
DOI 10.1007/s00165-008-0083-6
BCS © 2008
Formal Aspects of Computing (2009) 21: 33–64

Formal Aspects
of Computing

Mutation testing in UTP
Bernhard K. Aichernig1,2 and He Jifeng3

1Institute for Software Technology, Graz University of Technology, Graz, Austria. E-mail: aichernig@ist.tugraz.at
2International Institute for Software Technology, United Nations University, Macao, S.A.R. China
3East China Normal University, Shanghai, China

Abstract. This paper presents a theory of testing that integrates into Hoare and He’s Unifying Theory of
Programming (UTP). We give test cases a denotational semantics by viewing them as specification predicates.
This reformulation of test cases allows for relating test cases via refinement to specifications and programs. Having
such a refinement order that integrates test cases, we develop a testing theory for fault-based testing.

Fault-based testing uses test data designed to demonstrate the absence of a set of pre-specified faults. A well-
known fault-based technique is mutation testing. In mutation testing, first, faults are injected into a program by
altering (mutating) its source code. Then, test cases that can detect these errors are designed. The assumption is
that other faults will be caught, too. In this paper, we apply the mutation technique to both, specifications and
programs.

Using our theory of testing, two new test case generation laws for detecting injected (anticipated) faults are
presented: one is based on the semantic level of UTP design predicates, the other on the algebraic properties of
a small programming language.

Keywords: Specification-based testing; Fault-based testing; Mutation testing; Unifying theories
of programming; Refinement calculus; Algebra of programming

1. Introduction

A theory of programming explores the principles that underlie the successful practice of software engineering.
Consequently, a theory of programming should not lack a theory of testing. Understanding of the fundamen-
tals of software testing enables the experience gained in one language or application domain to be generalised
rapidly to new applications and to new developments in technology. It is the contribution of this paper to add a
theory of testing to Hoare & He’s Unifying Theories of Programming [HH98].

The theory we contribute was designed to be a complement to the existing body of knowledge. Traditionally,
theories of programming focus on semantic issues, like correctness, refinement and the algebraic properties of a
programming language. A complementary testing theory should focus on the dual concept of fault. The main
idea of a fault-centred testing approach, also called fault-based testing, is to design test data to demonstrate the
absence of a set of pre-specified faults.

Correspondence and offprint requests to: B. Aichernig, E-mail: aichernig@ist.tugraz.at

34 B. K. Aichernig, H. Jifeng

Fig. 1. Left: original specification of triangle types. Right: mutation with a faulty conditional

Our fault-based testing approach is based on a rather old technique from program testing called mutation
testing. The original idea goes back to the late 1970s [Ham77, DLS78] and works as follows:

The tester injects faults into a program under test, by deliberately changing its source code. Then, test cases
are executed on these faulty versions of the program. If all the faults are detected, the set of test cases can be
considered adequate. If the tests fail this quality assessment, then additional test cases can be designed until all
faults are detected. The assumption is that other faults in the original program can be caught as well, if it is able to
detect the injected faults. The process of fault injection by changing the program text is called program mutation,
giving the technique its name. Consequently, the altered program versions are called mutants. Usually, for each
injected fault a separate mutation is generated. Hence, each mutation represents and contains a single fault.

We extend this technique by applying it to first-order predicates denoting program behaviour. This lifts
mutation testing to the specification level. By using Unifying Theory of Programming’s (UTP) design predicates,
we have the full theory of programming available, including notions of correctness and refinement. We use
this theory to define criteria for finding or even generating the test cases that would detect the injected errors
(mutations). Hence, rather than inventing test cases and assessing them, we are interested in constructive methods
of generating the adequate test cases. By test cases we mean program stimuli (inputs) together with predicted
reactions (outputs).

An example will clarify the general idea. The Object Constraint Language (OCL) of UML 2.0 has been chosen
to highlight the relevancy of our technique, but any specification language for expressing pre-postcondition
specifications would do.

Example 1.1 Consider the well-known Triangle example, specified in Fig. 1. The operation Ttype on the left-hand
side returns the type of a triangle represented by three given side-lengths a, b, c. The precondition restricts the
problem specification to cases where the values of a, b, c form a valid triangle. The specification can be mutated
(altered) in several ways. One common error made by programmers is to mess up variables in a condition. Such
an error can be represented as early as on the specification level by mutating a specification variable as shown in
the mutant on the right hand side (underlined condition). Note that this faulty version would pass a type checker,
because the correct variable name has been replaced by a valid identifier. In general, we exclude such mutations
from our testing strategy that can be trivially detected by static type checking.

The aim of our mutation testing strategy is to design test cases that will detect implementations of the faulty
specification (mutant). The following three test cases covering each case of the original demonstrate that simple
case analysis (branch coverage) is too weak.

a � 2, b � 2, c � 1, result � isosceles
a � 2, b � 3, c � 4, result � scalene
a � 1, b � 1, c � 1, result � equilateral

None of these test cases would be able to distinguish the original from the mutant, since the predicted results
(result) of the test cases and the actual results of a faulty implementation of the mutant would coincide. In
contrast, the following test case is able to distinguish the original triangle operation from its mutant:

a � 1, b � 2, c � 2, result � isosceles

The predicted result is in conflict with the actual outcome of the mutant (isosceles �� equilateral). �

Mutation testing in UTP 35

This paper is devoted to techniques for finding such fault-detecting test cases systematically.
Note that the strategy of mutation testing is not based on the syntactical structure of the source code, like

statement or branch-coverage techniques. Its aim is to cover anticipated faults. This is why it is called a fault-
based testing technique. It is this fundamentally different philosophy of our fault-based testing theory that adds
a further dimension to the theories of programming (UTP). Rather than doing verification by testing, a doubtful
endeavour anyway, here we focus on falsification. It is falsification, because the tester gains confidence in a system
by designing test cases that would uncover an anticipated error. If the falsification (by running such tests) fails, it
follows that a certain fault does not exist. The fascinating point is that program refinement plays a key role in our
theory of testing. However, due to the concentration on faults we are interested in the cases, where refinement
does not hold—again falsification rather than verification.

The interesting questions that arise from focusing on faults are: Does an error made by a designer or program-
mer lead to an observable failure? Do my test cases detect such faults? How do I find a test case that uncovers
a certain fault? What are the equivalent test cases that would uncover such a fault? Finally and most important:
How to automatically generate test cases that will reveal certain faults? All these questions are addressed in this
paper. They have been addressed before, but rarely on a systematic and scientifically defendable basis linking
theories of testing and programming.

The paper is structured as follows. After this general introduction, Sect. 2 introduces UTP [HH98], the
mathematical framework used throughout this article. In particular, an overview of the theory of designs is
presented. Section 3 briefly discusses the testing terminology and, based on the theory of designs, a series of
formal definitions of concepts like test cases, test equivalence classes, faults, and a criterion for finding faults is
presented. It is this section that highlights the important role of refinement in our testing theory. The next two
sections include the main contributions of this paper. Section 4 contains a construction for test cases that will
find anticipated errors in a design. This test case generation method works on the semantic level of designs. At the
end of this section, a tool is briefly discussed. In Sect. 5 a purely algebraic (syntax-oriented) test case generation
algorithm is presented. It is based on the algebraic properties of a small, but non-trivial, programming language.
Finally, in Sect. 6 we discuss the results, give a review of related work, and present an overview of further research
directions.

2. Unifying theories of programming

The present theory of testing is based on the work of Hoare and He on Unifying Theories of Programming (UTP)
originally published in [HH98]. In the following we present a brief introduction of UTP and give motivations for
its relevance to testing.

2.1. Unification of theories

In every scientific discipline phases of specialisation and unification can be observed. During specialisation
scientists concentrate on some narrowly defined phenomenon and aim to discover the laws which govern it.
Over time, it is realised that the laws are special cases of a more general theory and a unification process starts.
The aim is a unifying theory that clearly and convincingly explains a broader range of phenomena. A proposed
unification of theories often receives spectacular confirmation and reward by the prediction of new discoveries
or by the development of new technologies. However, a unifying theory is usually complementary to the theories
that it links, and does not seek to replace them.

In [HH98] Hoare and He are aiming at unification in computer science. They saw the need for a comprehensive
theory of programming that

• includes a convincing approach to the study of a range of languages in which computer programs may be
expressed,

• must introduce basic concepts and properties which are common to the whole range of programming methods
and languages,

• must deal separately with the additions and variations which are particular to specific groups of related
programming languages,

• should aim to treat each aspect and feature in the simplest possible fashion and in isolation from all the other
features with which it may be combined or confused.

36 B. K. Aichernig, H. Jifeng

Our theory of testing originated out of these motivations for unification. With the advent of formal methods,
formal verification and testing split into separate areas of research. Over time both areas advanced. In the 1990s
a unification process started in the area of verification [Gau95]. As a result, most of today’s formal method tools
have a test case generator, acknowledging the fact that every proof needs systematic testing of its underlying
assumptions. Furthermore, researchers in testing investigate the role of formal models in the automation of
black-box testing. However, many results in testing and formal methods remain unrelated. In this work, we aim
to contribute to a further unification. The notion of testing and test cases is added to the existing UTP. Remarkable
is the fact that the concept of refinement is used to relate test cases with a theory of specifications and programs.

2.2. Theories of programming

An essential key to the success of natural sciences was the ability to formulate theories about observable phenom-
ena. These observables are described in a specialised language, that name and relate the outcome of experiments.
Often equations or inequations are used, in general mathematical relations. The same holds for the science of
programming, where the descriptions of observables are called by their logical term predicate. In the following
theory of testing, predicates are used in the same way as in a scientific theory, to describe the observable behaviour
of a program when it is executed by a computer. In fact, we will define the meaning of a program, as well as the
meaning of its test cases, as a predicate in first order logic.

Every scientific theory contains free variables that represent measurable quantities in the real world. In our
theory of testing these free variables stand for program variables, conceptual variables representing a system’s
state, or observable input-output streams. The chosen collection of names is called the alphabet.

In engineering, predicates are not solely used to describe existing phenomena, but to specify desired properties.
Such requirements specifications describe the behaviour of a device in all possible circumstances and are a starting
point for developing a product. In addition, the test cases are derived from these requirements descriptions. It
will be seen that test cases are actually a special form of requirements specification, designed for experimentation
(or in computer science terms, for execution).

2.3. A theory of designs

In UTP by convention, observations made at the beginning of an experiment are denoted by undecorated variables
(x , y), whereas observations made on later occasions will be decorated (x ′, y ′). The set of these observation
capturing variables is called the alphabet.

During experiments it is usual to wait for some initial transient behaviour to stabilise before making any
further observation. In order to express this a Boolean variable ok and its decorated version ok ′ are introduced.
Here, a true-valued variable ok stands for a successful initialisation and start of a program and ok ′ � true denotes
its successful termination.

In the theory of programming not every possible predicate is useful. It is necessary to restrict ourselves to
predicates that satisfy certain healthiness conditions: e.g. a predicate describing a program that produces output
without being started should be excluded from the theory (¬ok ∧ x ′ � 1). In addition, the results of the theory
must match the expected observations in reality, e.g. a program that fails to terminate sequentially composed with
any program must always lead to non-termination of the whole composition (this is the technical motivation for
introducing ok , ok ′). We call the subset of predicates that meet our requirements designs. The following definitions
and theorems are a reproduction of the original presentation of UTP [HH98].

Mutation testing in UTP 37

Definition 2.1 (Design) Let p and Q be predicates not containing ok or ok ′ and p having only undecorated
variables.

p � Q �df (ok ∧ p) ⇒ (ok ′ ∧ Q)

A design is a relation whose predicate is (or could be) expressed in this form.1 �
As can be seen, a design predicate represents a pre-postcondition specification, a concept well-known from VDM
[Jon86], RAISE [RAI95], B [Abr96] and more recently OCL [WK03].

Example 2.1 (Square Root) The following contract is a design of a square root algorithm using a program variable
x for input and output. A constant e specifies the precision of the computation.

(x ≥ 0 ∧ e > 0) � (−e ≤ x − x ′2 ≤ e)
�

Every program can be expressed as a design. This makes the theory of designs a tool for expressing specifications,
programs, and, as it will be shown, test cases. In the following, some basic programming constructs are presented.

