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Abstract

Major international projects are now underway aimed at creating a comprehensive catalog of all

genes responsible for the initiation and progression of cancer. These studies involve sequencing of

matched tumor–normal samples followed by mathematical analysis to identify those genes in

which mutations occur more frequently than expected by random chance. Here, we describe a

fundamental problem with cancer genome studies: as the sample size increases, the list of

putatively significant genes produced by current analytical methods burgeons into the hundreds.

The list includes many implausible genes (such as those encoding olfactory receptors and the

muscle protein titin), suggesting extensive false positive findings that overshadow true driver

events. Here, we show that this problem stems largely from mutational heterogeneity and provide

a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to

exome sequences from 3,083 tumor-normal pairs and discover extraordinary variation in (i)

mutation frequency and spectrum within cancer types, which shed light on mutational processes

and disease etiology, and (ii) mutation frequency across the genome, which is strongly correlated

with DNA replication timing and also with transcriptional activity. By incorporating mutational

heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual

findings and allow true cancer genes to rise to attention.

Recent cancer genome studies have led to the identification of scores of cancer genes, in

glioblastoma1, ovarian2, colorectal3, lung4, head-and-neck5, multiple myeloma6, chronic

lymphocytic leukemia7, diffuse large B-cell lymphoma8,9, and many other cancers. Studies

are now underway through The Cancer Genome Atlas (TCGA) (http://

cancergenome.nih.gov/) and the International Cancer Genome Consortium (ICGC) (http://

www.icgc.org/) to create a comprehensive catalog of significantly mutated genes across all

major cancer types.
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The expectation has been that larger sample sizes will increase the power both to detect true

cancer driver genes (sensitivity) and to distinguish them from the background of random

mutations (specificity). Alarmingly, recent results appear to show the opposite phenomenon:

with large sample sizes, the list of apparently significant cancer genes grew rapidly and

implausibly. For example, when we applied current analytical methods to whole-exome

sequence data from 178 tumor-normal pairs of lung squamous cell carcinoma10, a total of

450 genes (Supplementary Table S1, Supplementary Method S2) were found to be mutated

at a significant frequency (false-discovery rate q < 0.1). While the list contains some genes

known to be associated with cancer, many of the genes seem highly suspicious based on

their biological function or genomic properties. Almost a quarter (101/450) of the putative

significant genes encode olfactory receptors. The list is also highly enriched for genes

encoding extremely large proteins, including more than one-fifth of the 83 genes encoding

proteins with >4,000 amino acids (p<10−11, Fisher’s exact test). These include the two

longest human proteins, the muscle protein titin (36,800 amino acids) and the membrane-

associated mucin MUC16 (14,500 amino acids), as well as another mucin (MUC4), cardiac

ryanodine receptors (RYR2, RYR3), cytoskeletal dyneins (DNAH5, DNAH11), and the

neuronal synaptic vesicle protein piccolo (PCLO). The prominence of these genes is not

simply the consequence of their long coding regions, because the statistical tests already

account for the larger target size. Furthermore, the list also contains genes with very long

introns, including one-sixth of the 73 genes spanning a genomic region of >1Mb (p<10−6),

such as those encoding cub- and-sushi-domain proteins (CSMD1, CSMD3), and many

neuronal proteins, such as the neurexins NRXN1, NRXN4 (CNTNAP2), CNTNAP4, and

CNTNAP5, the neural adhesion molecule CNTN5, and the Parkinson protein PARK2. When

we performed similar analyses for several other cancer types with many samples, we

similarly obtained large lists including many of the same genes (data not shown).

After recognizing the problem of apparent false-positive findings, we reviewed the

published literature and found that some of these potentially spurious genes have already

cropped up in recently published cancer genome studies, for example: LRP1B in

glioblastoma (GBM)2 and lung adenocarcinoma1,4; CSMD3 in ovarian cancer2; PCLO in

diffuse large B-cell lymphoma (DLBCL)9; MUC16 in lung squamous carcinoma11, breast

cancer12 and DLBCL8; MUC4 in melanoma13; olfactory receptor OR2L13 in GBM14; and

TTN in breast cancer12 and other tumor types15. We therefore set out to understand the

source of the problem.

