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Abstract

Mutational signatures provide a powerful alternative for understanding the pathophysiology of cancer. Currently,

experimental efforts aimed at validating and understanding the etiologies of cancer-derived mutational signatures

are underway. In this review, we highlight key aspects of mutational signature experimental design and describe

the analytical framework. We suggest guidelines and quality control measures for handling whole-genome

sequencing data for mutational signature analyses and discuss pitfalls in interpretation. We envision that improved

next-generation sequencing technologies and molecular cell biology approaches will usher in the next generation

of studies into the etiologies and mechanisms of mutational patterns uncovered in cancers.

Introduction
Somatic mutations arising through cell-intrinsic and ex-

ogenous processes mark the genome with distinctive pat-

terns termed mutational signatures. The field began in

2012 with the demonstration of at least 5 such mutation

patterns in breast cancers [1]. Subsequently, 21 substitu-

tion signatures were identifiable across 30 cancer types

[2]. While there have been revisions of analytical compo-

nents of this field, there is a parallel trajectory evolving, fo-

cused on experimental validation, delineating aetiologies,

and mechanisms of mutagenesis. This is important, as the

field is quickly gaining traction in the clinical arena. To

provide the required confidence that mutational signa-

tures can be utilised clinically, it is necessary to cultivate

supporting experimental evidence for mutational signa-

tures to serve as potential biomarkers.

Several experimental studies to validate mutational sig-

natures have been conducted, employing various model

systems including C. elegans, yeast, human cancer cell

lines, organoids, and human induced pluripotent stem

cells among others [3–14]. There exist differences in how

these studies were performed and how data were proc-

essed, analysed, and interpreted with different algorithms.

In this review, we present guidelines that we hope will

facilitate future experiments and analyses. We focus on

considerations in experimental design and on the com-

putational framework for data analysis in mutational sig-

nature studies, particularly in human cellular model

systems. We further discuss issues that need to be con-

templated when linking an environmental mutagen or a

DNA repair process to a mutational signature, which is

not as straightforward as may superficially seem.

Experimental considerations
Choice of cellular model system

Three critical points require consideration when choosing

a human cellular system for investigating mutagenesis: the

average ploidy, its genetic background (cancer versus non-

cancerous), and the likelihood of on-going mutagenesis.

Ideally, a cellular model with a diploid (or haploid)

genome should be sought. Gene editing a haploid or dip-

loid model is more efficient than editing a polyploid

model. Having a lower ploidy also results in greater pro-

portional representation of mutations that arise in next-

generation sequencing reads, increasing the sensitivity of

mutation detection (Fig. 1a). In a hyper-triploid (3n+)

cell line like HeLa, newly acquired somatic mutations

may be present in one allele out of three, reported in ~

33% of reads. By contrast, a diploid line would report

mutations with greater certainty, in ~ 50% of reads.

There is also the consideration of sequencing cost: to

achieve comparable sensitivity of mutation detection, se-

quencing a haploid line or an experimental model with a
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Fig. 1 (See legend on next page.)
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smaller genome (e.g. yeast) would be more affordable

than sequencing a diploid or polyploid human model

system.

Non-cancerous lines may be preferable because they

are less physiologically abnormal. They may have “stem-

ness” properties such as in induced pluripotent stem

cells (iPSCs) and embryonic stem cells (ESCs), or they

may have tissue-specific properties such as tissue-

derived organoids and retinal pigment epithelial (RPE1)

cells. Non-cancerous lines are, however, more challen-

ging to grow in culture and less tolerant of manipula-

tion. They may be less likely to manifest mutational

signatures because DNA repair and checkpoint pathways

are functioning appropriately (or more so), and are thus

less permissive for revealing mutagenesis. For example,

TP53-intact iPSCs do not tolerate double-strand breaks

(DSBs), tend to undergo apoptosis quickly, and do not

generate rearrangements patterns. Stem cells may also

have other physiological properties that effectively pro-

tect them in their “stemness” state, and this could have

consequences on the likely manifestation of DNA dam-

age, for example, biochemical inactivation of certain

drugs because of higher expression of metabolic en-

zymes or enhanced drug efflux because of higher expres-

sion of multifunctional efflux transporters [15, 16].

By contrast, cancer cell lines thrive in culture and will

more likely yield patterns of genomic instability. None-

theless, they often have severely abnormal physiological

backgrounds, a multitude of pathway abnormalities ac-

quired in vivo and ex vivo, and thereby carry highly dis-

arrayed genomes (Fig. 1b). Cancer cell lines derived

from patients with relapsed disease are likely to be even

more pathophysiologically awry, with effects on muta-

tional outcome [17]. Such lines will have been exposed

to a multitude of natural and iatrogenic insults, may

have highly disordered genomes, and been subjected to

extensive rounds of selection pressure promoting evolva-

bility within the cell population. This could culminate in

increased mutagenesis. Counterintuitively, it could also

result in reduced mutagenesis if the physiological com-

pensation to overcome selective pressure leads to

physiological shifts that tend to suppress DNA damage

[17]. The chosen biological model must also be

amenable to clonal expansion following single-cell

bottlenecking, and here, cancer cell lines tend to fare

better than immortalised normal cells.