Definition 2.2 (Assignment) Given a program variable x and an expression e

x :� e �df (wf (e) � x ′ � e ∧ y ′ � y ∧ · · · ∧ z ′ � z)

with wf being the predicate defining the well-formedness (e can be evaluated) of expression e. �
Definition 2.3 (Conditional)

P � b � Q �df (wf (b) � (b ∧ P ∨ ¬b ∧ Q))

with wf being the predicate defining the well-formedness of the Boolean expression b. �
In the further discussion we will maintain the simplifying assumption that all program expressions are everywhere
well-formed (defined), thus wf � true.

Sequential composition is defined in the obvious way, via the existence of an intermediate state v0 of the
variable vector v . Here the existential quantification hides the intermediate observation v0. In addition, the output
alphabet (outαP) and the input alphabet (with all variables dashed, inα′Q) of P and Q must be the same.

Definition 2.4 (Sequential Composition)

P (v ′); Q(v) �df ∃v0 • P (v0) ∧ Q(v0), provided outαP � inα′Q � {v ′}
�

Non-deterministic, demonic choice is defined as logical or:

Definition 2.5 (Demonic Choice)

P � Q �df P ∨ Q

�
UTP provides a series of theorems and lemmas expressing the basic algebraic properties of such programming
constructs, e.g.:

Theorem 2.1

(p1 � Q1) � (p2 � Q2) � (p1 ∧ p2 � Q1 ∨ Q2)
(p1 � Q1) � b � (p2 � Q2) � (p1 � b � p2 � Q1 � b � Q2)

(p1 � Q1); (p2 � Q2) � (p1 ∧ ¬(Q1; ¬p2) � Q1; Q2)

�
What keeps the theory simple and elegant is the fact that in UTP correctness is represented by logical impli-
cation. Hence, implication establishes a refinement order (actually a lattice) over designs. Thus, more concrete
implementations imply more abstract specifications.

1 This is a non-standard, more direct definition of designs. Our designs satisfy healthiness conditions H1–H3 in [HH98].

38 B. K. Aichernig, H. Jifeng

Definition 2.6 (Refinement)

D1 � D2 �df ∀ v ,w , · · · ∈ A • D2 ⇒ D1, for all D1,D2 with alphabet A.

Alternatively, using square brackets to denote universal quantification over all variables in the alphabet, we write
[D2 ⇒ D1], or simply in refinement calculus [BvW98, Mor94] style D1 � D2. �
Obviously, this gives the well-known properties that under refinement, preconditions are weakened and postcon-
ditions are strengthened (become more deterministic):

Theorem 2.2 (Refinement of Designs)

[(P1 � Q1) ⇒ (P2 � Q2)] iff [P2 ⇒ P1] and [(P2 ∧ Q1) ⇒ Q2]

�
In our theory, the worst of all programs is a non-terminating one, sometimes called Abort or Chaos:

Definition 2.7 (Abort)

⊥ �df true � false � true � false � false � false � Q �
The observations of non-terminating programs are completely unpredictable; anything is possible. Therefore
programmers aim to deliver better programs. In our theory of designs the notion of “better” is captured by the
implication ordering. Thus every program P that terminates is better than a non-terminating one.

∀ v ,w , · · · ∈ A • P ⇒ ⊥, for all P with alphabet A.

This refinement ordering defines a complete lattice over designs, with ⊥ as the bottom element and �, representing
a non-implementable, magic-like, program as top element.

Definition 2.8 (Magic)

� �df (true � false)

�
The program � is called magic since it magically refines (implements) every possible design D :

[D ⇐ �], for all D with alphabet A.

Another interpretation of magic is that it can never be started, since � � ¬ok .
From the definitions above it follows that the meet operator of this lattice is the deterministic choice and its

dual join operator is defined as

Definition 2.9 (Join)

P � Q �df P ∧ Q

�
Theorem 2.3

(p1 � Q1) � (p2 � Q2) � (p1 ∨ p2 � ((p1 ⇒ Q1) ∧ (p2 ⇒ Q2)))

Finally, iteration is expressed by means of recursive definitions. Since designs form a complete lattice and the
operators are monotonic, the weakest fixed point exists. This ensures that the result of any recursion is still a design.

3. Modelling faults in designs

In this section, we relate test cases via refinement to designs and programs. This is possible, since we give test
cases a denotational semantics by viewing them as specification predicates. The result is a test case generation
technique based on the theory of refinement. However, first the vocabulary needs some clarification.

3.1. From errors via faults to failures

The vocabulary of computer scientists is rich with terms for naming the unwanted: bug, error, defect, fault, failure,
etc. are commonly used without great care. However, in a discussion on testing it is necessary to differentiate
between them in order to prevent confusion. Here, we adopt the standard terminology as recommended by the
Institute of Electronics and Electrical Engineers (IEEE) Computer Society [Soc90]:

Mutation testing in UTP 39

Definition 3.1 An error is made by somebody. A good synonym is mistake. When people make mistakes during
coding, we call these mistakes bugs. A fault is a representation of an error. As such it is the result of an error. A
failure is a wrong behaviour caused by a fault. A failure occurs when a fault executes.

In this work we aim to design test cases on the basis of possible errors during the design of software. Examples
of such errors might be a missing or misunderstood requirement, a wrongly implemented requirement, or simple
coding errors. In order to represent these errors we will introduce faults into formal design descriptions. The faults
will be introduced by deliberately changing a design, resulting in wrong behaviour possibly causing a failure.

What distinguishes the following theory from other testing theories is the fact that we define all test artifacts
as designs. This means that we give test cases, test suites and even test equivalence classes a uniform (predicative)
semantics in UTP. The fundamental insight behind this approach is that all these artifacts represent descriptions
of a system to be built (or under test). They simply vary with respect to information content. A test case, for
example, can be seen as a specification of a system’s response to a single input. Consequently a test suite, being
a collection of test cases, can also be considered as a (partial) specification. The same holds for test equivalence
classes that represent a subset of a system’s behaviour. Viewing testing artifacts as designs results in a very simple
testing theory in which test cases, specifications and implementations can be easily related via the notion of
refinement. A consequence of this semantic interpretation is that test cases are actually abstractions of a system
specification. This seems often strange to people since a test case is experienced as something very concrete.
However, from the information content point of view a test case is perfectly abstract: only for a given stimulus
(input) the behaviour is defined. It is this limited information that makes test cases so easily understandable.

3.2. Test cases

As mentioned, we take the point of view that test cases are specifications that define for a given input the expected
output. Consequently, we define test cases as a sub-theory of designs.

Definition 3.2 (Test Case, deterministic) Let i be an input vector and o be an expected output vector, both being
lists of values, having the same length as the variable lists v and v ′, respectively. Then, a test case T is defined
being a design predicate:

T (i , o) �df v � i � v ′ � o

�
Sometimes test cases have to take non-determinism into account, therefore we define non-deterministic test cases
as follows:

Definition 3.3 (Test Case, non-deterministic)

T�(i , c) �df v � i � c(v ′)

where c is a condition on the after state space defining the set of expected outcomes. �
Obviously, non-deterministic test cases having the same input can be compared regarding their strength. Thus,
we have

Theorem 3.1

[T�(i , c) ⇒ T�(i , d)] iff [c ⇒ d]

�
This shows that non-deterministic test cases form a partial order. If we fix the input i the test case T�(i , true) is the
smallest test case and T�(i , false) the largest. However, the question arises as to how to interpret these limits, and
if they are useful as test cases. T�(i , true) is a test case without any output prediction. It is useful in Robustness
Testing, where i lies outside the specified input domain, or where one is just interested in exploring the reactions
to different inputs. T�(i , false) is equivalent to ¬(ok ∧ v � i) and means that such programs cannot be started
with input i ; such tests are infeasible.

Definition 3.4 (Explorative Test Case)

T?(i) �df T�(i , true)

�

40 B. K. Aichernig, H. Jifeng

Definition 3.5 (Infeasible Test Case)

T∅(i) �df T�(i , false)

�
We get the following order of test cases:

Theorem 3.2 (Order of Test Cases) For a given input vector i , output vector o and condition c

⊥ � T?(i) � T�(i , c) � T (i , o) � T∅(i) � �, provided c(o) holds.

�
A collection of test cases is called a test suite and is defined as the least upper bound of its test cases:

Definition 3.6 (Test Suite) Given a set s of test cases t1, . . . , tn
TS (s) �df t1 � · · · � tn

�
The definition coincides with our intuition: an implementation has to pass all test cases in a test suite. In case of
contradicting test cases, this is impossible, which is expressed by the test suite being equal to magic (�).

From lattice theory it follows that adding test cases is refinement:

Theorem 3.3 Let T1, T2 be test cases of any type

Ti � T1 � T2, i ∈ {1, 2}
�

Given a program under test, we can talk about an exhaustive test suite, covering the whole input and output
domain.

Definition 3.7 (Exhaustive Test Suite) Let D be a design, its set of exhaustive test suites is defined as

TSexhaustive �df {TS (s) | TS (s) � D}
�

In this definition the notion of exhaustiveness is based on designs, not on the program under test. Thus, an
exhaustive test suite only needs to cover the defined (specified) input domain. The following theorem states this
more explicitly:

Theorem 3.4 Given a design D � p � Q and one of its exhaustive test suites tsexhaustive ∈ TSexhaustive

tsexhaustive � T?(i) � tsexhaustive , provided p(i) holds.

Proof. The proof uses the fact that test cases are designs. Therefore, lattice theory can be used.
tsexhaustive � T?(i) � {by definition of exhaustive test suites}

D � T?(i) � D
� {by lattice theory}

T?(i) � D
� {by definition of refinement and Theorem 2.2}

[v � i ⇒ p] ∧ [(v � i ∧ Q) ⇒ true]
� {since p(i) holds}

true
�

This theorem says that explorative test cases for specified behaviour do not add new information (test cases) to
the set of exhaustive test cases. Note however, that it might be useful to add explorative test cases with inputs
outside the precondition p for exploring the unspecified behaviour of a program.

The last theorem leads us to a more general observation: Adding an additional test case to an exhaustive test
suite is redundant.

Theorem 3.5 Given a design D and an exhaustive test suite tsexhaustive ∈ TSexhaustive . Furthermore, we have a
test case t � D expressing the fact that t has been derived from D . Then,

tsexhaustive � t � tsexhaustive

Mutation testing in UTP 41

Proof. The proof fully exploits the lattice properties of designs.
tsexhaustive � t � {by definition of exhaustive test suites}

D � t
� {by lattice theory, since t � D}

D
�

tsexhaustive
�

Having clarified the relations between different test cases, in the following, their relation to specifications and
implementations is rendered more precisely.

Previous work of the first author [Aic01b] has shown that refinement is the key to understand the relation
between test cases, specifications and implementations. Refinement is an observational order relation, usually used
for step-wise development from specifications to implementations, as well as to support substitution of software
components. Since we view test cases as (special form of) specification, it is obvious that a correct implementation
should refine its test cases. Thus, test cases are abstractions of an implementation, if and only if the implementation
passes the test cases. This view, can be lifted to the specification level. When test cases are properly derived from
a specification, then these test cases should be abstractions of the specification. Formally, we define:

Definition 3.8 Let T be a test suite, S a specification, and I an implementation, all being designs, and

T � S � I

we define

• T as a correct test suite with respect to S ,
• all test cases in T as correct test cases with respect to S ,
• implementation I passes a test suite (test case) T ,
• implementation I conforms to specification S .2 �
The following theorem makes the relation of input and output explicit:

Theorem 3.6

T (i , o) � D iff v :� o � (v :� i ; D)
T�(i , c) � D iff c(v ′) � (v :� i ; D)

�
So far the discussion has focused on correctness, thus when implementations are passing the test cases.

However, the aim of testing is to find faults. In the following, we concentrate on faults and discuss how they are
modelled in our theory of testing, leading to a fault-based testing strategy.

3.3. Faults

According to Definition 3.1, faults represent errors. These errors can be introduced during the whole development
process in all artifacts created. Consequently, faults appear on different levels of abstraction in the refinement
hierarchy ranging from requirements to implementations. Obviously, early introduced faults are the most danger-
ous (and most expensive) ones, since they may be passed on during the development process; or formally, a faulty
design may be correctly refined into an implementation. Again, refinement is the central notion in order to discuss
the roles and consequences of certain faults and design predicates are most suitable for representing faults.