Analytical approaches in wide use today1-9,13-16 identify as significantly mutated those

genes harboring more mutations than expected given the average background mutation

frequency for the cancer type. These methods employ a handful of parameters: an average

overall mutation frequency for a cancer type and a few parameters about the relative

frequencies of different categories of mutations (small insertions/deletions and transitions

vs. transversions at CpG dinucleotides, other C:G basepairs and A:T basepairs). Average

values of these parameters are typically estimated from the samples under study. Various

efforts, by us and others, have recently began to incorporate sample-specific mutation rates

into the analysis.3,9

We hypothesized that the problem might be due to heterogeneity in the mutational processes

in cancer. While it is obvious that assuming an average mutation frequency that is too low

will lead to spuriously significant findings, it is less well appreciated that using the correct

average rate but failing to account for heterogeneity in the mutational process can also

wreak havoc. To illustrate this point, we compared two simple scenarios both sharing the

same average mutation frequency: (a) constant frequency of 10 mutations per megabase (10/

Mb) across all genes, versus (b) frequencies of 4/Mb, 8/Mb and 20/Mb in 25%, 50% and

25% of genes, respectively (Supplementary Figure S1). If one analyzes the second case
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under the erroneous assumption of a constant rate, many of the highly mutable genes will

falsely be declared to be cancer genes. Notably, the problem grows with sample size:

because the threshold for statistical significance decreases with sample size, modest

deviations due to an erroneous model are declared significant. For the same reason, the

problem is also more pronounced in tumor types with higher mutation rates. Heterogeneity

in mutation frequencies across patients can also lead to inaccurate results, including the

potential to produce both false-positive, as described above, and false-negative results if the

baseline frequency is overestimated.

We therefore set out to study heterogeneity in mutation rates, in a data set of 3,083 tumor/

normal pairs across 27 tumor types, with 2,957 having whole-exome sequence and 126

having whole-genome sequence (Supplementary Table S2). Approximately 92% of the

samples were sequenced at the Broad Institute and thus were processed using a uniform

experimental and analytical pipeline (see Methods). In this data set, an average of 30 Mb of

coding sequence per sample was covered to adequate depth for mutation detection, yielding

a total of 373,909 nonsilent coding mutations or an average of 4.0/Mb per sample (median

of 44 nonsilent coding mutations per sample, or 1.5/Mb).

We analyzed three types of heterogeneity, with the aim of achieving more accurate detection

of cancer genes.

(i) Heterogeneity across patients with a given cancer type

Analysis of the 27 cancer types revealed that the median frequency of non-synonymous

mutations varied by more than 1000-fold across cancer types (Figure 1). About half of the

variation in mutation frequencies (measured on a logarithmic scale) can be explained by

tissue type of origin. Pediatric cancers showed frequencies as low as 0.1/Mb (approximately

one change across the entire exome), while at the opposite extreme, melanoma and lung

cancer exceeded 100/Mb. The high mutation frequencies are in some cases attributable to

extensive exposure to well known carcinogens, such as UV radiation in the case of

melanoma and tobacco smoke in the case of lung cancers.

More surprisingly, mutation frequencies varied dramatically across patients within a cancer

type. In melanoma and lung cancer, the frequency ranged across 0.1 - 100/Mb. Despite the

low median frequency in AML (0.37/Mb), the patient-specific frequencies similarly spanned

three orders of magnitude 0.01 - 10/Mb. Variation may in some cases be due to key

biological factors, such as melanomas not attributed to UV exposure or on unexposed skin,

colon cancers with or without mismatch repair defects3, or head and neck tumors with viral

or non-viral origin5 (Supplementary Figure S2).

(ii) Heterogeneity in mutational spectrum

In addition to total mutation frequency, we examined the mutational spectrum in each tumor.