Additionally, it is crucial to know whether a cell line

model already carries intrinsic, on-going mutagenesis

because profound intrinsic mutational patterns could

drown out the signals being sought. For instance, the

colorectal cancer cell line DLD-1 BRCA2KO—albeit a

bona fide mismatch repair-deficient cell line—is often

used as an HR-deficient model due to its BRCA2 knock-

out (KO) status. WGS of DLD-1 BRCA2KO cells, how-

ever, shows marked mutational signatures associated

with MMR deficiency (Fig. 1b), likely to obscure the sub-

tler signals from BRCA2 deficiency or anything else that

would be engineered into this model system.

Some mutagenesis experiments may require an on-

going mutational signature in order to dissect mecha-

nisms of mutation formation. In that instance, it would

be valuable to identify cell lines with an on-going signa-

ture of interest, and engineer perturbations to see how

the signature deviates from its intrinsic state.

In a proof-of-principle study, we demonstrated the

feasibility of recreating cancer mutational signatures

in vitro using CRISPR-Cas9 gene editing in a near-

haploid cell model system, HAP-1 [7]. This cell line has

a very low level of intrinsic mutagenesis, mainly -

associated with cell culture that results in C>A muta-

tions (Fig. 1b), thought to be caused by oxidative stress

[18, 19]. In contrast to cancer cell lines such as H1299,

MDA-MB-231, HeLa which have higher average ploidy,

HAP-1 is also near-haploid—thus, sequencing was more

affordable (only sequenced to 15×). That it has a

propensity to revert to a diploid state is however recog-

nised, and regular inspection must be implemented to

detect such a situation for long-term maintenance in

culture [20, 21].

To investigate mutagenesis in cellular models, an iso-

genic “grandparental” sample of the cellular model sys-

tem of choice should be used as the genetic reference

from which all parental clones are derived (Fig. 2). Here,

parental clones refer to a single-cell derived colony that

has been through a particular experimental process, such

as gene editing of a particular locus and then selected

for the desired feature (e.g. knockout of gene X) or ex-

posure to a genotoxin with recovery post-exposure.

(See figure on previous page.)

Fig. 1 Choice of cellular model systems. a Effect of cellular ploidy on the proportion of NGS reads representing variant alleles and on variant

allele fraction (VAF) distribution. Blue and yellow lines joined by a dotted line represent forward and reverse reads, respectively (only parts of pair-

end reads are shown). Horizontal red lines represent the position of a variant on the sequencing reads. b Genome plots and 96-bar plots

representing mutational profiles of different cell lines. Shown from the outermost rings (genome plots) moving inwards are (i) the karyotypic

ideogram; (ii) base substitutions, plotted as rainfall plots (log10 (intermutation distance) on the radial axis; dot colour: blue, C>A; black, C>G; red,

C>T; grey, T>A; green, T>C; pink, T>G); (iii) insertions shown as short green lines; (iv) deletions shown as short red lines; (v) major (green blocks,

gain) and minor (red blocks, loss) copy number alleles; and (vi) rearrangements shown as central lines (green, tandem duplications; red, deletions).

Mutation burdens in the genome plots are non-representative here as different cell lines have had different lengths of time in culture. CML, chronic

myelogenous leukaemia; hiPSC, human induced pluripotent stem cell ; HPV, human papillomavirus; NSCLC, non-small cell lung carcinoma
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Genetic manipulation to generate gene-edited parental

clones

Most mutational signatures extracted from cancers are

associated with either exogenous mutagen exposures

(e.g. signature 7 with UV; signature 22 with aristolochic

acid I) or dysregulation of key DNA repair/replication

genes (e.g. signature 3 with BRCA1/BRCA2 mutations;

signature 10 with POLE mutations). One of the most

straightforward experimental strategies to explore muta-

tional signatures is therefore to knock out a gene of

interest, knock in an activating mutation, or overexpress

a particular protein, to see if the genetic manipulation

instigates mutagenesis.

To generate knockouts, aliquots of cells are exposed to

reagents designed to target genes of interest. Negative

editing controls should be included in parallel experi-

ments, in which cells receive no manipulations or non-

targeting versions of the gRNA. These controls are in-

formative of background and/or intrinsic mutagenesis

inherent to the cell line models. Following enrichment

of edited cells by selection markers—most commonly in

the form of a fluorescence reporter or an antibiotic re-

sistance gene—multiple single-cell edited clones can be

isolated and screened. Those carrying desired mutations

in the given gene are designated parental clones (Fig. 2a).