Definition 3.9 (Faulty Design) Let D be a design, and Dm its mutated version, meaning that Dm has been
produced by slightly altering D . Furthermore, let the mutation represent a fault model. Then, the mutated design
Dm is defined to be a faulty design (or a faulty mutation) of D , if

D �� Dm

(or ¬(D � Dm)). �

2 In testing, refinement between a specification and an implementation under test is called conformance.

42 B. K. Aichernig, H. Jifeng

Not all mutations (changes) of a design lead to observable failures. In mutation testing, mutants that behave
equivalent to the original are called equivalent mutants. These mutants are excluded from the set of faulty designs.
Strictly speaking, equivalent mutants are not observational equivalent and, therefore should be named refining mu-
tants. They may produce additional observations outside the precondition of the original design D . However, since
we ignore test cases outside the precondition of the original design, this additional behaviour cannot be detected
by testing. Hence, we stick to the common notion of equivalent mutant keeping in mind its refinement semantics.

4. Designing test cases

It is common knowledge that exhaustive testing of software cannot be achieved in general. Therefore, the essential
question of testing is the selection of adequate test cases. What is considered being adequate depends highly
on the assumptions made—the test hypothesis. Typical types of test hypotheses are regularity and uniformity
hypotheses. Example of the former is the assumption that if a sorting algorithm works for sequences up to 10
entries, it will also work for more; example of the latter is the assumption that certain input (or output) domains
form equivalence partitions, and that consequently only one test case per partition is sufficient. In general, the
stronger the hypothesis the fewer test cases are necessary.

The test hypothesis is closely related to the notion of test coverage. It defines a unit to measure the adequacy of a
set of test cases based on a test hypothesis. Traditionally, test coverage has been defined based on program text, like
statement, branch, and data-flow coverage. For example, aiming for statement coverage is based on the uniformity
hypothesis that it is sufficient to execute every statement in a program once—a rather strong assumption.

Here, we take a fault-based approach: test cases will be designed according to their ability to detect anticipated
faults.

4.1. Fault-based testing

In fault-based testing a test designer does not focus on a particular coverage of a program or its specification,
but on concrete faults that should be detected. The focus on possible faults enables a tester to incorporate his
expertise in both the application domain and the particular system under test. In testing the security or safety of
a system typically a fault-based test design strategy is applied.

Perhaps, the most well-known fault-based strategy is mutation testing, where faults are modelled as changes
in the program text. Mutation testing has been introduced by Hamlet [Ham77] and DeMillo et al. [DLS78].
Often it is used as a means of assessing test suites. When a program passes all tests in a suite, mutant programs
are generated by introducing small errors into the source code of the program under test. The suite is assessed
in terms of how many mutants it distinguishes from the original program. If some mutants pass the test suite,
additional test cases are designed until all mutants that reflect errors can be distinguished. The number of mutant
programs to be generated is defined by a collection of mutant operators that represent typical errors made by
programmers. A hypothesis of this technique is that programmers only make small errors.

In previous work [Aic01a, Aic03] we have extended mutation testing to the notion of contracts in Back and
von Wright’s refinement calculus [BvW98]. In this section, we first translate these results to the theory of designs.
Then, as a new contribution we provide a more constructive rule for designing fault-based test cases.

First, the following theorem links the existence of non-passing (or incorrect) tests to faulty designs.

Theorem 4.1 Given a design D , and a faulty design Dm , then there exists a test case t , with t � D , such that
t �� Dm .

Proof. Assume that such a test case does not exist and for all test cases t � D also t � Dm holds. Hence, for all
test cases ti in an exhaustive test suite tsexhaustive � t1 � · · · � tn of D , also ti � Dm holds. Given the fact [HH98]
that for any design S

Mutation testing in UTP 43

t1 � · · · � tn � S iff ∀ i • ti � S

holds, it follows that

tsexhaustive � Dm

By definition of exhaustive test suites (Definition 3.7) we have tsexhaustive � D , hence it follows that

D � Dm

This is a contradiction to our assumption that Dm is a faulty design (see Definition 3.9). Consequently, the
theorem holds. �
Finding such a test case t is the central strategy in fault-based testing. For example, in classical mutation testing,
D is a program and Dm a mutant of D . Then, if the mutation in Dm represents a fault, a test case t should be
included to detect the fault. Consequently, we can define a fault-detecting test case as follows:

Definition 4.1 (Fault-detecting Test Case) Let t be either a deterministic or non-deterministic input-output test
case. Furthermore, D is a design and Dm its faulty version. Then, t is a fault-detecting test case when

(t � D) and (t �� Dm)

We say that a fault-detecting test case detects the fault in Dm . Alternatively we can say that the test case distin-
guishes D and Dm . In the context of mutation testing, one says that t kills the mutant Dm . �
It is important to point out that in case of a non-deterministic Dm , there is no guarantee that the fault-detecting
test case will definitely kill the mutant. The mutant might always produce the output consistent with the test case.
However, the test case ensures that whenever a wrong output is produced this will be detected. This is a general
problem of testing non-deterministic programs.

We also want to remind the reader that our definitions solely rely on the lattice properties of designs. Therefore,
our fault-detecting testing strategy scales up to other lattice-based test models as long as an appropriate refinement
definition is used. More precisely, this means that the refinement notation must preserve the same algebraic laws.
It is this lattice structure that enabled us to translate our previous results into the theory of designs. In [Aic03] we
came to the same conclusions in a predicate transformer semantics, with refinement defined in terms of weakest
preconditions.

The presented definition of a fault-detecting test case, able to detect a certain fault, presents a property that
could be exploited by constraint solvers to search for a solution of such a test case in a finite domain. However,
although feasible in principle, it is not the most efficient way to find such test cases. The reason is that the
definition, because of its generality, does not exploit the refinement definition in the concrete test model. In the
following we present a more constructive way to generate test cases for designs.

4.2. Fault-detecting test equivalence classes

A common technique in test case generation is equivalence class testing—the partitioning of the input domain
(or output range) into equivalence classes (see, e.g. [Bei90, Jor02]). The motivation is the reduction of test cases,
by identifying equivalently behaving sets of inputs. The rationale behind this strategy is a uniformity hypothesis
assuming an equivalence relation over the behaviour of a program.

A popular equivalence class testing approach regarding formal specification is DNF partitioning—the rewriting
of a formal specification into its disjunctive normal form (see, e.g. [DF93, Sto93, HNS97, BBH02]). Usually DNF
partitioning is applied to relational specifications, resulting in disjoint partitions of the relations (note that disjoint-
ness of the input domain is not guaranteed in DNF partitioning). We call such relational partitions test equivalence
classes. In general for a test equivalence class t� and its associated design D , refinement holds: t� � D .

Definition 4.2 [Test Equivalence Class] Given a design D � (p � Q), we define a test equivalence class T
∼

for
testing D as a design of form T

∼
� d⊥; D such that [d ⇒ p]. The condition d is called the domain of the test

equivalence class. �
The definition makes use of the assertion operator b⊥ �df true � ((v � v ′) � b � ⊥), leading to a design which
has no effect on variables v if the condition holds (skip), and behaves like abort (non-termination) otherwise.

44 B. K. Aichernig, H. Jifeng

Note that here a test equivalence class is a design denoting an input-output relation. It is defined via a predicate
d that itself represents an equivalence class over input values. Given the definitions above a design is obviously a
refinement of an associated test equivalence class:

Theorem 4.2 Given a design D � p � Q and one of its equivalence classes. Then,

T
∼

� D

Proof. The proof uses the fact that an assertion in front of a design behaves like a precondition.
T

∼
� d⊥; D
� (d ∧ p) � Q
⇐ p � Q
� D

�

Obviously, DNF partitioning can be applied to design predicates. However, in the following we focus on fault-
detecting test equivalence classes. This is a test equivalence class where all test inputs are able to detect a certain
kind of error.

Definition 4.3 (Representative Test Case) A test case t � T�(i , c) is a representative test case of a test equivalence
class T

∼
� d⊥; D , with D � p � Q , if and only if

d (i) ∧ p(i) ∧ [Q(i) ≡ c]

�

This definition ensures that the output condition of a representative test case is not weaker than the test equivalence
class specifies.

The following theorem provides an explicit construction of a test equivalence class that represents a set of
test cases that are able to detect a particular fault in a design. The rational behind this construction is the fact
that, for a test case be able to distinguish a design D from its faulty sibling Dm , refinement between the two must
not hold. Furthermore, for designs one may observe two places (cases) where refinement may be violated, the
precondition and the postcondition. The domain d of T

∼
represents these two classes of test inputs. The first

class are test inputs that work for the correct design, but cause the faulty design to abort. The second class are
the test inputs which will produce different output values.

Theorem 4.3 (Fault-detecting Equivalence Class) Given a design D � p � Q and its faulty design Dm � pm �
Qm with D �� Dm . For simplicity, we assume that Q ≡ (p ⇒ Q). Then every representative test case of the test
equivalence class

T
∼

�df d⊥; D , with d � ¬pm ∨ ∃v ′ • (Qm ∧ ¬Q)

is able to detect the fault in Dm .

Proof. We first show that a representative test case t � T�(i , c) is a correct test case with respect to D :
t � D �

[(v � i) ⇒ p] ∧ [((v � i) ∧ Q) ⇒ c]
� {since p(i) holds by Definition 4.3}

true ∧ [((v � i) ∧ Q) ⇒ c]
� {since [Q(i) ≡ c] holds by Definition 4.3}

true ∧ true
�

true
Next, we prove that a representative test case t covers the fault in the mutant t �� Dm : From the definition of

the test equivalence class, we see that we have two cases for t .

Mutation testing in UTP 45

Case 1 t � T�(i , c) and (¬pm)(i):
t �� Dm �

¬[(v � i) ⇒ pm] ∨ ¬[((v � i) ∧ Qm) ⇒ c]
�

∃ v • ((v � i) ∧ ¬pm) ∨ ∃ v , v ′ • ((v � i) ∧ Qm ∧ ¬c)
� {i is a witness to 1st. disjunct, since pm (i) holds}

true ∨ ∃ v , v ′ • ((v � i) ∧ Qm ∧ ¬c)
�

true
Case 2 t � T�(i , c) and (∃v ′ • (Qm ∧ ¬Q))(i):

t �� Dm �
¬[(v � i) ⇒ pm] ∨ ¬[((v � i) ∧ Qm) ⇒ c]

�
∃ v • ((v � i) ∧ ¬pm) ∨ ∃ v , v ′ • ((v � i) ∧ Qm ∧ ¬c)

� {by definition of the representative test case}
∃ v • ((v � i) ∧ ¬pm) ∨ ∃ v , v ′ • ((v � i) ∧ Qm ∧ ¬Q(i))

� {t is a witness to 2nd disjunct}
∃ v • ((v � i) ∧ ¬pm) ∨ true

�
true

�

4.3. Tool support

Nothing is as practical as a good theory. Hence, based on the presented theory we are currently working on
fault-based test case generators. The first prototype tool we have developed in our group is a test case generator
for the Object Constraint Language OCL. Here, the user either introduces faults interactively via a GUI or uses
a set of standard mutation operators to generate mutant specifications automatically. The tool generates one test
case out of the test equivalence class that will detect the error.

The theoretical foundation of the tool is Theorem 4.3. The automation exploits the fact that we are interested
in non-refinement. Thus, instead of showing refinement where we need to demonstrate that the implication holds
for all possible observations, here the existence of one (counter)example is sufficient. Hence, the problem of
finding a test case can be represented as a constraint satisfaction problem (CSP).

A CSP consists of a finite set of variables and a set of constraints. Each variable is associated with a set of
possible values, known as its domain. A constraint is a relation defined on some subset of these variables and
denotes valid combinations of their values. A solution to a constraint satisfaction problem is an assignment of
a value to each variable from its domain, such that all the constraints are satisfied. Formally, the conjunction of
these constraints forms a predicate for which a solution should be found.

