in (46) is O(Ne−αNδ2

) and plays no
role at the O(1/N) level in the remaining calculation.

Let us finally collect the quantities that influence the error term in the result.
These are: the constants in the approximation of E and F in (A1); the constant
in the decay condition on f in (A2), see Eq. ((45)); the constants in the global
bounds on E and F in (A3), as used in this version of the proof; and the Hessian
of e at z∗ (it enters the constant γ ). This completes the proof. ��
Proof of Theorem 4 Pick any exposed smoothness point z ∈ A, and let β =
−∇e(z). Consider the function ē(y) := e(y) + β · y, y ∈ rint D. By hypothesis,
ē has the unique maximizer z. Assumptions (A1)–(A3) thus hold for the mod-
ified reproduction rates Ēi := Ei + β · i/N and the approximating function ē.
(Note that the error terms do not depend on β.) Theorem 3 then implies that
λ(Ē) = ē(z)+O(1/N). Next we apply Proposition 3 to the type set S/N to infer
that λ(Ē) = �(z̄)+β · z̄ for the vector z̄ = 〈ᾱ, id/N〉 = ∇β λ(E+β · id/N), where
ᾱ is the ancestral distribution for the reproduction rate Ē. (Alternatively, one
can invoke Corollary 1(a) to characterize z̄ by the equation ∇�(Nz̄) = ∇e(z).)
The comments in paragraph 7.1.3 above assert that z̄ = z + O(N−1/3). Hence

�(z̄) = ē(z)− β · z̄ + O(1/N) = e(z)+ O(N−1/3) .

By the assertion on the error terms in Theorem 3 and in paragraph 7.1.3, the
error term here is locally uniform in z.

Next we note that the (N-dependent) mapping φ : z → z̄ from A into D is a
homeomorphism. For, φ is the composition of −∇e and β → ∇β λ(E+β · id/N).
Now, ∇e is a diffeomorphism from A into T = span(D−D) because, by assump-
tion, the Hessian of e (restricted to T) is nondegenerate everywhere on the
convex set A, so that ∇e(x) = ∇e(y) only if x = y by the mean value theorem.
On the other hand, Corollary 1(a) shows that ∇β λ(E + β · id/N), as a function
of β ∈ T, has the inverse y → −∇�(Ny); these gradients are continuous by
Corollary 25.5.1 of [32].

Now let C ⊂ A be compact and C′ ⊂ A, say, a convex polytope containing C
in its relative interior. φ moves the faces of C′ by at most a distance of κN−1/3,
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for some constant κ < ∞. Hence φ(C′) ⊃ C for large N. For these N we can
invert φ on C to get φ−1(y) = y + O(N−1/3) uniformly for all y ∈ C. Since |∇e|
is bounded on C, it follows that

�(y) = e
(
φ−1(y)

) + O(N−1/3) = e(y)+ O(N−1/3)

uniformly for all y ∈ C. ��

Proof of Theorem 5 Take any z ∈ B. By a well-known theorem of Carathéo-
dory (Theorems 17.1 and 18.5 of [32]), z is a convex combination of at most
d + 1 extremal points, that is, there exist points z1, . . . , z
 ∈ ex B and numbers
s1, . . . , s
 ≥ 0 summing to 1 such that 
 ≤ d + 1 and

z =

∑

k=1

sk zk .

Next we fix some ε > 0. By hypothesis, for each k = 1, . . . , 
 we can find a
point yk ∈ H \ B and a relatively open convex neighbourhood Ak of yk such
that |yk − zk| < ε and Ak consists of exposed smoothness points of e. The-
orem 4 thus asserts that �(yk) = e(yk) + O(N−1/3). In view of the assumed
uniform bounds on the spectrum of the Hessians, the error term here is inde-
pendent of k and the choice of yk. Letting ε → 0, we thus can conclude that
�(zk) = e(zk)+ O(N−1/3), and therefore by concavity

�(z) ≥

∑

k=1

sk�(zk) =

∑

k=1

sk e(zk)+ O(N−1/3) = ê(z)+ O(N−1/3) .