In scenarios where an empty vector or a scrambled

gRNA control is unavailable, a clone that has been

through targeting for gene knockouts but has neverthe-

less survived without biallelic alteration in the given

gene could be used as the “wildtype” control.

In a knockout or knockdown experiment, loss or

downregulation of the proposed target can be ascer-

tained through the confirmation of protein loss via west-

ern blot or mass spectrometry [22]. Functional assays

may be performed—for example, RAD51 formation

assay for an HR gene knockout, although the directness

of these relationships is often assumed.

Once verified, parental clones are cultured for a desig-

nated period to allow for mutation accumulation

(Fig. 2a). The time required for mutation accumulation

may vary between targeted genes and would need to be

determined empirically, striking a balance between the

time in culture and the cost of the experiment.

Some gene KOs may not produce discernible muta-

tional signatures owing to low rates of mutagenesis

under standard cell culture conditions. Artificially indu-

cing DNA damage such as with cisplatin could magnify

mutagenesis beyond its intrinsic baseline mutation rate,

increasing the likelihood of uncovering a signature. It

could, however, produce a non-physiological pattern be-

cause of the exogenous stressor, and thus, interpretation

of such patterns should be made with the experimental

set-up in mind. Using alternative isogenic models that

are more permissive for mutagenesis (e.g. mouse

Fig. 2 Experimental designs. a An example of a genetic manipulation experiment to link specific gene edit to mutational patterns. Note that upon parental

clone derivation, mutations might accumulate over several cellular generations to reveal mutational patterns. The number of doublings (n) required for

mutation accumulation is gene- and/or model system-specific. b An example of a genotoxin treatment experiment to link specific genotoxin exposure to

mutational patterns. Here, mutations accumulate as a result of treatment; treated cells (and controls) are effectively the parental clones. Repeated cycles of

treatment following recovery may help amplify the signals by increasing the mutation burden. It is imperative to sequence grandparental clones as the

normal genetic reference. The background mutagenesis can be determined through the control subclones
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embryonic fibroblasts, chicken DT40 lymphoblast cell

line, or cancer cell lines) may increase mutation rates

[23–28]. However, using different cell-based systems of

different species or with different genetic backgrounds

could result in diverse mutational signatures and must

be taken into consideration when interpreting data. For

example, cyclophosphamide and cisplatin signatures in

DT40 are different from those observed in human cellu-

lar models [28].

Genotoxin exposure

To interrogate mutational signatures associated with ex-

posure to environmental mutagens or genotoxins, aliquots

of an isogenic cell line are treated with the chemical in

question (Fig. 2b). Appropriate solvent controls must be

considered. For example, cisplatin stock should be consti-

tuted in 0.9% NaCl instead of DMSO as the latter could

cause ligand displacement and reduce cytotoxic effects of

the compound. Furthermore, when treated with cisplatin,

cells should be treated with 0.9% NaCl in a parallel control

experiment to detect potential mutagenesis incurred by

the solvent. In addition, many compounds are pro-

mutagens and require cytochrome P450-mediated meta-

bolic activation into DNA-reactive intermediates to exert

DNA damaging effects. Accordingly, when using these

mutagens, the experiments could be performed in the ab-

sence and presence of an exogenous metabolising system

such as the S9 rodent liver-derived metabolic enzyme

mixture with the mutagen of interest [8].

Treating cells with either a chronic, low-dose or punc-

tuated, high-dose exposure becomes another point to

consider. Typically, half-maximal inhibitory concentra-

tion (i.e. IC50 dose) of a compound is used as a starting

point. In a previous study, we treated human iPSCs with

79 environmental mutagens using doses corresponding

to either the IC50s or IC80s of the compounds for 2 to

24 h, followed by single-cell bottleneck subcloning upon

treatment recovery [8]. Notably, these cells were only

treated once. Repeated cycles of treatment following

recovery could conceivably increase mutation burden.

Selection of resistant clones might, however, develop

during a chronic experimental process and needs to be

considered particularly if no signatures are seen when

they were expected.

Following treatment, successful DNA damage induc-

tion is most commonly confirmed via immunofluores-

cence staining or western blotting of DNA damage

response proteins. Routinely, gH2Ax, phospho-p53,

phospho-p21, pRPA, pATM, and pATR are used as

markers for confirming DNA damage and DNA damage

response (DDR) signalling. Nevertheless, successful

DNA damage induction does not always correlate with

mutagenic outcome; the reverse is also true [8]. For in-

stance, formaldehyde treatment does not induce

detectable DDR signalling in human iPSC cells but is as-

sociated with a mutation pattern, whereas acetaldehyde

and acrylamide are able to elicit DDR, but do not pro-

duce detectable mutation patterns [8]. Thus, DDR in-

duction does not necessarily predict mutagenesis.