Starting with all 96 possible mutations (12 mutations at a base times 16 possible flanking

bases then collapsed by strand symmetry), we used non-negative matrix factorization to

reduce the dimensionality, with each spectrum represented as a linear combination of six

basic spectra (Methods). We represented the mutational spectrum of each tumor on a

circular plot, with distance from the origin representing total mutation rate and angle

representing the relative contribution of the six basic spectra (Figure 2). This representation

reveals natural groupings with respect to mutational spectrum.

Lung cancers, for example, (red cluster at 2 o’clock position), share a mutational spectrum

dominated by C→A mutations, consistent with their exposure to the polycyclic aromatic

hydrocarbons in tobacco smoke17. Melanoma (black cluster at 12 o’clock) shows a distinct
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pattern reflecting the frequent C→T mutations caused by misrepair of UV-induced covalent

bonds between adjacent pyrimidines18. Gastrointenstinal tumors (esophageal, colororectal,

and gastric, corresponding to green cluster at 8 o’clock) show extremely high frequencies of

transition mutations at CpG dinucleotides, which may reflect higher methylation levels in

these tumor types3.

Interestingly, there is a multifarious cluster at the 10 o’clock position corresponding to

cervical, head-and-neck, and bladder tumors, all sharing frequent mutations at C’s in the

context TpC that change the C to either T or G or (less often) A. This pattern is

characteristic of mutations caused by the APOBEC family of cytidine deaminases, innate

immunity enzymes restricting propagation of retroviruses and retrotransposons19,20. Some

APOBECs can be induced by certain classes of viruses21. Cervical cancer is known to be

caused in over 90% of cases by the human papillomavirus (HPV)22. Recent studies have

also implicated HPV in head-and-neck cancers5. The similar mutational spectrum in bladder

cancer may indicate a viral etiology in a significant subset of this tumor type; a potential role

of HPV in bladder cancer is a subject of active investigation23. This cluster also contains

sporadic examples of breast tumors (consistent with a recent report12), as well as some

tumors from lung and other tissues. Recent work19,20 has shown that the TpC mutations tend

to occur in proximity to one another, consistent with the activity of APOBEC enzymes in

damaged long single-strand DNA regions. One last minor cluster (4 o’clock position)

consists of samples dominated by A→T mutations in the context TpA. This cluster contains

mostly leukemia samples (AML and CLL), as well as one breast sample and one

neuroblastoma sample.

In summary, the rich variation in mutational spectrum across tumors underscores the

problems with using an overly simplistic model of the average mutational process for a

tumor type and failing to account for heterogeneity within a tumor type.

(iii) Heterogeneity across the genome

Of all the kinds of heterogeneity in mutational processes, the most important effect turns out

to be regional heterogeneity across the genome. By examining whole-genome sequence

from 126 tumor-normal pairs across ten tumor types, we found striking variation in mutation

frequency across the genome, with differences exceeding 5-fold (Figure 3a,b); the profile of

the genomic variation was similar across and within tumor types (Figure S3). Recent studies

have noted regional variation in cancer mutation rates and begun to explore correlations with

genomic features6,17,18,24.

We focused on two factors that were especially powerful in explaining mutational

heterogeneity. The first factor is gene expression level. It is known that the germline

mutation rate is somewhat lower in genes that are highly expressed in the germline18, due to

a process termed transcription-coupled repair25. With the whole-genome and whole-exome

data analyzed here, we found a strong correlation between somatic mutation frequency in

cancers and gene expression level (averaged across many cell lines, with similar results for

expression in matched normal tissue) (Figure 3a,b; Supplementary Figure S3;

Supplementary Tables S4, S5). The average mutation rate is ~2.9-fold higher than the

bottom percentile than in the top percentile. While statistically highly significant, this effect

is insufficient to fully explain regional variation in mutation levels. The second important

factor is the replication time of a DNA region during the cell cycle. Recent studies have

reported that germline mutation rates are correlated with DNA replication time26-28: late-

replicating regions have much higher mutation rates, possibly due to depletion of the pool of

free nucleotides26. With the whole-genome and whole-exome data here, we see a striking

correlation between somatic mutation frequency in cancers and DNA replication timing (as
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measured in HeLa cells27) (Figure 3a,b), with similar results for blood cell lines28 (Figure

S3). The average mutation rate is ~2.9-fold higher in the latest- versus earliest-replicating

percentile, and ~2.1-fold difference between the latest- and earliest-replicating decile.