We have developed such a constraint solver that searches for an input solution satisfying the domain of the
fault-detecting test equivalence class. Here the CSP variables are the observation variables of an OCL specification.
The constraints are obtained by applying Theorem 4.3 to the original and mutated specification. If an input able
to kill the mutant has been found, then the complete test case is produced by generating the expected (set of)
output values. Note that constraint solving operates on finite domains. Hence, in case the tool cannot find a test
case it is unknown if the mutant refines the original or if a fault outside the search space exists. We say that the
mutant refines the original specification in the context of the finite variable domains.

In order to compare our fault-based testing approach to more conventional techniques, the tool is also able
to generate test cases using DNF partitioning. In this classical testing strategy, first, the disjunctive normal form
(DNF) of a formal specification is generated and then, one representative test case from each disjunct is selected
[DF93].

The tool is able to generate test cases for the triangle example above (Example 1.1).

46 B. K. Aichernig, H. Jifeng

Fig. 2. A triangle with mutated if-statements

Fig. 3. Two more mutations of the triangle specification

Example 4.1 The specification of Fig. 1 can be mutated in several ways. In addition to variable name mutations as
shown in Fig. 1, a designer might get the order of the nested if-statements wrong. This is
modelled in Fig. 2. The two test cases generated by the tool are

a � 1, b � 2, c � 2, result � “isosceles”

for the mutant in Fig. 1 and

a � 1, b � 1, c � 1, result � “equilateral”

for the mutant in Fig. 2. One can easily see that each test case is able to distinguish its mutant from the original,
since the mutants would produce different results. Hence, these test cases are sufficient to detect such faults in
any implementation of Ttype.

Alternatively, by choosing the DNF partitioning strategy the tool returns five test cases, one for each partition.
Note that the tool partitions the isosceles case into three cases:

a � 2, b � 2, c � 1, result � isosceles
a � 2, b � 1, c � 2, result � isosceles
a � 1, b � 2, c � 2, result � isosceles
a � 2, b � 3, c � 4, result � scalene
a � 1, b � 1, c � 1, result � equilateral

Analysing these test cases generated by the DNF partitioning strategy one observes that the five test cases
are also able to detect the faults presented in Fig. 2. Therefore, one could argue that the fault-based test cases do
not add further value. However, in general DNF partitioning may not detect all possible faults. Consider the two
additional mutated specifications shown in Fig. 3. One can easily see that the five DNF test cases are not able
to reveal these faults, but the fault-based strategy generates precisely the following test cases that are needed to
reveal the faults in Fig. 3:

a � 2, b � 2, c � 2, result � “equilateral”

covers the left hand mutant, and

a � 3, b � 2, c � 4, result � “scalene”

covers the mutant on the right hand side. It is also possible to integrate the DNF approach and ask the tool

Mutation testing in UTP 47

to generate all fault-based test cases for every domain partition. Then, the additional test case

a � 1, b � 3, c � 3, result � “isosceles”

for the mutant on the right hand side is returned as well. �

This example, although trivial, demonstrates the automation of our approach to software testing: Instead
of focusing on covering the structure of a specification, which might be rather different to the structure of the
implementation, one focuses on possible faults. Of course, the kind of faults one is able to model depend on the
level of abstraction of the specification—obviously one can only test for faults that can be anticipated. It should
be added that the test case generator also helps in understanding the specification. Experimenting with different
mutations and generating fault-detecting test cases for them is a valuable vehicle for validation. For further details
of the tool’s search algorithm we refer to [AS05].

5. Testing for program faults

So far our discussion on testing has focused on the semantic model of designs. In this section we turn from
semantics to syntax. The motivation is to restrict ourselves to a subclass of designs that are expressible, or at
least implementable, in a certain programming language. Thus, we define a program as a predicate expressed in
the limited notations (syntax) of a programming language. From the predicate semantics of the programming
language operators, algebraic laws can be derived (see [HH98]). In the following, we will use this algebra of
programs as a means to reason about faults in a program on a purely syntactical basis. The result is a test case
generation algorithm for fault-based testing that works solely on the syntax of a programming language. We
define the syntax as follows:

〈program〉 ::� true
| 〈variable list〉 :� 〈expression list〉
| 〈program〉 � 〈Boolean Expression〉 � 〈program〉
| 〈program〉 ; 〈program〉
| 〈program〉 � 〈program〉
| 〈recursive identifier〉
| µ 〈recursive identifier〉 • 〈program〉

The semantics of the operators follows the definitions in Sect. 2.3. The recursive statement using the least fix-point
operator µ will be discussed separately in Sect. 5.4.

5.1. Finite normal form

Algebraic laws, expressing familiar properties of the operators in the language, can be used to reduce every
expression in the restricted notation to an even more restricted notation, called a normal form. Normal forms
play an essential role in an algebra of programs: They can be used to compare two programs, as well as to study
properties of existing semantics given by equations.

Our idea is to use a normal form to decide if two programs, the original one and the faulty one (also called the
mutant) can be distinguished by a test case. When the normal forms of both are equivalent, then the error does
not lead to an (observable) fault. This solves the problem of equivalent mutants in mutation testing. Furthermore,
the normal form will be used to derive test equivalence classes on a purely algebraic (syntactic) basis. Our normal
form has been designed for this purpose: In contrast to the normal form in [HH98], we push the conditions
outwards. The proofs of the new laws are given in the Appendix. The following assignment normal form is taken
from [HH98].

Definition 5.1 (Assignment Normal Form) The normal form for assignments is the total assignment, in which all
the variables of the program appear on the left hand side in some standard order.

x , y, . . . , z :� e, f , . . . , g

The assignments v :� g or v :� h(v) will be used to express the total assignment; thus the vector variable v is
the list of all variables and g and h denote lists of expressions. �

48 B. K. Aichernig, H. Jifeng

A non-total assignment can be transformed to a total assignment by (1) addition of identity assignments
(a, . . . :� a, . . .) (2) reordering of the variables with their associated expressions. The law that eliminates
sequential composition between normal forms is

(v :� g ; v :� h(v)) � (v :� h(g)) (L1)

where h(g) is calculated by substituting the expressions in g for the corresponding variables in v (see [HH98]).
Since our language includes non-determinism, we translate conditionals to non-deterministic choices of

guarded commands.

Theorem 5.1 (Conditional Elimination)

(P � c � Q) � (c ∧ P) � (¬c ∧ Q)

Proof. By definition of conditional and non-deterministic choice. �
With this elimination rule at hand we are able to define a non-deterministic normal form.

Definition 5.2 (Non-deterministic Normal Form) A non-deterministic normal form is defined to be a non-
deterministic choice of guarded total assignments.

(g1 ∧ v :� f) � (g2 ∧ v :� g) � · · · � (gn ∧ v :� h)

with gi being conditions such that

(g1 ∨ · · · ∨ gn) � true

and ok , ok ′ do not occur in gi . Let A be a set of guarded total assignments, then we write the normal form as�
A. �

The previous assignment normal form can be easily expressed in this new normal form as disjunction over the
unit set

v :� g �
�

{(true ∧ v :� g)}
The easiest operators to eliminate is disjunction itself (see [HH98])

(�
A

)
�

(�
B

)
�

�
(A ∪ B)} (L2)

and the conditional(�
A

)
� d �

(�
B

)
�

(�
{((d ∧ b) ∧ P) | (b ∧ P) ∈ A}

)
�

(�
{((¬d ∧ c) ∧ Q) | (c ∧ Q) ∈ B}

)
(L3)

is eliminated by splitting each guarded assignment in two cases (proof in Appendix). Note, this law is the only
one introducing non-trivial (unequal true) guards when transforming a program to normal form. Hence, all
non-trivial guards appear in their non-negated and negated form, ensuring that the disjunction of all guards is
true.

Sequential composition is reduced by
(�

A
)

;
(�

B
)

�
�

{(b(v) ∧ c(f (v))) ∧ v :� f ; v :� g | (b ∧ v :� f) ∈ A ∧ (c ∧ v :� g) ∈ B} (L4)

Here, all non-deterministic combinations of sequential composition are formed (proof in Appendix).
The following lemma shows that our non-deterministic normal form is a design, given the fact that total

assignments are designs.

Lemma 5.1

�

i

(gi ∧ (pi � Qi)) �
(∧

i

(gi ⇒ pi)

)
�

(∨
i

(gi ∧ Qi)

)
, provided

∨
i

gi � true

Proof. See Appendix. �
The program constant true is not an assignment and cannot in general be expressed as a finite disjunction of

guarded assignments. Its introduction into the language requires a new normal form.

Mutation testing in UTP 49

Definition 5.3 (Non-termination Normal Form) A Non-termination Normal Form is a program represented as a
disjunction

b ∨ P

where b is a condition for non-termination not containing ok , ok ′, and P a non-deterministic normal form. �
Any previous normal form P that terminates can be expressed as

false ∨ P

and the constant true as

true ∨ v :� v

The other operators between the new normal forms can be eliminated by the following laws

(b ∨ P) � (c ∨ Q) � (b ∨ c) ∨ (P � Q) (L5)

(b ∨ P) � d � (c ∨ Q) � ((b ∧ d) ∨ (c ∧ ¬d)) ∨ (P � d � Q) (L6)

(b ∨ P); (c ∨ Q) � (b ∨ (P ; c)) ∨ (P ; Q) (L7)

(Laws L5 and L7 are taken from [HH98]; The proof of Law L6 is in the Appendix.) The occurrences of each
operator on the right hand side can be further reduced by the laws of the previous sections. Again for reducing
(P ; c) an additional law is needed; this time for the previous non-deterministic normal form (proof in Appendix).

(�
A

)
; c �

∨
{(g ∧ (P ; c)) | (g ∧ P) ∈ A} (L8)

The algebraic laws above allow any non-recursive program in our language to be reduced to a finite normal
form

b ∨
�

i

{(gi ∧ v :� ei) | 1 ≤ i ≤ n}

The following lemmas show that our non-termination normal form is a design, given the fact that the non-
deterministic normal form is a design

Lemma 5.2

b ∨ (p � Q) � (¬b ∧ p) � Q

Proof. See Appendix. �
Lemma 5.3

b ∨
�

i

{(gi ∧ v :� ei) | 1 ≤ i ≤ n} �
(

¬b ∧
∧
i

(gi ⇒ wf (ei))

)
�

(∨
i

(gi ∧ v ′ � ei)

)
, provided

∨
i

gi � true

Proof. Follows directly from Lemma 5.1 and Lemma 5.2 and the definition of assignments. �
Next, it is shown how this normal form facilitates the generation of fault-detecting test cases. The technique

is to introduce faults into the normal form and then search for test cases that are able to detect these faults.

5.2. Introducing faults

In the discussion so far, we have always assumed that faults are observable, i.e. D �� Dm . However, a well-known
practical problem is the introduction of such faults that do not lead to refinement. In mutation testing of programs
this is called the problem of equivalent mutants.

The problem of equivalent mutants can be simplified by reducing any non-recursive program into our finite
normal form. More precisely, both the original program and the mutated one (the mutant) are transformed into
normal form. Then, refinement can be checked by the following laws.

50 B. K. Aichernig, H. Jifeng

For assignments that are deterministic, the question of refinement becomes a simple question of equality.
Two assignment normal forms are equal, if and only if all the expressions in the total assignment are equal (see
[HH98]).

(v :� g) � (v :� h) iff [g � h] (L9)

The laws which permit detection of refinement mutants for the non-deterministic normal form are:

R �
(�

A
)

iff ∀P : P ∈ A • (R � P) (L10)

((g1 ∧ P1) � · · · � (gn ∧ Pn)) � (b ∧ Q) iff [∃ i • ((gi ∧ Pi) ⇐ (b ∧ Q))] (L11)

[(g ∧ v :� f) ⇐ (b ∧ v :� h)] iff [b ⇒ (g ∧ (f � h))] (L12)

The first law (see [HH98]) enables a non-deterministic normal form to be split into its component guarded
assignments, which are then decided individually by the second law (proofs of L11, L12 in Appendix). Note that
L12 is not decidable, in general. However, a combination of symbolic simplifiers and constraint solvers may deal
with this reduced problem in practice.

Example 5.1 Consider the following example of a program Min for computing the minimum of two numbers.

Min �df z :� x � x ≤ y � z :� y

In mutation testing, the assumption is made that programmers make small errors. A common error is to mix
operators. The mutant Min1 models such an error.

Min1 �df z :� x � x ≥ y � z :� y

By means of the normal form it is now possible to show that this mutation represents a fault. Thus, we have to
prove that

Min �� Min1

Proof. In the following derivations, we will skip trivial simplification steps.