Mutation accumulation phase

To detect mutation patterns in experiments involving

gene editing, the parental clone is grown under standard

culture conditions, for an empirically determined num-

ber of cell doublings to allow for mutations to accrue at

a steady state (Fig. 2a). For accurate estimation of muta-

tion rate per cellular division, proliferation assays could

be considered to determine the doubling time of the

parental clones. For experiments involving exposure to

environmental mutagens or protein overexpression, mu-

tations accumulate as a consequence of the exposure.

Cells are usually given time to recover post-exposure.

At the end of the mutation accumulation phase, the

parental cell population will have increased in size and

be polyclonal, meaning that each cell will carry its own

set of mutations, although some very early, shared muta-

tions may be present. Thus, it is necessary to perform a

single-cell subcloning step at the end of mutation accu-

mulation in the parental clone (Fig. 2).

Single-cell bottleneck

Following the expansion of parental clones, multiple

single-cell subclones can be derived through limiting di-

lution or fluorescence-activated cell sorting with a flow

cytometer (FACS). This single-cell bottleneck is neces-

sary to permit detecting mutagenesis that has arisen in

individual cells in the parental population using current

sequencing technologies. Multiple subclones are re-

quired for each gene edit or treatment condition, and

serve as technical replicates, permitting assessment of

the consistency of mutational signatures between differ-

ent subclones. Generally, we find that sequencing more

replicate subclones (≥ 3) provides greater discriminatory

power to discern mutational signatures than increasing

mutation accumulation time in culture.

To ensure subclones are derived from a single cell, cel-

lular isolation can be monitored real-time using live-cell

analysis systems such as an IncuCyte. If a live-cell stain

(e.g. Calcein) is used, single-cell sorted culture plates can

be imaged with fluorescence microscopy to confirm that

each well only contains a single cell.

Subclones are expanded in culture until sufficient cell

numbers are reached for WGS without PCR amplifica-

tion. For customary 30-fold WGS, approximately 250–

500 ng of genomic DNA is required. A diploid human

cell contains roughly 6 pg of genomic DNA. Thus, ap-

proximately 100,000 cells are needed for whole-genome

sequencing a sample.
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Computational analysis
WGS is performed on single-cell derived subclones fol-

lowing mutation accumulation. The grandparental sam-

ple is used as the genetic reference to subtract variants

that have arisen prior to the grandparental sample and

to subtract all shared variants in the parental samples.

This allows detection of new (de novo) mutations that

arise as a consequence of experimental manipulation.

Alternatively, parental clones can also be used as a refer-

ence, although this would incur extra sequencing costs

as many additional parental clones would need to be

sequenced.

After obtaining WGS, short-read sequences of all sam-

ples are independently aligned to the reference genome.

All classes of somatic mutations are called in subclones

against the parental/grandparental clone. In the follow-

ing section, we demonstrate the use of WGS data for

assessing the quality of and relationships between ex-

perimental samples and for determining experimentally

derived mutational signatures.

Quality control

To ensure the observed mutational signatures are cor-

rectly associated with the proposed experimental condi-

tions, several essential quality control steps may be

implemented (Fig. 3a).

First, WGS offers a rapid, straightforward way of

checking the genotype of an edited cell line. Successful

CRISPR-Cas9 editing of a gene should result in

short indels near the gRNA-targeted sequence for a

knockout.

Similarly, off-target effects can be detected by expli-

citly seeking frameshift indels and large structural vari-

ants in the rest of the genome. Potential off-target sites

for a given gRNA sequence can be queried by using rele-

vant bioinformatic tools, e.g. COSMID (http://crispr.

bme.gatech.edu) [29] and WGE (https://www.sanger.ac.

uk/htgt/wge/) [30]. Unintended edits might affect a crit-

ical gene and result in unexpected mutator phenotypes.

Moreover, it is important to ensure that the model

system remains stable and does not develop overt malig-

nant potential through the experimental process. As a

rule of thumb, chromosome copy number in all sub-

clones should remain relatively unchanged from their

parent unless the treatment or edits are expected to

generate copy number variation. Evidence of selection,

including clonal and subclonal mutations in all DNA re-

pair genes and TP53, and driver amplifications should

remain absent from all samples. To ensure that experi-

mentally generated signatures are not a consequence of

another genetic defect acquired during culture or treat-

ment, mutations in coding sequences that could influ-

ence mutational outcomes should be sought.