On the other hand, since the upper estimate on Ei in (A3′) also holds for z = zk,
assumptions (A1)–(A3) hold with Ēi = Ei + β · i/N and ē := e + β · id in place
of Ei and e, respectively; here β is as in (45). Proposition 3 and Theorem 3
therefore imply that, for each k,

�(z)+ β · z ≤ λ(Ē) = ē(zk)+ O(1/N) ,

where λ(Ē) stands for the principal eigenvalue of the matrix Ē + F with repro-
duction rate Ē. Taking the average over k we find

�(z)− O(1/N) ≤ −β · z +

∑

k=1

sk ē(zk) = ê(z).

The proof is therefore complete. ��
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8 Application to the quasispecies model

8.1 The model and its large-N asymptotics

We will now illustrate and apply the results of the preceding section to the cou-
pled counterpart of the parallel sequence space model of Sect. 6.1. The coupled
sequence space model, known as the quasispecies model, was introduced in [9]
and has, since then, been the subject of numerous investigations. It assumes that
mutations occur on the occasion of reproduction events, that is, they represent
replication errors. Let us assume that mutation is, again, independent across
sites and occurs at probabilities v = µ/N and w = ν/N from 0 to 1 and vice
versa, where µ and ν are positive and independent of N. This is a slight gen-
eralization of the original model [9] with symmetric mutation, and the factor
1/N in the mutation rate is introduced to obtain a suitable limit.6 The matrix of
mutation probabilities, P = (Pστ )σ ,τ∈ΣN , is then given by

P =
N⊗

i=1

(
1 − v v

w 1 − w

)

, (47)

where the tensor product reflects the independence across sites. The quasispe-
cies model is complete if we further specify birth rates Bσ and death rates Dσ

for all σ ∈ Σ . When a birth event occurs to a σ individual, it survives unchanged
and produces an offspring of type τ with probability Pστ ; at a death event, a σ
individual dies (as in Fig. 2 with i, j replaced by σ , τ ).

We will assume that, for all σ ∈ Σ , Bσ and Dσ are invariant under permuta-
tion of sites. Since the same holds, by construction, for the mutation probabilities
(47), we have a situation analogous to (L1) and (L2) for the parallel model, and
may perform lumping into S := {0, 1, . . . , N} by the mapping σ �→ H(σ ) ∈ S,
where H(σ ) is the number of sites occupied by letter 1 (see Sect. 6.1). The result-
ing model on S has birth rates Bi, death rates Di, and mutation probabilities Pij,
where Bσ = Bi, Dσ = Di, and

∑

τ :H(τ )=j

Pστ = Pij (48)

for any σ with H(σ ) = i.
In the lumped model, given the current type i, the distribution of jumps is

obviously given by the convolution

Pi,i+• = BinN−i,v ∗ B̂ini,w, (49)

6 The factor may come somewhat unexpected, but means nothing but a change of time scale, which
will not alter the long-term asymptotics. For a thorough discussion of the related scaling issues, see
[4]; in the language of that article, we use intensive scaling here.
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where Binn,p denotes the binomial distribution with parameters n, p > 0, and
B̂inn,p its image under the reflection of Z at the origin; we further identify Bin0,p
with the point measure located at 0. Explicitly,

Pij = (1 − v)N−i(1 − w)i
∑


,m≥0:

−m=j−i

(
N − i



)(
i

m

)( v

1 − v

)
( w
1 − w

)m
. (50)

The Markov chain so defined is reversible with respect to ϕ = (ϕi)i∈S =
BinN,v/(v+w); this is most easily seen by noting that P (on sequence space)
is reversible with respect to the Bernoulli measure on {0, 1}N with parameter
v/(v+ w).