Min � x , y, z :� x , y, x � x ≤ y � x , y, z :� x , y, y {adding identity assignments}
� ((x ≤ y) ∧ x , y, z :� x , y, x) � ¬(x ≤ y) ∧ x , y, z :� x , y, y) {by L3}

Next, we reduce Min1 to normal form

Min1 � x , y, z :� x , y, x � x ≥ y � x , y, z :� x , y, y {adding identity assignments}
� ((x ≥ y) ∧ x , y, z :� x , y, x) � (¬(x ≥ y) ∧ x , y, z :� x , y, y) {by L3}

Assume Min � Min1 then according to L10 we must show that the two refinements hold

((x ≤ y) ∧ x , y, z :� x , y, x) � ¬(x ≤ y) ∧ x , y, z :� x , y, y) � (x ≥ y) ∧ x , y, z :� x , y, x (Case 1)

((x ≤ y) ∧ x , y, z :� x , y, x) � ¬(x ≤ y) ∧ x , y, z :� x , y, y) � ¬(x ≥ y) ∧ x , y, z :� x , y, y (Case 2)

We start checking the cases with law L11 and L12.

Case 1 iff [((x ≤ y ∧ (x , y, x) :� (x , y, x)) ⇐ (x ≥ y ∧ (x , y, x) :� (x , y, x))) {by L11}
∨
((¬(x ≤ y) ∧ (x , y, x) :� (x , y, y)) ⇐ (x ≥ y ∧ (x , y, x) :� (x , y, y)))]

� [(x ≥ y ⇒ (x ≤ y ∧ true)) {by L12}
∨
(x ≥ y ⇒ (x > y ∧ x � y))]

� [(x ≥ y ⇒ x ≤ y) ∨ (x ≥ y ⇒ false)]
� [x ≤ y ∨ x < y]
� false

It follows that refinement does not hold and that the mutation introduces an observable fault. �

Mutation testing in UTP 51

The next example demonstrates the detection of an equivalent mutant.

Example 5.2 Consider again the program Min for computing the minimum of two numbers of Example 5.1.
Another mutation regarding the comparison operator is produced

Min2 �df z :� x � x < y � z :� y

By means of normal form reduction it is now possible to show that this mutation does not represent a fault. Thus,
we show that

Min � Min2

Proof. Since the normal form of Min has already been computed, we start with normalising Min2.

Min2 � x , y, z :� x , y, x � x < y � x , y, z :� x , y, y {adding identity assignments}
� ((x < y) ∧ x , y, z :� x , y, x) � (¬(x < y) ∧ x , y, z :� x , y, y) {by L3}

Again, two refinements must hold according to L10

((x ≤ y) ∧ x , y, z :� x , y, x) � ¬(x ≤ y) ∧ x , y, z :� x , y, y) � (x < y) ∧ x , y, z :� x , y, x (Case 1)

((x ≤ y) ∧ x , y, z :� x , y, x) � ¬(x ≤ y) ∧ x , y, z :� x , y, y) � ¬(x < y) ∧ x , y, z :� x , y, y (Case 2)

We check the cases

Case 1 iff [((x ≤ y ∧ (x , y, x) :� (x , y, x)) ⇐ ((x < y) ∧ x , y, z :� x , y, x)) {by L11}
∨
((¬(x ≤ y) ∧ (x , y, x) :� (x , y, y)) ⇐ ((x < y) ∧ x , y, z :� x , y, x))]

� [x < y ⇒ x ≤ y {by L12}
∨
x < y ⇒ (x > y ∧ x � y)]

� [x ≥ y ∨ x ≤ y
∨
x ≥ y ∨ false]

� [true ∨ x ≥ y ∨ false]
� true

Case 2 iff [((x ≤ y ∧ (x , y, x) :� (x , y, x)) ⇐ (¬(x < y) ∧ x , y, z :� x , y, y)) {by L11}
∨
((¬(x ≤ y) ∧ (x , y, x) :� (x , y, y)) ⇐ (¬(x < y) ∧ x , y, z :� x , y, y))]

� [x ≥ y ⇒ (x ≤ y ∧ x � y) {by L12}
∨
x ≥ y ⇒ x > y]

� [x < y ∨ x � y {by L12}
∨
x < y ∨ x > y]

� [x ≤ y ∨ x > y]
� true

Since, both cases are true, we have refinement and the error made, represented by the mutation, cannot be detected.
Such, mutations must be excluded from the fault-detecting test case generation process. �

These examples demonstrate how normal forms can be used to exclude equivalent mutants from the test case
generation process. In the following, we are going to extend the laws to cover non-termination as well.

52 B. K. Aichernig, H. Jifeng

For non-termination normal form the laws for testing the refinement are

(c ∨ Q) � (b ∨ P) iff [b ⇒ c] and (c ∨ Q) � P (L13)
(c ∨ (g1 ∧ P1) � · · · � (gn ∧ Pn)) � (b ∧ Q) iff [c ∨ (∃ i • (gi ∧ Pi) ⇐ (b ∧ Q))] (L14)

(Law L13 is taken from [HH98]; proof of L14 in Appendix). Again an example serves to illustrate the rules for
non-termination.

Example 5.3 Let us again consider the simple problem of returning the minimum of two numbers. If both inputs
are natural numbers, the following program computes the minimum of x , y in x .

MinNat �df (x < 0 ∨ y < 0) ∨ (x :� x � (x − y) < 0 � x :� y)

First, an equivalent mutant is produced that can be detected by a derivation on the normal form

MinNat1 �df (x < 0 ∨ y < 0) ∨ (x :� x � (x − y) < 1 � x :� y)

Proof. First, both normal forms are derived.

MinNat � (x < 0 ∨ y < 0) ∨ ((x , y :� x , y) � (x − y) < 0 � (x , y :� y, y))
� (x < 0 ∨ y < 0) ∨ (((x − y) < 0 ∧ x , y :� x , y) � (¬((x − y) < 0) ∧ x , y :� y, y))

MinNat1 � (x < 0 ∨ y < 0) ∨ (((x − y) < 1 ∧ x , y :� x , y) � (¬((x − y) < 1) ∧ x , y :� y, y))

Since, both have the same non-termination condition, we have to check according to law L13 that

MinNat � ((x − y) < 1 ∧ x , y :� x , y) � (¬((x − y) < 1) ∧ x , y :� y, y)

According to law L10 we have to show two refinements

MinNat � ((x − y) < 1 ∧ x , y :� x , y) (Case 1)
MinNat � (¬((x − y) < 1) ∧ x , y :� y, y) (Case 2)

We verify the cases

Case 1 iff [(x < 0 ∨ y < 0) {by L14}
∨
(((x − y) < 0 ∧ x , y :� x , y) ⇐ ((x − y) < 1 ∧ x , y :� x , y))
∨
((¬((x − y) < 0) ∧ x , y :� y, y) ⇐ ((x − y) < 1 ∧ x , y :� x , y))]

� [(x < 0 ∨ y < 0) {by L12}
∨
((x − y) < 1) ⇒ (x − y < 0 ∧ true)
∨
((x − y) < 1) ⇒ (x − y ≥ 0 ∧ x � y)]

� [(x < 0 ∨ y < 0) {by L12}
∨
((x − y) ≥ 1) ∨ (x − y < 0)
∨
((x − y) ≥ 1) ∨ x � y]

� [(x < 0 ∨ y < 0)
∨
x > y ∨ x < y ∨ x � y]

� true

The fact that Case 2 holds can be shown by a similar derivation. �
It has been shown that the presented refinement laws can be used to automatically detect equivalent mutants

for non-recursive programs. Next, test case generation is discussed.

Mutation testing in UTP 53

5.3. Test case generation

The presented normal form has been developed to facilitate the automatic generation of test cases that are able
to detect anticipated faults. Above, it has been demonstrated that algebraic refinement laws solve the problem of
equivalent mutants that have an alternation not representing a fault. The above laws also build the foundation
of our test case generation process. The following theorem defines the test equivalence class that will detect an
error.

Theorem 5.2 Let P � (p � Q) be a program and Pm � (pm � Qm) a faulty mutation of this program with
normal forms as follows

P � c ∨
�

j

{(aj ∧ v :� fj) | 1 ≤ j ≤ m}

Pm � cm ∨
�

k

{(bk ∧ v :� hk) | 1 ≤ k ≤ n}

For simplicity, we assume the well-formedness of the total assignments (wf (fj) � wf (hk) � true). Then, every
representative test case of the test equivalence class

T
∼

�df d⊥; P , with d � (¬c ∧ cm) ∨
∨
k

(¬c ∧ bk ∧
∧
j

(¬aj ∨ (fj �� hk)))

is able to detect the fault in Dm .
Before presenting the formal proof, we present an informal explanation: In order to detect an error, the

domains of the test equivalence classes must contain these input values where refinement does not hold. We have
two cases of non-refinement: (1) Pm does not terminate but P does; (2) both are terminating but with different
results.

1. Those test cases have to be added where the mutant does not terminate, but the original program does. That
is when (¬c ∧ cm) holds.

2. In the terminating case, by the two laws L10 and L11, it follows that all combinations of guarded commands
must be tested regarding refinement of the original one by the mutated one. Those, where this refinement test
fails contribute to the test equivalence class. Law L12 tells us that refinement between two guarded commands
holds iff [bk ⇒ (aj ∧ (fj � hk))]. Negating this gives ∃v , v ′ • bk ∧ (¬aj ∨ (fj �� hk)). Since we are only
interested in test cases that terminate, we add the constraint ¬c. We see that this condition is at the heart of
our test domain. Since we have to show non-refinement, this must hold for all the non-deterministic choices
of P (

∧
j). Finally, each non-deterministic choice of Pm may contribute to non-refinement (

∨
k).

Proof. The formal proof uses Theorem 4.3 to derive the test domain d12 � d1∨d2. This is possible, since according
to Lemma 5.3 the normal forms represent designs: the postcondition is a non-deterministic choice of assignments
(restricted by guards), and the preconditions are the negated non-termination conditions c and cm .

d1 � {by Theorem 4.3}
¬pm

� {by Lemma 5.3}
¬(¬cm ∧ ∧

k (bk ⇒ wf (hk))))
� {by assumption that wf (hk) � true}

cm

54 B. K. Aichernig, H. Jifeng

d2 � {by Theorem 4.3}
∃v ′ • (Qm ∧ ¬Q)

� {by Lemma 5.3}
∃v ′ • ((

∨
k (bk ∧ v ′ � hk)) ∧ ¬(

∨
j (aj ∧ v ′ � fj)))

� {by de Morgan’s law}
∃v ′ • ((

∨
k (bk ∧ v ′ � hk)) ∧ ∧

j ¬(aj ∧ v ′ � fj))
� {by predicate calculus}

∃v ′ • (
∨

k (bk ∧ v ′ � hk ∧ ∧
j ¬(aj ∧ v ′ � fj)))

� {by predicate calculus}
∃v ′ • (

∨
k (bk ∧ ∧

j (v ′ � hk ∧ ¬(aj ∧ v ′ � fj))))
� {by de Morgan’s law}

∃v ′ • (
∨

k (bk ∧ ∧
j (v ′ � hk ∧ (¬aj ∨ v ′ �� fj))))

� {by distributive law}
∃v ′ • (

∨
k (bk ∧ ∧

j ((v ′ � hk ∧ ¬aj) ∨ (v ′ � hk ∧ v ′ �� fj))))
� {by equality of v ′ and hk }

∃v ′ • (
∨

k (bk ∧ ∧
j ((v ′ � hk ∧ ¬aj) ∨ (v ′ � hk ∧ hk �� fj))))

� {by simplification}
∃v ′ • (

∨
k (bk ∧ v ′ � hk ∧ ∧

j (¬aj ∨ hk �� fj)))
� {by one point rule of predicate calculus}∨

k (bk ∧ ∧
j (¬aj ∨ hk �� fj))

Thus,

T
∼

� d12
⊥ ; P � d12

⊥ ; (c ∨ Q) � (d12 ∧ ¬c)⊥; P � ((¬c ∧ d1) ∨ (¬c ∧ d2))⊥; P � d ; P

The last derivation on the test equivalence class shows that the test domain can be safely strengthened by ¬c due
to the termination condition c in P . �
Note, that in case of true non-determinism, which means some guards are true, detection of the errors can only
happen if the faulty part is chosen to be executed. Since, by definition of non-determinism a tester has no means
to influence this decision, it may go undetected for a while. However, under the assumption of a fair selection
policy, the fault will eventually be detected. Thus, when we say a test case (or its equivalence class) will detect an
error, we really mean it is able to do so over a period of time.