Second, variant allele fractions (VAFs) can be used to

ascertain whether subclones were derived from single

cells. For a single-cell derived sample, all acquired muta-

tions should have VAFs of ~ 0.5 in a diploid model be-

cause they are present on one of two possible alleles in a

heterozygous state (Fig. 1a). Likewise, for haploid and

triploid cells, the VAFs are expected to be normally dis-

tributed around 1 and 0.33, respectively. Deviation of

VAF distribution from the expected may indicate impur-

ity of single-cell isolation (Fig. 3a). Critically, polyclonal

or mosaic subclones often show lower average VAFs and

falsely elevated mutation burdens, resulting in an over-

estimation of mutation numbers. Including these sam-

ples in the quantitative analysis will likely confound the

estimation of mutation rate and burden associated with

a particular experimental condition. Nevertheless, poly-

clonality most often does not alter the mutational profile

of subclones, as the patterns may be qualitatively identi-

cal even if the quantitative burden of mutations is

inaccurate.

Lastly, the likelihood of laboratory errors increases

when multiple experimental conditions are investigated

simultaneously. To uncover laboratory mix-ups, rela-

tionships between parental clones and their respective

subclones can be inspected to detect potential mislabel-

ling of subclones. As all subclones are originally derived

from their parental clones, all mutations detected in par-

ental clones should be present in their respective sub-

clones, but not in subclones derived from other parents.

Based on this genetic concept of relatedness, surveying

shared mutations among all samples would enable the

identification of mislabelled samples (Fig. 3b) [31].

Signature channels

Each mutation type (substitution, double substitution,

indel, rearrangement) has its distinct set of channels that

are used to define signatures. While it would be ideal to

have identical channels for experimental data and

cancer-derived data, this is not always possible because

the burden of mutagenesis can vary greatly between ex-

perimental model systems. The ratio of mutations to sig-

nature channels is important to consider: too many

channels for low yield of mutations will dilute any signal;

likewise, too few channels may not offer the resolution

required for deriving biological insights. Substitution

channels of experimental models tend to be identical to

the ones used for cancers. Indel and rearrangement

channels tend to be collapsed into fewer channels. To

make a comparison with cancer-derived signatures, it is

more effective to collapse cancer-derived signatures into

the same channels as the experiments rather than

stretching the experimental channels to suit the cancer

channels.
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Substitution channels mirror that which is customarily

used in literature. Sequence context immediately 5′ and

3′ to each mutated base is taken into consideration.

Since there are 6 classes of base substitution (C>A, C>G,

C>T, T>A, T>C, T>G) and 16 possible sequence con-

texts for each mutated base (5′ A, C, G, or T and 3′ A,

C, G, or T), there are 96 possible channels for substitu-

tion signature. Double substitutions are two adjacent

Fig. 3 Quality control (QC) of WGS data. a Using WGS data to perform QC on experimental samples. b Using shared variants between parental

and daughter subclones to identify relationships between samples. Three scenarios are presented. The upper panel shows two histograms per

experiment, with the total number of mutations per sample (horizontal histogram) and shared mutations between samples (vertical histogram, in

decreasing order). Subclones and parental clones for each scenario are also noted. Subclones that share mutations are dotted black and

connected with a line. The lower panel depicts hypothetical experiments. A red arrow indicates shared mutations between daughter subclones

and parental clones. Scenario 1: all subclones are correctly derived from the same parental clone as they share mutations among themselves and

with their designated parent, and also have unique mutations. Scenario 2: all subclones are derived from the same parental clone as they share

high numbers of mutations among themselves but not with the sequenced parent. In this example, an incorrect parental clone (purple) has been

sequenced. Scenario 3: subclones are derived from a mixed parental population. Not all subclones share a high number of mutations among

themselves and with their sequenced parent. Subclones 1, 4, and 6 are likely from one lineage; subclones 2, 3, and 5 are from a different lineage.

Note that clonal expansion for isolated daughter subclones is not depicted in the diagram for simplicity
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bases that are mutated, indicating the existence of com-

monly occurring mutagenic events that cause substitu-

tion mutation at neighbouring bases. Double

substitution signatures can be defined by 78 strand-

agnostic combinations [8, 32]. Here, the 5′ and 3′ se-

quence contexts are not commonly considered because

it creates (4 × 78 × 4 = 1248) too many channels for the

yield of double substitutions typically seen in a sample

(often < 5 in untreated samples).

Channels for small indels (< 100 bp) generally incorp-

orate the class (deletion versus insertion), motif CG/TA

content, and size (1 bp or larger), as well as the nature of

flanking sequence at the indel junction: repeat-mediated

indels resulting from replication strand slippage or

microhomology-mediated indels formed during the

repair of DNA double-strand breaks, or none. If poly-

nucleotide repeats flank the motif, the length of the re-

petitive sequence is also often considered. In some

instances, the variation of indel classifications might be

insightful in revealing the underlying mutagenesis pat-

terns. For example, for mutagens that are known to

affect particular nucleotide preferentially, it might be

valuable to extend the indel classification to consider the

effect of sequence context [8].