The lumped Markov branching process has first-moment generator A with
elements Aij = BiPij −Di (cf. Eq. (4)), and has been much studied, see [10] for a
review of early work, and [24] for a review of recent theoretical developments,
and their connection to experimental results on virus evolution. In particular,
the error thresholds displayed by this model have attracted a lot of attention.

The function e(z) that would simplify the model’s analysis does not seem to
have appeared so far; it is far less obvious than its parallel counterpart (43),
and will be established in what follows. We start by decomposing A of (4) into a
Markov generator U and a diagonal matrix R, which gives Uij = BiPij for i �= j,
Uii = −Bi(1 − Pii), and Ri = ∑

j∈S Aij = Bi − Di. Since P = (Pij)i,j∈S is revers-
ible, U is also reversible; its reversible distribution ρ is given by ρi = cϕi/Bi for
a normalizing constant c > 0. The elements of the symmetrized matrices E and
F of (32) and (31) therefore emerge as

Fij =
√

BiPijPjiBj for i �= j, (51)

Fii = −
∑

j∈S:j �=i

Fij, (52)

and

Ei = −Di +
∑

j∈S

√
BiPijPjiBj. (53)

After these preparations, let us identify conditions under which Theorems 3,
4, and 5 are applicable. We will consider the approximation of the birth and
death rates as given; we will then show that the Poisson approximation to the
distribution Pi,i+•, namely p•(i/N) = Poiµ(N−i)/N ∗ P̂oiνi/N , will also lead to the
‘right’ approximation to the matrix elements (51)–(53). In line with previous
notation, Poiλ is the Poisson distribution with parameter λ > 0, P̂oiλ its reflected
version, and Poi0 is identified with the point measure at 0. This will give us the
following result.
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Theorem 6 Consider the lumped quasispecies model, with first-moment genera-
tor A of (4) on S = S(N) := {0, 1, . . . , N}; birth rates Bi ≥ 0, death rates Di ≥ 0,
and mutation probabilities Pij as in (50). Assume that

Bi = b
(

i
N

)
+ O

(
1
N

)
and Di = d

(
i

N

)
+ O

(
1
N

)
,

where b and d are C2 functions on D := [0, 1], b is strictly positive, and the
constants in the O(1/N) bounds are uniform for all i ∈ S. For z ∈ D let

g(z) := (√
µ(1 − z)− √

νz
)2 (54)

and
e(z) := b(z) e−g(z) − d(z) . (55)

Assume further that e′′ has only finitely many zeroes. It then follows that

λ = max
z∈D

e(z)+ O
(

1
N

)
and �(z) = e(z)+ O(N−1/3)

locally uniformly for z ∈ ]0, 1[.
Postponing the proof for a moment, let us first look at an example.

8.1.1 An example

For the purpose of illustration, let us consider the quasispecies model with a
‘smoothed’ version of truncation selection (where a gene tolerates a certain
number of mutations and then deteriorates rapidly). Let the birth and death
rate functions be given by

b(z) := 1 + r(z)
2

, d(z) := 1 − r(z)
2

, where r(z) := e−(γ z)4 (56)

(i.e., we assume a mixture of fecundity and viability selection). Figure 8 shows
the fitness function, and the function e together with its concave envelope.

8.1.2 Connection to the parallel model

The quasispecies model is closely related to the lumped parallel sequence space
model with birth rates Bi, death rates Di, and mutation rates Ui,i+1 = µ(1−i/N),
Ui,i−1 = ν i/N and Uij = 0 for |j − i| > 1 (where µ and ν are now mutation
rates per site rather than probabilities). In fact, the latter may be considered as
the former’s weak-selection weak-mutation limit (cf. [5, Ch.II.1.2], and [19]). It
leads to the simpler expression

e(z) = b(z)− d(z)− g(z), (57)
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Fig. 8 The quasispecies example (56), with γ = 5., and µ = 1, ν = 0.3. Left: The fitness function,
r = b−d. Right: The function e(z) (solid line) and its concave envelope ê (dashed), where it deviates
from e

cf. (43), and [3,18]. Indeed, this function is easily identified as the weak-selec-
tion weak-mutation limit of (55) by replacing b by 1 + δb, d by 1 + δd, µ by µδ,
ν by νδ, and e by e/δ; the last replacement means that time is measured in units
of δ. e(z) of (57) then emerges from (55) in the limit δ → 0.