Example 5.4 Consider the program and its mutant in Example 5.1. According to Theorem 5.2 we have the fault-
detecting domain

d �
(¬false ∧ false) ∨ ∨

k∈{1,2}(¬false ∧ bk ∧ ∧
j∈{1,2}(¬aj ∨ (fj �� hk)))

�
(x ≥ y ∧ (x > y ∨ false) ∧ (x ≤ y ∨ x �� y))
∨
(x < y ∧ (x > y ∨ x �� y) ∧ (x ≤ y ∨ false))

�
(x ≥ y ∧ x > y ∧ x �� y) ∨ (x < y ∧ x �� y ∧ (x ≤ y)

�
x > y ∨ x < y

Note that the case where x � y has been correctly excluded from the domain of the test equivalence class, since
it is unable to distinguish the two versions of the program. �

5.4. Recursion

Both theory and intuition tell us that recursive programs cannot be represented as a finite normal form. The
degree of non-determinism of a recursion cannot be expressed by a finite disjunction, because it depends on
the initial state. Kleene’s Theorem tells us that the normal form of a recursive program is the least upper

Mutation testing in UTP 55

bound of an infinite series of program approximations
⊔

S 0,S 1, . . . where each approximation is a refinement
of its predecessor, thus S i � S i+1.

Theorem 5.3 (Kleene) If F is continuous then

µX • F (X) �
⊔
n

Fn (true)

where F 0(X) �df true, and Fn+1(X) �df F (Fn (X)) �
Operators that distribute through least upper bounds of descending chains are called continuous. Fortunately,
all operators in our language are continuous and, therefore, this normal form transformation can be applied.
Unfortunately, this infinite normal form can never be computed in its entirety; however, for each n, the finite
normal form can be readily computed. The normal form for our full programming language is, thus, defined as
follows

Definition 5.4 (Infinite Normal Form) An infinite normal form for recursive programs is a program theoretically
represented as least upper bound of descending chains of finite normal forms. Formally, it is of form

⊔
S with S � 〈(cn ∨ Qn) | n ∈ N〉

S being a descending chain of approximations and Q being a non-deterministic normal form, i.e. a disjunction
of guarded commands. �
For test case generation, again, refinement between the original and the mutant must be checked. Fortunately,
the following law from [HH98] tells us that we can decompose the problem.

(⊔
S

)
�

(⊔
T

)
iff ∀ i : i ∈ N • Si �

(⊔
T

)
(L15)

The central idea to deal with recursive programs in our test case generation approach is to approximate the
normal form of both the program and the mutant until non-refinement can be detected. For equivalent mutants
an upper limit n will determine when to stop the computations. Such a decision represents a test hypothesis (i.e.
a regularity hypothesis according to [GJ98]), where the tester assumes, that if n iterations did not reveal a fault,
an equivalent mutant has been produced.

An example shall illustrate the approximation.

Example 5.5 Assume that we want to find an index t pointing to the smallest element in an array A[1..n], where n
is the length of the array and n > 0. A program for finding such a minimum can be expressed in our programming
language as follows:

MIN �df k :� 2; t :� 1; µX • ((B ; X) � k ≤ n � k , t :� k , t)
B �df (t :� k ; k :� k + 1) � A[k] < A[t] � k :� k + 1

Since, the normal form of µX •F (X) is infinite and has to be approximated, we first convert F (X) into a (finite)
normal form.

F (X) � ((k ≤ n ∧ A[k] < A[t]) ∧ (k , t :� k + 1, k ; X))
�
((k ≤ n ∧ A[k] ≥ A[t]) ∧ (k , t :� k + 1, t ; X))
�
((k > n) ∧ k , t :� k , t)

Next, the first elements in the approximation chain are computed. According to Kleene’s theorem we have

S 1 �df F (true) � (k ≤ n) ∨ ((k > n) ∧ k , t :� k , t)

The first approximation describes the exact behaviour only if the iteration is not entered. The second
approximation describes the behaviour already more appropriately, taking one iteration into account.

56 B. K. Aichernig, H. Jifeng

Note how the non-termination condition gets stronger.

S 2 �df F (S 1) � (k + 1 ≤ n ∧ A[k] < A[t]) ∨ (((k ≤ n ∧ k + 1 > n ∧ A[k] < A[t]) ∧ (k , t :� k + 1, k))
�
(k + 1 ≤ n ∧ A[k] ≥ A[t]) ∨ ((k ≤ n ∧ k + 1 > n ∧ A[k] ≥ A[t]) ∧ (k , t :� k + 1, t))
�
(false) ∨ ((k > n) ∧ k , t :� k , t)

� (k < n) ∨
(((k � n ∧ A[k] < A[t]) ∧ (k , t :� k + 1, k))
�
((k � n ∧ A[k] ≥ A[t]) ∧ (k , t :� k + 1, t))
�
((k > n) ∧ k , t :� k , t))

The third approximation describes MIN up to two iterations, leading to more choices.

S 3 �df F (S 2) � (k + 1 < n) ∨
(((k + 1 � n ∧ A[k] < A[t] ∧ A[k + 1] < A[t]) ∧ (k , t :� k + 2, k + 1))
�

((k + 1 � n ∧ A[k] < A[t] ∧ A[k + 1] ≥ A[t]) ∧ (k , t :� k + 2, k))
�

((k + 1 � n ∧ A[k] ≥ A[t] ∧ A[k + 1] < A[t]) ∧ (k , t :� k + 2, k + 1))
�

((k + 1 � n ∧ A[k] ≥ A[t] ∧ A[k + 1] ≥ A[t]) ∧ (k , t :� k + 2, t))
�

((k � n ∧ A[k] < A[t]) ∧ (k , t :� k + 1, k))
�

((k � n ∧ A[k] ≥ A[t]) ∧ (k , t :� k + 1, t))
�

((k > n) ∧ k , t :� k , t)))

It can be seen from the first three approximations that our normal form approximations represent computation
paths as guarded commands. As the approximation progresses, more and more paths are included. Obviously,
the normal form approximations of the whole program, including the initialisations of k and t , can be easily
obtained by substituting 2 for k and 1 for t in S1,S2,

Next, we illustrate our fault-based testing technique, which first introduces a mutation, and then tries to
approximate the mutant until refinement does not hold. A common error is to get the loop termination condition
wrong. We can model this by the following mutant:

MIN1 �df k :� 2; t :� 1; µX • ((B ; X) � k < n � k , t :� k , t)

Its first approximation gives

S 1
1 �df F (true) � (k < n) ∨ ((k ≥ n) ∧ k , t :� k , t)

By applying Theorem 5.2 to find test cases that can distinguish the two first approximations, we realise that such
a test case does not exist, because S 1 � S 1

1 . The calculation of the test equivalence class domain predicate d1

gives false:
d1 � {by Theorem 5.2 }

(¬(k ≤ n) ∧ k < n) ∨ (¬(k ≤ n) ∧ k ≥ n ∧ (¬(k > n) ∨ false))
�

false ∨ false � false

Mutation testing in UTP 57

It is necessary to consider the second approximation of the mutant:

S 2
1 �df F (S1) � (k + 1 < n) ∨

(((k + 1 � n ∧ A[k] < A[t]) ∧ (k , t :� k + 1, k))
�

((k + 1 � n ∧ A[k] ≥ A[t]) ∧ (k , t :� k + 1, t))
�

((k ≥ n) ∧ k , t :� k , t))

This time test cases exist. By applying Theorem 5.2 we get the test equivalence class that can find the error.

d (k , t) � {by Theorem 5.2}
(¬(k ≤ n) ∧ k < n)
∨
(k ≥ n ∧ k + 1 � n ∧ A[k] < A[t] ∧ . . .
∨
(k ≥ n ∧ k + 1 � n ∧ A[k] ≥ A[t] ∧ . . .
∨
(k ≥ n ∧ k ≥ n

∧ (¬(k � n ∧ A[k] < A[t]) ∨ true)
∧ (¬(k � n ∧ A[k] ≥ A[t]) ∨ true)
∧ (¬(k > n) ∨ false))

�
false
∨
(k ≥ n ∧ k ≤ n)

�
(k � n)

By substituting the initialisation values (k � 2 and t � 1) the concrete fault-detecting test equivalence class
is:

T
∼1 � (n � 2)⊥; MIN

The result is somehow surprising. The calculated test equivalence class says that every array with two elements
can serve as a test case to detect the error. One might have expected that the error of leaving the loop too early
could only be revealed if the minimum is the last element (A[2] < A[1]) resulting in different values for t (2 vs. 1).
However, this condition disappears during the calculation. The reason is that the counter variable k is observable
and that the two program versions can be distinguished by their different values for k (3 vs. 2).

In practice, k will often be a local variable and not part of the alphabet of the program. In such a case a
stronger test equivalence class will be obtained. This illustrates the fact that it is important to fix the alphabet
(the observables), before test cases are designed.

Note also that the test equivalence class T
∼1 is just an approximation of the complete test equivalence class.

More precisely, it has to be an approximation, since the complete test equivalence class is infinite. Next we
investigate an error, where the programmer forgets to increase the index variable k .

MIN2 �df k :� 2; t :� 1; µX •
((

B2 ; X
)

� k ≤ n � k , t :� k , t
)

B2 �df (t :� k ; k :� k + 1) � A[k] < A[t] � k :� k

58 B. K. Aichernig, H. Jifeng

Obviously, S 1 � S 1
2 since the error has been made inside the loop. Therefore, immediately the second

approximation of the mutant S 2
2 is presented:

S 2
2 �df (k + 1 ≤ n ∧ A[k] < A[t]) ∨ (((k ≤ n ∧ k + 1 > n ∧ A[k] < A[t]) ∧ (k , t :� k + 1, k))

�
(k ≤ n ∧ A[k] ≥ A[t]) ∨ ((k ≤ n ∧ k > n ∧ A[k] ≥ A[t]) ∧ (k , t :� k , t))
�

(false) ∨ ((k > n) ∧ k , t :� k , t)

We see that the second case becomes infeasible (the guard equals false), and that consequently the non-termination
condition is weakened:

S 2
2 � (k < n ∨ (k � n ∧ A[k] ≥ A[t])) ∨

(((k � n ∧ A[k] < A[t]) ∧ (k , t :� k + 1, k))
�

((k > n) ∧ k , t :� k , t))

Clearly, a weaker non-termination condition leads to non-refinement. Therefore, Theorem 5.2 gives us for this
case the test equivalence class representing the cases where MIN terminates and MIN2 does not.

T
∼2(k , t) � (k � n ∧ A[k] ≥ A[t])⊥; MIN)

T
∼2 � (n � 2 ∧ A[2] ≥ A[1])⊥; MIN)

The calculated test cases are indeed those, where MIN2 fails to terminate, due to the missing incrementation of k .
�

The example demonstrated how to calculate test cases for detecting faulty designs even when recursion is
present. However, in cases where refinement cannot be falsified, we have to stop the approximation process at a
certain point. An upper limit n must be chosen by the tester, to determine how many approximation steps should
be computed.

6. Conclusions

Summary. The paper presented a novel theory of testing with a focus on fault detection. This fault-based testing
theory is a conservative extension of the existing Unifying Theories of Programming [HH98]. It extends the
application domain of Hoare & He’s theory of programming to the discipline of testing. It has been demonstrated
that the new theory enables the formal reasoning about test cases, more precisely about the fault detecting power
of test cases. As a consequence, new test case generation methods could be developed.

The first test case generation method (Definition 4.1) is a general criterion for fault-detecting test cases. It is
not completely new, but has been translated from our previous work [Aic03] to the theory of designs. It states
that a test case in order to find a fault in a design (which can range from specifications to programs) must be
an abstraction of the original design; and in addition it must not be an abstraction of the faulty design. No
such test cases exist if the faulty design is a refinement of the original one. Note that the translation of this
criterion from a different mathematical framework was straightforward. Since our previous definition was solely
based on the algebraic properties of refinement, we just had to change the definition of refinement (from weakest
precondition inclusion to implication). In [AD06] we applied this technique to labelled transition systems for
testing web-servers. This demonstrates the generality of our refinement-based testing theory.