Rearrangement signatures are broadly categorised based

on four types of rearrangements, namely tandem duplica-

tions, deletions, inversions, and translocations, with further

consideration of sizes of the rearranged fragments [7].

An analytical framework to identify mutational signatures

By comparing the mutational burdens and profiles of ex-

perimental subclones with controls, experimental condi-

tions that effectively produce signatures can be identified.

The determination of experimentally generated muta-

tional signatures may vary depending on experimental set-

tings, but a general workflow encompasses: (1) identifying

background/intrinsic signatures in the chosen cellular sys-

tem; (2) detecting a quantitative difference in mutation

counts between experimental subclones and controls, as

well as a qualitative difference in the mutational spectra

between experimental subclones and controls; (3) sub-

tracting background/intrinsic signatures to obtain experi-

mentally associated signatures; and (4) evaluating the

stability of extracted mutational signatures (Fig. 4).

Pervasive intrinsic signatures may be distinctive in dif-

ferent cell lines. Growing cells in culture also contributes

substantial DNA damage that results in particular

patterns (Fig. 1b). These two potential sources of back-

ground mutagenesis are not negligible; thus, it is necessary

to identify and subtract them to determine experimentally

generated mutational signatures. In practice, the averaged

mutation burden and profile of control subclones can be

used to represent the background or intrinsic mutagenesis

of the chosen cellular system.

The mutational profile of experimental cells is a linear

combination of the mutational signature of background

mutagenesis and the pertinent experimental manipula-

tion. In principle, if a particular manipulation, whether

mutagen treatment or gene edit, generates mutational

signatures, one would expect additional mutagenesis

above background mutagenesis (Fig. 4). To determine

whether there is a significant quantitative increase of

mutation numbers in experimental subclones compared

to control, bootstrap resampling techniques can be used

to construct an “expected” distribution of mutation bur-

dens of control subclones. The likelihood (p value) of

observing a significantly different mutation burden for

experimentally generated subclones can thus be calcu-

lated through a permutation test (Fig. 5a).

To ascertain whether there are qualitative differences

in mutation profile between experimental subclones

and controls, the distinction between mutation profiles

can be measured by the signal-to-noise ratio (SNR)

(Fig. 5b). The Euclidean distance between the muta-

tional profiles of experimental versus control subclones

defines the “signal”, while the variability of mutation

profiles among subclones defines the “noise” parameter.

A large SNR value indicates that the difference of muta-

tional profiles between experimental subclones and

controls is sufficiently distinguishable from their noises,

and therefore, the experiment-associated signature may

be separated from the background signature with rela-

tive ease. If there is inadequate number of controls for

constructing a prior distribution, alternative methods

including clustering approaches (e.g. tSNE or contrast-

ive PCA) can be used to identify treated subclones that

are distinct from controls. Notably, the number of sub-

clones per experiment and the burden of mutation as-

sociated with each experiment are critical to the

robustness of the results.

The experiment-associated mutational signature can

then be obtained by subtracting the background muta-

tional signature from the mutational profile of treated

subclones (Fig. 4b). To do so, each experimental sub-

clone is bootstrapped to generate a distribution of muta-

tion numbers for each signature channel. Based on this

distribution, the upper and lower boundaries (99% confi-

dence interval, CI) of mutation numbers for each

channel can be calculated. Likewise, a bootstrapped

background signature profile can also be generated using

the averaged mutation profile and mutation counts. This

background can then be subtracted from the centroid of

the bootstrapped experimental subclone profiles. This

may result in negative values for some channels. How-

ever, as long as the numbers fall within the 99% CI of

the channels, negative values can be set to zero. Other-

wise, the initial background mutation burden has to be

reduced.
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Ideally, mutational signatures extracted from sub-

clones of the same parental clone should be consistent

(Fig. 4b). However, variation may be observed among

subclones, particularly when the experiments only incur

low mutation burden. The stability of a mutational sig-

nature can be reported by calculating the cosine similar-

ity between signatures extracted from subclones. Higher

cosine similarity (e.g. > 0.9) lends confidence to the ac-

curacy of extracted mutational signatures.

Discussion and perspective
As an increasing number of mutational signatures in cancers

are being brought to light, studies offering experimental val-

idation have also emerged.