8.2 Proof

The proof of Theorem 6 consists in verifying the assumptions of Theorems 3, 4
and 5 for the matrices E and F in (51)–(53). The main difficulty will be to estab-
lish the O(1/N) approximation as required in (A1). Besides the approximating
function e in (55) for E, the approximating functions fk for F will be given by

f0(z) := b(z)
(
p0(z)− e−g(z)), fk(z) := b(z)

√
pk(z)p−k(z) (0 �= k ∈ Z), (58)

where

pk(z) := (Poiµ(1−z) ∗ P̂oiνz)(k), k ∈ Z. (59)

These functions are quite natural, as they are obtained by replacing the bino-
mial distributions at hand by their Poisson approximations. Nevertheless, the
required approximation result is not at all automatic: Although Binµ,(N−i)/N
and B̂inν,i/N deviate from Poiµ(N−i)/N and P̂oiνi/N , respectively, by O(1/N) in
variational distance [29, Sect. II.5], and this carries over to the convolution,
it remains to be shown that the corresponding symmetrized quantities share
this property. The key to this task is the fact that the Poisson distributions are
particularly well-suited for a geometric symmetrization as in (51). This is the
content of the following lemma.

Lemma 1 For a, b ≥ 0, let p•(a, b) = (pk(a, b))k∈Z := Poia ∗ P̂oib be the con-
volution of the parameter-a Poisson distribution with the reflected parameter-b
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Poisson distribution. Then

√
pk(a, b)p−k(a, b) = e−(√a−√

b)2 pk(
√

ab,
√

ab)

for all k ∈ Z.

Proof Since pk(a, 0) = 0 for k < 0, and pk(0, b) = 0 for k > 0, the conclusion is
immediate if either a or b vanishes. For a, b > 0, the explicit formula

pk(a, b) = e−a−b
∑


,m≥0:

−m=k

a
bm


!m! (60)

readily implies that p−k(a, b) = pk(a, b)(b/a)k, whence

√
pk(a, b)p−k(a, b) = pk(a, b)(b/a)k/2 (61)

for all k ∈ Z. Inserting (60) into the last term and comparing the result with the
similar expression for pk(

√
ab,

√
ab) we obtain the conclusion of the lemma. ��

We will be particularly interested in the Poisson approximation to the right-
hand side of (49), viz.

pk(z) := pk(µ(1 − z), νz) , (62)

where z := i/N. Lemma 1 then implies that

∑

k∈Z

√
pk(z)p−k(z) = e−g(z) , (63)

thereby explaining the origin of the function g defined in (54). We will also need
the following tail estimate.

Lemma 2 For all a, b ≥ 0,

∑

k∈Z: |k|≥√
N

√
pk(a, b)p−k(a, b) ≤ 2

√
ab

N
.

Proof If a = 0 or b = 0, pk(a, b)p−k(a, b) = 0 except for k = 0, so that the
assertion is trivial. For a, b > 0 we can write, using Lemma 1 and Markov’s
inequality:

N
∑

k∈Z: |k|≥√
N

√
pk(a, b)p−k(a, b) ≤

∑

k∈Z

k2 pk(
√

ab,
√

ab) .

By symmetry, the last sum is the variance of Poi√ab ∗ P̂oi√ab and thus equal to

2
√

ab. ��
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We need a similar tail estimate for the geometric symmetrization of the
matrix P defined in (50). Note that P depends on N.