The second test case generation method (Theorem 4.3) is more constructive and specialised for designs. It can
be applied to specification languages that use pre- and postconditions, including VDM-SL, RSL, Z, B and OCL.
Its finding is based on the conditions, when refinement between designs does not hold. It uses the operations on
predicates (conditions and relations) to find the test cases. This approach forms the basis for our constraint solving
approach to generate test cases from OCL specifications. An alternative implementation technology would be
SAT-solving as it is used in Daniel Jackson’s Alloy Analyzer [Jac00].

Mutation testing in UTP 59

The third approach (Theorem 5.2) lifts the test case generation process to the syntactical level. By
using a normal form representation of a given program (or specification), equivalence classes of test cases
can be generated or, in the case of recursive programs, approximated. This is the technique, which is most likely
to scale up to more complex programming and design languages. We have demonstrated the approach by using a
small and simple programming language. However, the language is not trivial. It includes non-determinism and
general recursion. A tool that uses this technique will combine constraint solving and symbolic manipulation.

Motivations for using UTP. UTP’s aim is simplicity and our work definitely benefitted from its simple predicative
semantics. Having implication as the refinement order made the theories simpler and the proofs shorter, than, e.g.
using a weakest-precondition semantics. Furthermore, the relational design predicates can be directly fed into a
constraint solving system, or a BDD checker. Most important, UTP’s links to other programming paradigms,
like, e.g. parallel programming or object-orientation, keep our testing theory open for extensions.

Related Work. Fault-based testing was born in practice when testers started to assess the adequacy of their
test cases by first injecting faults into their programs, and then by observing if the test cases could detect these
faults. This technique of mutating the source code became well-known as mutation testing and goes back to the
late 1970s [Ham77, DLS78]; since then it has found many applications and has become the major assessment
technique in empirical studies on new test case selection techniques [Won01].

To our present knowledge Budd and Gopal were the first who mutated specifications [BG85]. They applied a
set of mutation operators to specifications given in predicate calculus form.

Tai and Su [TS87] proposed algorithms for generating test cases that guarantee the detection of operator
errors, but they restrict themselves to the testing of singular Boolean expressions, in which each operand is a
simple Boolean variable that cannot occur more than once. Tai [Tai96] extends this work to include the detection
of Boolean operator faults, relational operator faults and a type of fault involving arithmetic expressions. However,
the functions represented in the form of singular Boolean expressions constitute only a small proportion of all
Boolean functions.

Until a few years ago, most of the research on testing from formal specifications has widely ignored fault-
based testing. The current approaches generate test cases according to the structural information of a model in a
formal specification language, like for example VDM [DF93], Z, B [LPU02], or Lotos [GJ98]. Only few noticed
the relevance of a fault-based strategy on the specification level.

Stocks applied mutation testing to Z specifications [Sto93]. In his work he extends mutation testing to
model-based specification languages by defining a collection of mutation operators for Z’s specification lan-
guage. An example of his specification mutations is the exchange of the join operator ∪ of sets with inter-
section ∩. He presented the criteria to generate test cases to discriminate mutants, but did not automate his
approach.

More recently, Simon Burton presented a similar technique as part of his test case generator for Z specifications
[Bur00]. He uses a combination of a theorem prover and a collection of constraint solvers. The theorem prover
generates the DNF, simplifies the formulas (and helps formulating different testing strategies). This is in contrast
to our implementation of the OCL test case generator, where Constraint Handling Rules [FA03] are doing the
simplification prior to the search—only a constraint satisfaction framework is needed. Here, it is worth pointing
out that it is the use of Constraint Handling Rules that saves us from having several constraint solvers, like
Burton does. As with Stocks’ work, Burton’s conditions for fault-based testing are instantiations of our general
theory.

Fault-based testing has also been discovered by the security community. Wimmel and Jürjens [WJ02] use
mutation testing on specifications to extract those interaction sequences that are most likely to find vulnera-
bilities. Here, mutants of an Autofocus model are generated. Then, a constraint solver is used to search for a
test sequence that satisfies a mutated system model (a predicate over traces) and that does not satisfy a security
requirement. If a test case able to kill the mutant can be found, then the mutation introduces a vulnerability and
the test case shows how it can be exploited. Again, this approach is a special instantiation of our more general
refinement technique supporting our proposal that a general theory of fault-based testing should be based on
refinement.

Black et al. showed how model checkers (e.g. SMV) can be applied in mutation testing [BOY01]. There
are basically two methods. The first is similar to our approach: The original and a mutated model are inte-
grated as SMV models and then a temporal formula stipulates that the output variables of the models must
always be equivalent. A counter-example in the form of a trace through the state space serves as the test
case distinguishing the mutation. In the second method, the temporal formulas themselves are mutated.

60 B. K. Aichernig, H. Jifeng

In [FAW07] we have demonstrated how this technique can be extended and optimised for fast regression testing.
The limitation of this model-checking approach is that it only works for deterministic models. In the general
case of nondeterminism, tree-shaped test cases are needed as it is the case in tools like TGV [AD06]. Our general
observation regarding testing and model checking is that in most cases the work lacks the support of a precise
testing theory, e.g. the definition of a conformance relation.

A group in York has started to use fault-based techniques for validating their CSP models [Sri01, SCSP03].
Their aim is not to generate test cases, but to study the equivalent mutants. Their work demonstrates that semantic
issues of complex concurrent models can be detected, by understanding why alternated (mutated) models are
observationally equivalent. Their reported case study in the security domain indicates the relevance of fault-based
testing in this area. Similar research is going on in Brazil with an emphasis on protocol specifications written in
the Estelle language [SMFS99].

Our testing theory relies on the notion of refinement. Of course, the relation between testing and refinement
is not completely new. Hennessy and de Nicola [DNH84] developed a testing theory that defines the equivalence
and refinement of processes in terms of testers. Similarly, the failure-divergency refinement of CSP [Hoa85] is
inspired by testing, since it is defined via the possible observations of a tester. Later, these theories led to Tretmans’
work on conformance testing based on labelled transition systems [Tre92, Tre99]. They are the foundations of
Peleska’s work on testing, as well [PS96]. However, these theories do not focus on the use of abstraction (the
reverse of refinement) in order to select a subset of test cases. Furthermore, these existing testing theories focus
on verification. This restricts their use, either to the study of semantic issues (like the question of observable
equivalence of processes [DNH84]), or to the testing of very abstract (finite) models for which exhaustive testing
is feasible (like in protocol testing [Tre92]). In contrast, this work focuses on falsification.

It was Stepney in her work on Object-Z, who first promoted explicitly the use of abstraction for designing test
cases [Ste95]. The application of a refinement calculus to define different test-selection strategies is a contribution
of the first author’s doctoral thesis [Aic01a]. It was in this thesis, where the idea of applying refinement to mutation
testing has been presented the first time. Although others worked on specification-based mutation testing before,
the use of a refinement relation and a normal form is completely new.

Future Work. The presented theory is far from being final or stable. It is another step in our research aim to
establish a unifying theory of testing. Such a theory will provide semantic links between different testing theories
and models. These links will facilitate the systematic comparison of the results in different areas of testing,
hopefully leading to new advances in testing. For example, the relationship between the abstraction in model
checking and the abstraction techniques in test case selection deserves a careful study. A further research area
where a unifying theory might be applied is the combination of testing and formal proofs. This is related to the
highly controversial question discussed in philosophy of science, how theories can be confirmed by observations.
Our next steps will be to include models of concurrency, work out the difference between a test case and a test
configuration (the first is a kind of specification, the latter the synchronous product of a tester and a system under
test), and to translate the previously obtained results on test sequencing to our new theory.

Another branch of future work is automation. We are currently working on extensions of the prototype test
case generator discussed in Sect. 4.3. Especially, the proper sequencing of test cases for bringing a system into
a target state has to be addressed. [LPU02] demonstrates the use of constraint solving to master this problem.
Besides the study of algorithms for automation, another research agenda is language design. We believe that the
design of future specification and programming languages will be highly influenced by tool support for static
and dynamic analysis, including test case generation and automatic verification. Therefore, a careful study of the
properties of programming languages with respect to automation will gain importance.

All in all, we believe this is a quite challenging and exciting area of research. The authors hope that the
presented theory of fault-based testing will inspire the reader to new contributions to testing, and verification in
general.

Acknowledgments

This research is being carried out as part of the EU funded research project in Framework 6: IST-33826 CREDO
(Modelling and analysis of evolutionary structures for distributed services). The test case generator discussed in
Sect. 4.3 was implemented by Percy Antonio Pari Salas during his fellowship at UNU-IIST. The authors wish to
thank the three anonymous referees for their detailed and constructive feedback in order to improve the paper.

Mutation testing in UTP 61

Appendix

In this appendix the proofs of the algebraic laws that have been newly introduced in Sect. 5 are presented. Those
not listed below are taken from [HH98].

Proof of L3

(
�

A) � d � (
�

B) � {by L1, Sect. 5.2 in [HH98]}�{(b ∧ P) � d � (c ∧ Q) | (b ∧ P) ∈ A ∧ (c ∧ Q) ∈ B}
� {by Theorem 5.1}�{(d ∧ b ∧ P) � (¬d ∧ c ∧ Q) | (b ∧ P) ∈ A ∧ (c ∧ Q) ∈ B}
� {by L2}�

({((d ∧ b) ∧ P) | (b ∧ P) ∈ A} ∪ {((¬d ∧ c) ∧ Q) | (c ∧ Q) ∈ B})
� {by L2}

(
�{((d ∧ b) ∧ P) | (b ∧ P) ∈ A}) � (

�{((¬d ∧ c) ∧ Q) | (c ∧ Q) ∈ B})

Proof of L4

(
�

A) ; (
�

B) � {by L2, Sect. 5.2 in [HH98]}�{(b ∧ P); (c ∧ Q) | (b ∧ P) ∈ A ∧ (c ∧ Q) ∈ B}
� {by definition of normal form}�{(b ∧ v :� f); (c ∧ v :� g) | (b ∧ v :� f) ∈ A ∧ (c ∧ v :� g) ∈ B}
� {by definition of :�}�{(b ∧ v ′ � f (v)); (c ∧ v ′ � g(v)) | (b ∧ v :� f) ∈ A ∧ (c ∧ v :� g) ∈ B}
� {by definition of ; }�{(∃v0 • (b(v) ∧ v0 � f (v) ∧ c(v0) ∧ v ′ � g(v0))) | (b ∧ v :� f) ∈ A ∧ (c ∧ v :� g) ∈ B}
� {by equality}�{(∃v0 • (b(v) ∧ c(f (v)) ∧ v0 � f (v) ∧ v ′ � g(v0))) | (b ∧ v :� f) ∈ A ∧ (c ∧ v :� g) ∈ B}
� {by simplification}�{(b(v) ∧ c(f (v)) ∧ ∃v0 • (v0 � f (v) ∧ v ′ � g(v0))) | (b ∧ v :� f) ∈ A ∧ (c ∧ v :� g) ∈ B}
� {by definition of ; }�{(b(v) ∧ c(f (v)) ∧ (v :� f ; v � g)) | (b ∧ v :� f) ∈ A ∧ (c ∧ v :� g) ∈ B}

Proof of L6

(b ∨ P) � d � (c ∨ Q) � {by L7, Sect. 5.3 in [HH98]}
(b � d � c) ∨ (P � d � Q)

� {by definition of conditional}
((b ∧ d) ∨ (c ∧ ¬d)) ∨ (P � d � Q)

Proof of L8

(
�

A) ; c � {by L4, Sect. 5.3 in [HH98]}∨{(g ∧ P); c) | (g ∧ P) ∈ A}
� {g is a predicate over v}∨{(g ∧ (P ; c)) | (g ∧ P) ∈ A}

Proof of L11

((g1 ∧ P1) � · · · � (gn ∧ Pn)) � (b ∧ Q) � {by definitions of � and �}
[((g1 ∧ P1) ∨ · · · ∨ (gn ∧ Pn) ⇐ (b ∧ Q)]

� {by distribution of ⇐ }
[((g1 ∧ P1) ⇐ (b ∧ Q)) ∨ · · · ∨ (gn ∧ Pn) ⇐ (b ∧ Q))]

� {by definition of existential quantification}
[∃ i • ((gi ∧ Pi) ⇐ (b ∧ Q))]

62 B. K. Aichernig, H. Jifeng

Proof of L12

[(g ∧ v :� f) ⇐ (b ∧ v :� h)] � {by definition of total assignment}
[(g ∧ v ′ � f) ⇐ (b ∧ v ′ � h)]

�
[(g ⇐ (b ∧ v ′ � h)) ∧ (v ′ � f ⇐ (b ∧ v ′ � h))]

�
[(g ⇐ b) ∧ (v ′ � f ⇐ v ′ � h) ⇐ b)]

�
[(g ⇐ b) ∧ ((f � h) ⇐ b)]

�
[(g ∧ (f � h)) ⇐ b]

Proof of L14

L14 follows directly from L11.