These two features explain most of the suspicious entries on the putative cancer gene lists.

Olfactory receptor genes, for example, have low expression (p<10−172, Kolmogorov-

Smirnoff test, Figure 3e), are strikingly late in replication timing (p<10−109, Figure 3f), and

show a high regional noncoding mutation rate (p<10−81), which accounts for the high

frequency of somatic mutations in their coding regions. Large genes are similarly low-

expressed and late-replicating (Figure 3e,f), including the genes cited in the lung cancer

example above, such as titin and the ryanodine receptors. Importantly, these results

undermine the evidence supporting several recent reports – such as the suggestion that

CSMD3 is a cancer gene in ovarian cancer2. As an independent test, we confirmed that these

two genomic features correlated strongly with the overall frequency of silent substitutions in

coding regions and mutations in introns (Figure 3c,d; Supplementary Table S6). We note,

however, that silent substitutions alone provide inadequate data to correct mutation

frequencies on a gene-by-gene basis in most tumor types and for most genes, due to the

sparsity of the data and the resulting uncertainty in estimated rates.

Using the observations above, we developed a new integrated approach to identify

significantly mutated genes in cancer. The method (MutSigCV) corrects for variation by

employing (i) patient-specific mutation frequency and spectrum, and (ii) gene-specific

background mutation rates incorporating expression level and replication time

(Supplementary Methods 3). MutSigCV is freely available for noncommercial use (http://

www.broadinstitute.org/cancer/cga/mutsig).

When we applied MutSigCV to the lung cancer example above, the list of significantly

mutated genes shrank from 450 to 11 genes. Most of the genes in this shorter list have been

previously reported to be mutated in squamous cell lung cancer (TP53, KEAP1, NFE2L2,
CDKN2A, PIK3CA, PTEN, RB111,16) or other tumor types (MLL2, NOTCH1, FBXW7). An

additional novel gene in the list, HLA-A,suggests that mutations in immune-related genes

may help tumors evade immune surveillance, a finding that requires follow-up experimental

work. These significantly mutated genes are discussed in the TCGA lung squamous

publication10, in which we applied our novel methodology.

With the ability to eliminate many obviously suspicious genes, it is now feasible to start

analyzing large cancer collections, including combined data sets across many cancer types.

We note that other forms of heterogeneity in tumors merit further investigation. These

include the co-occurrence of many mutations in proximity to each other (“kataegis”19 or

“clustered mutations”20) (see Supplementary Figure S10) and transcription-coupled repair

(see Supplementary Figure S11). In addition, heterogeneity across cancer cells within a

tumor, reflecting the evolutionary process of a tumor, will be crucial to fully understand.29

Our results make clear that the accurate identification of new cancer genes will require

accurate accounting of mutational processes. While MutSigCV resolves the most serious

current problems, the ultimate solution will likely involve using empirically observed local

mutation rates obtained from massive amounts of whole-genome sequencing.