Lemma 3 For all i ∈ S,

∑

j∈S: |j−i|≥√
N

√
PijPji ≤ C

N

for a constant C depending on µ and ν but not on N.

Proof We use the obvious inequality

Binn,p(
) = (1 − p)n
(

n



)( p
1 − p

)
 ≤ ea−np Poia(
) (64)

which holds whenever 0 ≤ 
 ≤ n, 0 < p < 1, and a ≥ np/(1 − p). This implies
that Pi,i+k ≤ ea+b pk(a, b) with a := µ/(1 − v), b := ν/(1 − w), uniformly in
i ∈ S. Hence √

Pi,i+kPi+k,i ≤ ea+b
√

pk(a, b)p−k(a, b) , (65)

and the result follows from Lemma 2. ��
The crucial step is the following Poisson approximation of the geometric

symmetrization of P.

Proposition 4 With the abbreviation pk(z) := pk(µ(1 − z), νz), we have

∑

j∈S

∣
∣
∣
√

PijPji −
√

pj−i(i/N)pi−j(i/N)
∣
∣
∣ = O

(
1
N

)
(66)

uniformly in i as long as i/N is bounded away from 0 and 1.

Proof Consider an arbitrary i ∈ S and suppose z := i/N is bounded away from
0 and 1. (We will generally suppress the i-dependence of all abbreviations to
be introduced below.) The main difficulty of the proof comes from the fact that
the parameters of the probabilities Pji depend on the variable j rather than i.
Fortunately, P is reversible, and Lemmas 2 and 3 allow us to confine ourselves
to the js with |j − i| ≤ √

N. We proceed by a comparison of upper and lower
bounds on

rk :=
√

Pi,i+kPi+k,i , k ∈ S − i .

Step 1: A lower estimate. Since P is reversible w.r.t. BinN,v/(v+w), we have

rk = Pi,i+k

√
(i + k)!(N − i − k)!

i!(N − i)!
(√w

v

)k
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for all k ∈ S − i. Since also m!/n! ≥ nm−n for all m, n, it follows that

rk ≥ rk := Pi,i+k sk (67)

for all k, where s := (iw/(N − i)v)1/2 = (zν/(1 − z)µ)1/2.
We now take the sum over k. Using (50) and the binomial formula we can

write

∑

k∈S−i

rk = (1 − v+ vs)N−i(1 − w + w/s)i

≥ exp
( − µ(1 − s)(1 − z)

)(
1 − µ2(1 − s)2(1 − z)2

N − i

)

× exp
( − ν(1 − 1/s)z

)(
1 − ν2(1 − 1/s)2z2

i

)

= e−g(z) + O
(

1
N

)
. (68)

The inequality follows from the fact that

(
1 − x

n

)n ≥ e−x
(

1 − x2

n

)
(69)

for any n ≥ 1 and |x| ≤ n; see [31, 3.6.2., p. 266]. In the last step we used that z
is bounded away from 0 and 1.

Step 2. An upper bound. Arguing as for (67) we find

rk ≤ Pi,i+k

( (i + k)w
(N − i − k)v

)k/2 = Pi,i+k sk (ψ(k/N)
)k ,

where ψ(x) := (1 + x/z)1/2(1 − x/(1 − z))−1/2. Next, for each k an expansion of
ψ gives

(
ψ(k/N)

)k = 1 + k2

N

(
ψ(ϑk)

)k−1
ψ ′(ϑk)

for some ϑk between 0 and k/N. As long as z is bounded away from 0 and 1
and |k| ≤ √

N, the ψ- and ψ ′-expressions on the right-hand side are bounded
from above, so that

(
ψ(k/N)

)k ≤ 1 + k2 ck

N

for some c < ∞. Also, using (64) we find

Pi,i+k ≤ eva+wb pk(a, b) with a := (N − i)v
1 − v

, b := iw
1 − w

. (70)
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Collecting all estimates we arrive at the upper bound

rk ≤ r̄k := eva+wb pk(a, b)sk
(

1 + k2 ck

N

)
. (71)