Proof of Lemma 5.1

�

i

(gi ∧ (pi � Qi))

� {by definitions of meet and design}∨
i

(gi ∧ ((ok ∧ pi) ⇒ (ok ′ ∧ Qi)))

� ∨
i

(gi ∧ (¬(ok ∧ pi) ∨ (ok ′ ∧ Qi)))

� ∨
i

((gi ∧ ¬ok) ∨ (gi ∧ ¬pi) ∨ (ok ′ ∧ gi ∧ Qi))

� ∨
i

(gi ∧ ¬ok) ∨
∨
i

(gi ∧ ¬pi) ∨
∨
i

(ok ′ ∧ gi ∧ Qi)

�
(¬ok ∧

∨
i

gi) ∨
∨
i

(gi ∧ ¬pi) ∨ (ok ′ ∧
∨
i

(gi ∧ Qi))

� {by assumption
∨
i

gi � true}

(¬ok ∨
∨
i

(gi ∧ ¬pi) ∨ (ok ′ ∧
∨
i

(gi ∧ Qi))

�
¬(ok ∧

∧
i

(¬gi ∨ pi)) ∨ (ok ′ ∧
∨
i

(gi ∧ Qi))

� {by definition of design}(∧
i

(gi ⇒ pi)

)
�

(∨
i

(gi ∧ Qi)

)

Mutation testing in UTP 63

Proof of Lemma 5.2

b ∨ (p � Q)
� {by definition of design}

b ∨ ((ok ∧ p) ⇒ (ok ′ ∧ Q))
�

¬b ⇒ ((ok ∧ p) ⇒ (ok ′ ∧ Q))
�

(ok ∧ ¬b ∧ p) ⇒ (ok ′ ∧ Q)
� {by definition of design}

(¬b ∧ p) � Q

References

[Abr96] Abrial J-R (1996) The B Book, assigning programs to meanings. Cambridge University Press, Cambridge
[AD06] Aichernig BK, Delgado CC (2006) From faults via test purposes to test cases: on the fault-based testing of concurrent systems.

In: Baresi L, Heckel R (eds) Proceedings of FASE’06, Fundamental Approaches to Software Engineering, Vienna, Austria,
March 27–29, 2006. Lecture Notes in Computer Science, vol 3922. Springer, Berlin, pp 324–338

[Aic01a] Aichernig BK (2001) Systematic black-box testing of computer-based systems through formal abstraction techniques. Ph.D.
thesis, Institute for Software Technology, TU Graz, Austria, January 2001 Supervisor: Peter Lucas

[Aic01b] Aichernig BK (2001) Test-design through abstraction: a systematic approach based on the refinement calculus. J Universal
Comput Sci 7(8):710–735

[Aic03] Aichernig BK (2003) Mutation testing in the refinement calculus. Formal Asp Comput J 15(2):280–295
[AS05] Aichernig BK, Antonio Pari Salas P (2005) Test case generation by OCL mutation and constraint solving. In: Cai K-Y, Ohnishi

A, Lau MF (eds) QSIC 2005, Proceedings of the Fifth International Conference on Quality Software, Melbourne, Australia,
September 19–21, 2005. IEEE Computer Society Press, New York, pp 64–71

[BBH02] Benattou M, Bruel J-M, Hameurlain N (2007) Generating Test Data from OCL Specifications (position paper). In:
ECOOP’2002 Workshop on Integration and Transformation of UML Models (WITUML02), Malaga, Spain, June 2002.
http://ctp.di.fct.unl.pt/~ja/wituml/bruel.pdf (last visited Sep. 1st, 2007)

[Bei90] Beizer B (1990) Software testing techniques, 2nd edn. Van Nostrand Reinhold, New York
[BG85] Budd TA, Gopal AS (1985) Program testing by specification mutation. Comput Lang 10(1):63–73
[BOY01] Black PE, Okun V, Yesha Y (2001) Mutation of model checker specifications for test generation and evaluation. In: Mutation

testing for the new century. Kluwer, Dordrecht, pp 14–20
[Bur00] Burton S (2000) Automated testing from Z specifications. Technical report YCS 329, Department of Computer Science

University of York
[BvW98] Back R-J, von Wright J (1998) Refinement Calculus, a Systematic Introduction. Graduate Texts in Computer Science. Springer,

Berlin
[DF93] Dick J, Faivre A (1993) Automating the generation and sequencing of test cases from model-based specifications. In: Woodcock

JCP, Larsen PG (eds) Proceedings of FME’93: Industrial-Strength Formal Methods, International Symposium of Formal
Methods Europe, April 1993, Odense, Denmark. Springer, Berlin, pp 268–284

[DLS78] DeMillo R, Lipton R, Sayward F (1978) Hints on test data selection: Help for the practicing programmer. IEEE Comput
11(4):34–41

[DNH84] De Nicola R, Hennessy MCB (1984) Testing equivalences for processes. Theor Comput Sci 34:83–133
[FA03] Frühwirth T, Abdennadher S (2003) Essentials of constraint programming. Springer, Berlin
[FAW07] Fraser G, Aichernig BK, Wotawa F (2007) Handling model changes: Regression testing and test-suite update with model-

checkers. Electronic Notes in Theoretical Computer Science, vol 190. Elsevier, Amsterdam, pp 33–46
[Gau95] Gaudel M-C (1995) Testing can be formal, too. In: TAPSOFT ’95: Proceedings of the 6th International Joint Conference

CAAP/FASE on Theory and Practice of Software Development. Springer, Berlin, pp 82–96
[GJ98] Gaudel M-C, James PR (1998) Testing algebraic data types and processes: a unifying theory. Formal Asp Comput 10(5,

6):436–451
[Ham77] Hamlet RG (1977) Testing programs with the aid of a compiler. IEEE Trans Softw Eng 3(4):279–290
[HH98] Hoare CAR, He J (1998) Unifying theories of programming. Prentice-Hall, Englewood Cliffs, NJ
[HNS97] Helke S, Neustupny T, Santen T (1997) Automating test case generation from Z specifications with Isabelle. In: Bowen JP,

Hinchey MG, Till D (eds) Proceedings of ZUM’97, the 10th International Conference of Z Users, April 1997, Reading, UK.
Lecture Notes in Computer Science, vol 1212. Springer, Berlin, pp 52–71

[Hoa85] Hoare CAR (1985) Communicating sequential processes. International Series in Computer Science. Prentice-Hall, Englewood
Cliffs, NJ

[Jac00] Jackson D (2000) Automating first-order relational logic. In: Proceedings of SIGSOFT FSE 2000: ACM SIGSOFT Symposium
on Foundations of Software Engineering, November 6–10, 2000, San Diego, California, USA. ACM, New York, pp 130–139

http://ctp.di.fct.unl.pt/~ja/wituml/bruel.pdf

64 B. K. Aichernig, H. Jifeng

[Jon86] Jones CB (1986) Systematic software development using VDM. International Series in Computer Science. Prentice-Hall,
Englewood Cliffs, NJ

[Jor02] Jorgensen PC (2002) Software testing: a craftsman’s approach, 2nd edn. CRC Press, Boca Raton, FL
[LPU02] Legeard B, Peureux F, Utting M (2002) Automated boundary testing from Z and B. In: Eriksson L-H, Lindsay PA (eds)

Proceedings of FME 2002: Formal Methods—Getting IT Right, International Symposium of Formal Methods Europe, July
2002, Copenhagen, Denmark. Lecture Notes in Computer Science, vol 2391. Springer, Berlin, pp 21–40

[Mor94] Morgan C (1994) Programming from specifications, 2nd edn. International Series In Computer Science. Prentice-Hall, Engle-
wood Cliffs, NJ

[PS96] Peleska J, Siegel M (1996) From testing theory to test driver implementation. In: Gaudel M-C, Woodcock J (eds) FME’96:
Industrial Benefit and Advances in Formal Methods, March 1996, Springer-Verlag, pp 538–556

[RAI95] RAISE Development Group (1995) The RAISE development method. Prentice-Hall, UK
[SCSP03] Srivatanakul T, Clark J, Stepney S, Polack F (2003) Challenging formal specifications by mutation: a CSP security example. In:

Proceedings of APSEC-2003: 10th Asia-Pacific Software Engineering Conference, Chiang Mai, Thailand, December, 2003.
IEEE, New York, pp 340–351

[SMFS99] Simone do Rocio Senger de Souza, Jose Carlos Maldonado, Sandra Camargo Pinto Ferraz Fabbri, Wanderley Lopes de Souza
(1999) Mutation testing applied to Estelle specifications. Softw Q J 8:285–301

[Soc90] IEEE Computer Society (1990) Standard glossary of software engineering terminology, Standard 610.12. IEEE Press, New
York

[Sri01] Srivatanakul T (2001) Mutation testing for concurrency. Master’s thesis, Department of Computer Science, University of
York, UK, September 2001

[Ste95] Stepney S (1995) Testing as abstraction. In: Bowen JP, Hinchey MG (eds) ZUM ’95: 9th International Conference of Z Users,
Limerick 1995. Lecture Notes in Computer Science, vol 967. Springer, Berlin, pp 137–151

[Sto93] Stocks PA (1993) Applying formal methods to software testing. Ph.D. thesis, Department of computer science, University of
Queensland

[Tai96] Tai K-C (1996) Theory of fault-based predicate testing for computer programs. IEEE Trans Softw Eng 22(8):552–562
[Tre92] Tretmans J (1992) A formal approach to conformance testing. Ph.D. thesis, Universiteit Twente
[Tre99] Tretmans J (1999) Testing concurrent systems: A formal approach. In: Baeten JCM, Mauw S (eds) CONCUR’99. Lecture

Notes in Computer Science, vol 1664. Springer, Berlin, pp 46–65
[TS87] Tai K-C, Su H-K (1987) Test generation for Boolean expressions. In: Proceedings of the Eleventh Annual International

Computer Software and Applications Conference (COMPSAC), pp 278–284
[WJ02] Wimmel G, Jürjens J (2002) Specification-based test generation for security-critical systems using mutations. In: George C,

Huaikou M (eds) Proceedings of ICFEM’02, the International Conference of Formal Engineering Methods, October 21–25,
2002, Shanghai, China, Lecture Notes in Computer Science. Springer, Berlin, pp 471–482

[WK03] Warmer J, Kleppe A (2003) The object constraint language: getting your models ready for MDA, 2nd edn. Addison-Wesley,
Reading, MA

[Won01] Eric Wong W (ed) (2001) Mutation Testing for the New Century. Kluwer, Dordrecht

Received 5 February 2007
Accepted in revised form 11 April 2008 by E. A. Boiten, M. J. Butler, J. Derrick, L. Groves and J. C. P. Woodcock
Published online 5 June 2008

	1 Introduction
	2 Unifying theories of programming
	2.1 Unification of theories
	2.2 Theories of programming
	2.3 A theory of designs

	3 Modelling faults in designs
	3.1 From errors via faults to failures
	3.2 Test cases
	3.3 Faults

	4 Designing test cases
	4.1 Fault-based testing
	4.2 Fault-detecting test equivalence classes
	4.3 Tool support

	5 Testing for program faults
	5.1 Finite normal form
	5.2 Introducing faults
	5.3 Test case generation
	5.4 Recursion

	6 Conclusions
	References