Fig. 4 Principles of extracting mutational signatures from experimental samples. a Mutation burdens and profiles of human iPSCs treated with

different environmental mutagens. Treatments that generate a mutational signature typically show increased mutation burdens and/or altered

mutational profiles in the subclones compared to control (background). Note that effect sizes vary for different perturbations. b Determining

experimentally generated mutational signatures
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Association, not causation

There remains a need for some caution in interpretation,

even of experimental data. A particular perturbation

such as treatment with a chemical, for example, 5-

fluorouracil (5-FU) may produce a signature that we rec-

ognise [12]. In this case, signature 17, characterised by

T>G mutations, widely reported in cancers, of hitherto

unknown aetiology. It would, however, not necessarily

follow that 5-FU directly causes signature 17. Signa-

ture 17 is observed across a broad spectrum of pri-

mary tumours that have never been treated with 5-FU

and arises spontaneously in untreated mouse embry-

onic fibroblasts [33–36]. It is far more likely that 5-

FU is one of many compounds or physiological

stressors of the cell, which, in order to survive, re-

quires a physiological adaptation that results in this

hypermutator signature phenotype. In other words,

the signature is a secondary, indirect effect of the

treatment [37, 38]. These possibilities must be taken

into consideration when interpreting signature data,

regardless of whether experimental or cancer-derived.

As an interesting example, the current COSMIC sig-

nature 11, characterised by C>T transitions, was pre-

viously attributed to temozolomide because the

signature was enriched in tumours of patients that

had been treated with this alkylating agent [2]. How-

ever, systematic studies using the family of alkylating

agents on human IPSCs suggest that the signature of

temozolomide is defined by T>C mutations. Another

alkylating compound, 1,2-DMH, is instead similar to

signature 11 [8, 39].

Fitting of a priori signatures

Attributing aetiologies to mutational signatures is not as

straightforward as may superficially seem. Supervised fit-

ting of signatures could lead to falsely suggested rela-

tionships. When we take a set of allegedly “known

signatures” and ask the question which of those signa-

tures are present in a new dataset, this process, called

“fitting”, is purely mathematical. Presented with 20 po-

tential signatures, the algorithm will do its best to fit all

20 signatures to the data, regardless of whether they are

biologically present or not. Thus, presenting signatures

that may not be present in a sample but asking the algo-

rithm to fit it to the best of its ability could result in

reporting of biological processes that are not present in

the sample.

Fig. 5 Computational characterisation of experimentally generated mutational signatures. a Determination of quantitative difference (i.e. mutation

number increase) between experimentally generated subclones and controls through a permutation test based on the distribution of baseline

mutation burden in control subclones (orange). A p value≤ 0.01 indicates significantly different mutation burden for experimentally generated

subclones (red). b Schematic illustration of the distinction of mutational spectra between control and experimental subclones using the signal-to-

noise ratio (SNR). Here, μControl and μExp denote the means of the mutational profiles of control subclones and experimental subclones,

respectively; σControl and σExp denote the standard deviations of the mutation profiles of control and experimental subclones, respectively. In this

example, subclones of experimental condition B can be more confidently separated from the control subclones
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A particularly notorious example is the finding of the

“smoking signature” or signature 4 in a variety of differ-

ent tumour types, even when it is unlikely that tobacco

carcinogens could reach said tissue (e.g. prostate). That

is because signature 4 is dominated by C>A/G>T trans-

versions and many other signatures also have similar

C>A/G>T mutations. The fitting algorithm invokes sig-

nature 4 in tissues that have C>A/G>T mutations be-

cause it is such a strong phenotype.

Fitting other previously known signatures on experi-

mental data would incur similar risks.

Using cosine similarity

Mathematically, cosine similarity measures the similarity

between two vectors, in this case, the resemblance be-

tween two multichannel mutation profiles. However, it

does not measure similarity equally across all signatures,

working best for sparsely populated signatures that have

prominent features (i.e. prominent peaks), and less effect-

ively for flatter, nondescript profiles. Cosine similarity is

also not a linear metric—a measure of 0.8, for example,

does not imply a high level of correlation. While a meas-

ure of 0.99, by contrast, does imply a high level of correl-

ation, it does not mean that they are the same or caused

by the same mechanisms. Likewise, the same gene defect

or exposure can cause slightly different mutational signa-

tures in different tissues, cautioning against the blind reli-

ance on this metric to assess the similarity between

signatures.

Signatures and aetiologies do not necessarily have 1-to-1

mappings

Some experiments can induce multiple signatures per

treatment or knockout. If these signatures arise in differ-

ent classes, they are immediately interpretable as distinct

signatures of different classes. However, if a gene defect

produces multiple mutational signatures of the same

mutation class, it will not be possible to distinguish them

from each other instantly. Additional genetic or physio-

logical stressors may be required to separate two signa-

tures of the same mutation class.