Next, a summation over k gives

∑

|k|≤√
N

r̄k ≤ eva+wb

(
∑

k∈Z

pk(a, b)sk + K
N

)

with K := ∑
k∈Z

k2 (cs)k pk(a, b). To deal with the terms on the right-hand side
we note first that pk(a, b) sk = eas+b/s−a−bpk(as, b/s) by formula (60). Hence

∑

k∈Z

pk(a, b) sk = exp(as + b/s − a − b) = exp
( − g(z)

) + O
(

1
N

)

because a ≈ (1 − z)µ and b ≈ zν up to error terms of order 1/N. Likewise,

K = exp
(
acs + b/(cs)− a − b

)∑

k∈Z

k2 pk
(
acs, b/(cs)

)

is bounded in N since so are a, b. Since also va+wb = O(1/N), we finally arrive
at the estimate

∑

|k|≤√
N

r̄k ≤ e−g(z) + O
(

1
N

)
. (72)

Step 3: Conclusion. Consider now qk := √
pk(z)p−k(z). By (61), qk = pk(z)sk.

It is also immediate that pk(z) ≤ eva+wb pk(a, b) with a, b as in (70). Hence
qk ≤ r̄k for all k. Combining this with Lemmas 2 and 3 and the bounds (67) and
(71) we find

∑

k∈S−i

|rk − qk| =
∑

k∈S−i

(
2 max(rk, qk)− rk − qk

)

≤ O
(

1
N

)
+ 2

∑

|k|≤√
N

r̄k −
∑

k∈S−i

rk −
∑

|k|≤√
N

qk .

Now, (68) and (72) show that the first sum exceeds the second only by a term
of order 1/N, and (72) together with (63) and Lemma 2 imply that the first sum
exceeds the third by at most a term of order 1/N. This completes the proof. ��

Besides the preceding key approximation in the interior of D, we also need
a uniform bound which will be used close to the boundary of D. Here, an error
bound of order 1/

√
N is sufficient.
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Proposition 5 For all i ∈ S,

∑

j∈S

√
PijPji ≤ e−g(i/N) + O

(
1√
N

)
,

where the O(1/√N) term depends on µ and ν but not on i.

Proof In view of Lemma 3, we only need to estimate the sum over all j = i+k ∈
S with |k| ≤ √

N. For these j we find, using the Poisson bound (64) and writing
again z = i/N,

√
Pi,i+kPi+k,i ≤ eã+b̃

√
pk(a, b)p−k(a, b).

Here a = µ(1 − z + 1/
√

N)/(1 − v), b = ν(z + 1/
√

N)/(1 − w), and

ã = a − µ(1 − z − 1/
√

N) = 2µ/
√

N + O(1/N) ,

b̃ = b − ν(z − 1/
√

N) = 2ν/
√

N + O(1/N) ,

so that eã+b̃ = 1+O(1/√N); the error terms do not depend on i. The claim thus
follows from Lemmas 3, 2, 1 and the fact that (

√
a−√

b)2 = g(z)+O(1/√N). ��
After these preparations we are now ready to read off the approximating

functions e and fk for the lumped quasispecies model, that is, we can proceed
to the

Proof of Theorem 6 The main point of the proof is to establish condition (A1)
for any compact interval A ⊂]0, 1[. The (asymptotic) boundedness of the Bj’s
and Lemma 3 imply that, for each i ∈ S,

∑

k∈S−i

√
BiBi+kPi,i+kPi+k,i = O

(
1
N

)
+

∑

|k|≤√
N

√
BiBi+kPi,i+kPi+k,i . (73)

The asymptotics of the Bjs implies further that the sum on the right-hand side
is equal to

(
1 + O

(
1
N

))
b(z)