Methods Summary

All samples were obtained under institutional IRB approval and with documented informed

consent. A complete list of samples is given in Table S2. Whole-exome capture libraries

were constructed and sequenced on Illumina HiSeq flowcells to average coverage of 118x.
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Whole-genome sequencing was done with the Illumina GA-II or Illumina HiSeq sequencer,

achieving an average of ~30X coverage depth. Reads were aligned to the reference human

genome build hg19 using an implementation of the Burrows-Wheeler Aligner, and a BAM

file was produced for each tumor and normal sample using the Picard pipeline6. The

Firehose pipeline was used to manage input and output files and submit analyses for

execution. The MuTect30 and Indelocator (Sivachenko, A. et al., manuscript in preparation)

algorithms were used to identify somatic single-nucleotide variants (SSNVs) and short

somatic insertions and deletions, respectively. Mutation spectra were analyzed using non-

negative matrix factorization (NMF). Significantly mutated genes were identified using

MutSigCV, which estimates the background mutation rate (BMR) for each gene-patient-

category combination based on the observed silent mutations in the gene and noncoding

mutations in the surrounding regions. Because in most cases these data are too sparse to

obtain accurate estimates, we increased accuracy by pooling data from other genes with

similar properties (e.g. replication time, expression level). Significance levels (p-values)

were determined by testing whether the observed mutations in a gene significantly exceed

the expected counts based on the background model. False Discovery Rates (q-values) were

then calculated, and genes with q≤0.1 were reported as significantly mutated. Full methods

details are listed in Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Somatic mutation frequencies observed in exomes from 3,083 tumor-normal pairs. Each dot

corresponds to a tumor-normal pair, with vertical position indicating the total frequency of

somatic mutations in the exome. Tumor types are ordered by their median somatic mutation

frequency, with the lowest frequencies (left) found in hematological and pediatric tumors,

and the highest (right) in tumors induced by carcinogens such as tobacco smoke and UV

light. Mutation frequencies vary more than 1000-fold between lowest and highest mutation

rates across cancer and also within several tumor types. The lower panel shows the relative

proportions of the six different possible base-pair substitutions, as indicated in the legend on

the left. (See also Supplementary Table S2.)
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Figure 2.
Radial spectrum plot of the 2,892 tumor samples having at least 10 coding mutations. The

angular space is compartmentalized into the six different factors discovered by NMF (see

Methods). The distance from the center represents the total mutation frequency. Different

tumor types segregate into different compartments based on their mutation spectra. Notable

examples are: lung adenocarcinoma and lung squamous carcinoma (red; 2 o’clock position),

melanoma (black; 12 o’clock position), stomach, esophageal and colorectal cancer (various

shades of green; 8 o’clock position), samples harboring mutations of the HPV or APOBEC

signature (bladder, cervical and head and neck cancer, marked in yellow, orange, and blue

respectively; 10 o’clock position), and AML and CLL samples sharing the Tp*A→T

signature, 4 o’clock position. (See also Supplementary Table S3.)
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Figure 3.
Mutation rate varies widely across the genome and correlates with DNA replication time and

expression level. (a,b) Mutation rate, replication time, and expression level plotted across

selected regions of the genome. Red shows total noncoding mutation rate calculated from

whole-genome sequences of 126 samples (excluding exons). Blue shows replication time27.

Green shows average expression level across 91 cell lines in the Cancer Cell Line

Encyclopedia (CCLE), determined by RNA sequencing. (Note that low expression is at the

top of the scale and high expression at the bottom, in order to emphasize the mutual

correlations with the other variables). Shown are (a) entire chromosome 14 and (b) portions

of chromosomes 1 and 8, with the locations of two specific loci: a cluster of 16 olfactory

receptors on chr1 and the gene CSMD3 on chr8. These two loci have very high mutation

rates, late replication times, and low expression levels. (The local mutation rate at CSMD3 is

even higher than predicted from replication time and expression, suggesting contributions

from additional factors, perhaps locally increased DNA breakage: the locus is a known

fragile site). (c,d) Correlation of mutation rate with expression level and replication time, for

all 100 Kb windows across the genome. (e,f) Cumulative distribution of various gene

families as a function of expression level and replication time. Olfactory receptor genes,

genes encoding long proteins (>4,000aa) and genes spanning large genomic loci (>1Mb) are

significantly enriched towards lower expression and later replication. In contrast, known

cancer genes (as listed in the Cancer Gene Census) trend toward slightly higher expression

and earlier replication. (See also Supplementary Figure S9 and Supplementary Tables S4,

S5, S6.)
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