Disparate mutational processes can also produce the

same mutational signature outcome. For example, a clas-

sical T>A mutation signature that has been associated

with aristolochic acid I is nearly identical to the T>A

signature induced by Dibenzo[a]pyrene Diol-epoxide

(DBPDE), a polycyclic aromatic hydrocarbon that is

present in tobacco smoke [8]. These disparate compounds

likely converge on the genome in the same way, producing

an adduct on adenine that results in a similar outcome.

This surprising, humbling result is one that underscores

the reason why we cannot simply assume that we under-

stand the full picture based on performing correlative

genomic analyses alone. Fundamentally, a 1-to-1 mapping

of one gene to one signature or one mutagen to one signa-

ture is unlikely to be the norm.

Signal sizes

The mutation burden generated by different environ-

mental mutagens and different gene knockouts is highly

variable. In general, mutagenesis is more pronounced in

experiments where external genotoxins are introduced.

Notably, many mutagens or gene knockouts do not pro-

duce a detectable increase in mutation burden in experi-

mental systems; their signal sizes can be much smaller

than observed in human cancers. Several possible rea-

sons might account for this. First, the cellular system of

choice may have a genetic background that suppresses

DNA damage. Second, excessive or lethal DNA damage

might cause apoptosis in normal cells, e.g. TP53-intact

iPSCs do not produce rearrangement signatures. Third,

the culture time and proliferation rate of the cell might

affect the rate of mutation accumulation and therefore

the signal size. Fourth, there is genetic redundancy of

DNA repair in the cell. As a result, some DNA repair

gene knockouts may not produce a direct mutational

consequence. Fifth, some DNA repair pathways mainly

target damage caused by external environmental muta-

gens, e.g. xeroderma pigmentosum (XP) genes of nucleo-

tide excision repair are involved in repairing UV-

induced cyclobutane pyrimidine dimers (CPDs). In

normal cell culture condition (no UV radiation), XP

gene knockouts indeed do not generate mutational

signatures.

Caution in using experimentally generated signatures

Environmental exposures that were the earliest to be as-

sociated with patterns in human cancers, well before the

advent of whole-genome sequencing such as the signa-

tures associated with tobacco, aristolochic acid, and

ultraviolet light, are precisely the experimental treat-

ments with the largest signals. They are orders of magni-

tude higher in mutagenicity compared to many other

mutagens and hence were readily detected in many dif-

ferent experimental models historically. We observed

smaller signals from exposures that have weaker DNA

damaging impact.

In seeking new “environmental causes of cancer”, we

must do so with some caution: Just because we now

know the signatures associated with these other agents,

does not mean that we can and should use all of these

signatures in an a priori way to seek out new causes of

cancer in all future cancer datasets. Some thoughtful

consideration is required. As mentioned previously,

when using a set of a priori signatures, this purely math-

ematical step is designed to seek out all possible

suggested signatures in the dataset, regardless of whether
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they are genuinely biologically there or not. Thus, we

caution the (mis) use of experimentally generated (or

any) mutational signatures—poorly considered use of

signatures during the fitting step could result in mis-

takenly interpreting the presence of an environmental

mutagen when it is not in a new dataset. Indeed,

mis-assigning the presence of an occupational muta-

gen, for example, could lead to legal claims that are

inappropriate.

Future directions in understanding mechanism

Future studies to explore mutagenesis by inducing specific

types of DNA damage in selective DNA repair defective gen-

etic backgrounds represent an attractive avenue to fine-tune

our understanding of and to gain further insights into the

mechanisms of mutagenesis. To achieve that, direct,

genome-wide unbiased and specific measurement of the

DNA lesions and their repair is required. For example, by

coupling Damage-seq with XR-seq for cisplatin damage [40–

42] or DSBCapture seq [43] with whole-genome sequencing

for DSBs, one could map precisely where the damage occurs

in the genome and chart how cells differentially repair or

misrepair the induced damage in different parts of the gen-

ome. Dissecting these mechanisms will help us understand

the regional heterogeneity in damage sensitivity and the ac-

cessibility and efficacy of DNA repair machinery.

Decreased sequencing cost and technical advances in

single-cell WGS, as well as long-read sequencing tech-

nologies (e.g. PacBio sequencing), will likely transform

the field. Long-read sequencing could uncover more and

resolve previously understudied large and complex

structural variants [44]; single-cell WGS would allow

tens and hundreds of cells to be profiled in a single ex-

periment, hence offering more statistical power while at

the same time simplifying the experiments by circum-

navigating the need for single-cell bottlenecking. Cur-

rently, single-cell WGS data still suffer from high levels

of noise and artefact variants introduced during whole-

genome amplification and cell lysis process [4]. When

more single-cell WGS data become available, such arte-

factual signatures may be better defined and used for fil-

tering out false-positive mutations.

We hope the guidelines presented here could help

streamline the design and analysis of future studies.
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