∑

|k|≤√
N

exp
(
β(z + k/N)− β(z)

)√
Pi,i+kPi+k,i , (74)

where z := i/N and β(x) := (log b(x))/2. By hypothesis, β ∈ C2
b([0, 1]). Hence

β(z+k/N)−β(z) = β ′(z)k/N+O(1/N) for |k| ≤ √
N, so that the last expression

takes the form
(

1 + O
(

1
N

))
b(z)

∑

|k|≤√
N

ekδ/N
√

Pi,i+kPi+k,i , (75)
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where δ := β ′(z). Next we can omit the exponential ekδ/N , making an error
of order 1/N only. Indeed, using inequality (65) together with Lemma 1 and
setting a := µ/(1 − v), b := ν/(1 − w) we obtain

∑

k∈S−i

|ekδ/N − 1|
√

Pi,i+kPi+k,i

≤ ea+b
∑

k∈Z

(
e|k||δ|/N − 1

)
pk(

√
ab,

√
ab)

≤ ea+b
(

exp
[
2
√

ab (e|δ|/N − 1)
] − 1

)
= O

(
1
N

)
. (76)

The second inequality is obtained by taking formula (60) for pk(
√

ab,
√

ab),
using e|k||δ|/N ≤ e
|δ|/Nem|δ|/N , and summing up. If z = i/N is bounded away
from 0 and 1, we can finally apply Proposition 4, Lemma 2 and the identity (63)
to obtain

∑

k∈S−i

√
BiBi+kPi,i+kPi+k,i

= O
(

1
N

)
+

(
1 + O

(
1
N

))
b(z)

∑

|k|≤√
N

√
pk(z)p−k(z)

= b(z)e−g(z) + O
(

1
N

)
. (77)

Taking this together with the assumed approximation of the Di, we arrive at
the approximation (A1) of E, and the diagonal elements of F, by the functions
e and fk defined in (55) and (58). But the approximation of the nondiagonal
elements of F is also guaranteed, since the estimates leading to (77) all hold
term by term. This completes the proof of (A1).

Next, condition (A2) follows directly from Lemma 1 and the fact that Pois-
son distributions and their convolutions have a finite third moment. We note
further that the upper bound on Fij and the lower bound on Ei in (A3) and
(A3′) are obvious.

Before turning to the upper bound on Ei let us discuss the particular context
of Theorems 3, 4 and 5. We observe that the function g is continuous on [0, 1]
and smooth on ]0, 1[ with g′(0) = −g′(1) = −∞, while b > 0 and d are C2 func-
tions on [0, 1]. This entails that e is C2 on ]0, 1[ and attains its absolute maximum
at a point z∗ ∈ ]0, 1[; in particular, z∗ is contained in an interval A satisfying
(A1) and (A2), as is required for Theorem 3. In addition, e′′ is negative in a
neigbourhood of 0 and 1, and has only finitely many zeroes by assumption. This
implies that each basin of e is determined by smooth hills, as is necessary for
applying Theorem 5.

Now let A′ be any set of exposed smoothness points of e which is bounded
away from 0 and 1. If δ > 0 is sufficiently small, the set A′

δ of all y satisfying
e(y) ≥ tz(y) − δ for all z ∈ A′ is still bounded away from 0 and 1. For all i with
i/N ∈ A′

δ , the upper bound on Ei in (A3′) follows directly from (77). For all
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other i’s, this bound follows from (73) to (76) as soon as N is so large that the
O(1/√N)-term in Proposition 5 is less than δ/max b. This completes the proof
of (A3′) under the conditions of Theorems 4 and 5. Since ]0, 1[ splits into finitely
many intervals forming basins and smooth hills of e, the stated approximation
result for � follows. Finally, as z∗ is also an exposed point, the choice A′ = {z∗}
gives us the upper bound on Ei in (A3). Theorem 3 can therefore be applied,
proving the approximation of λ as stated. ��
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