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 29 
ABSTRACT 30 
 31 
Esophageal adenocarcinoma (EAC) has a poor outcome, and targeted therapy 32 
trials have thus far been disappointing due to a lack of robust stratification 33 
methods. Whole-genome sequencing (WGS) analysis of 129 cases demonstrates 34 
that this is a heterogeneous cancer dominated by copy number alterations with 35 
frequent large scale rearrangements. Co-amplification of receptor tyrosine 36 
kinases (RTKs) and/or downstream mitogenic activation is almost ubiquitous; 37 
thus tailored combination RTKi therapy might be required, as we demonstrate in 38 
vitro. However, mutational signatures reveal three distinct molecular subtypes 39 
with potential therapeutic relevance, which we verify in an independent cohort 40 
(n=87): i) enriched for BRCA signature with prevalent defects in the homologous 41 
recombination pathway; ii) dominant T>G mutational pattern associated with a 42 
high mutational load and neoantigen burden; iii) C>A/T mutational pattern with 43 
evidence of an ageing imprint. These subtypes could be ascertained using a 44 
clinically applicable sequencing strategy (low coverage) as a basis for therapy 45 
selection. 46 
 47 
INTRODUCTION 48 
 49 
Esophageal cancer is the eighth most common cancer world-wide, and the sixth most 50 
common cause of cancer-related deaths [1]. There are two main subtypes, squamous 51 
and adenocarcinoma, and the incidence of EAC has increased 4.6-fold amongst white 52 
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males in the US over the past three decades [2]. It is an aggressive disease, with early 53 
loco-regional spread, resulting in a median overall survival of less than a year [3].  54 

Curative treatment has been based on esophagectomy, with the addition of peri-55 
operative chemotherapy or chemoradiotherapy improving survival [4–6]. The use of  56 
molecularly targeted agents has lagged behind that of other cancers and the results so 57 
far have been disappointing. Indeed, only Trastuzumab treatment has led to any 58 
improvement in outcomes, and this was only in ERBB2 positive cases, in metastatic 59 
disease [7]. Advances in this area have been hampered by the lack of understanding of 60 
the molecular drivers of this cancer. 61 

Major sequencing efforts have enabled new classifications of cancers based on their 62 
molecular parameters [8, 9]. The emerging genomic biomarkers are based on single 63 
nucleotide mutations, structural rearrangements and mutational signatures [10–14], 64 
and in some instances these have led to the development of stratified trials with the 65 
promise of improved patient outcomes [15]. 66 

Exome sequencing and a small number of whole-genome sequences have uncovered a 67 
limited number of potential driver mutations in EAC. However, as many of the mutations 68 
occur in tumor suppressor genes (TP53, SMAD4, ARID1A), actionable oncogenic 69 
mutations have remained elusive [16, 17]. What is emerging is a picture of genomic 70 
instability with complex rearrangements leading to significant heterogeneity between 71 
patients [18]. What is still lacking is an understanding of how to use these complex 72 
molecular data to stratify patients to help inform clinical decision making.  73 

Here, we present WGS data for over 100 cases performed as part of the International 74 
Cancer Genome Consortium, with verification of key findings in independent cohorts. 75 
We have used genomic information coupled with expression data and in vitro 76 
experiments to better understand the failure of targeted therapies and to uncover 77 
mechanisms of disease pathogenesis that may inform tumor classification and therapy 78 
selection. 79 

 80 
 81 

RESULTS 82 
 83 

Large-scale alterations dominate the EAC landscape 84 
 85 

WGS data from 129 EAC patients (including tumors from the gastroesophageal junction, 86 
Siewert type 1 and 2) have allowed us to comprehensively catalog the genomic 87 
alterations in this cancer, including the large-scale structural rearrangements not 88 
detectable from exome sequencing. The clinical characteristics of the cohort are typical 89 
for the disease (Supplementary Table 1). 90 

As previously noted, point mutations are abundant in this cancer [16]. However, the 91 
overall genomic landscape suggests a disease driven by structural variation and copy 92 
number changes (Fig. 1 and Supplementary Figure 1). Analysis of a combined cohort of 93 
111 EAC cases from TCGA [19] and Nones et al [18] confirms a dominance of copy 94 
number alterations, compared to point mutations, in the majority of cases 95 
(Supplementary Figure 2). 96 

When examining the specific loci affected, potential gene driver events were highly 97 
heterogeneous between cases, and structural changes again dominated (Fig. 1). Among 98 
the genes altered in 10% or more of cases, many more were rearranged, amplified or 99 
deleted than were affected by indels or nonsynonymous point mutations. We observed 100 
novel recurrently rearranged genes, including SMYD3 in 39% of cases, RUNX1 27%, 101 
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CTNNA3 22%, RBFOX1 21%, the CDKN2A/2B locus 18%, CDK14 16% (important 102 
transcriptional, signalling and cell communication regulators), and fragile sites (FHIT 103 
95%, WWOX 84%). Somatic L1 mobile element insertions were also abundant. Detecting 104 
inserts that had transduced unique flanking sequences identified an average of 25 105 
inserts/tumor (range 0–1127), including those already known to transduce [20, 21] and 106 
novel examples. These numbers are substantially higher than previously reported [20] 107 
because of improved sensitivity. Mobile element insertions were found in signalling, cell 108 
cycle and cell adhesion regulators: ERBB4 - 6/129,  – 5/129, CTNNA2 – 4/129, CDH18 – 109 
3/129, SOX5 – 2/129. 110 

Significantly amplified loci according to GISTIC2.0 [22] (7q22, 13q14, 18q11 etc.) 111 
comprised genes like ERBB2, EFGR, RB1, GATA4/6, CCND1, MDM2 among others, while 112 
the top significantly deleted loci in the cohort (9p21, 21p11, 3p14, etc.) showed losses of 113 
e.g. CLDN22, CDKN2A, CKN2B, as well as several fragile sites (Supplementary Figure 3 114 
and Supplementary Tables 2 and 3).  115 

The most frequent somatic mutation/indel events included a number of known driver 116 
genes with roles in DNA damage, signal transduction, cell cycle and chromatin 117 
remodelling. Seven of these reached statistical significance as likely driver genes, as 118 
inferred by MutSigCV [23] (Fig. 1e and Supplementary Table 4): TP53 (81%), ARID1A 119 
(17%), SMAD4 (16%), CDKN2A (15%), KCNQ3 (12%), CCDC102B (9%), CYP7B1 (7%), 120 
largely as previously described [16, 17]. In addition SYNE1 was mutated in 23% of cases, 121 
but did not reach significance by MutSigCV. 122 

The  high frequency of genomic catastrophes observed was consistent with a 123 
significant role of larger-scale events in this disease - chromothripsis: 39/129 patients 124 
(30%), kataegis: 40/129 (31%), complex rearrangement events: 41/129 (32%), 125 
(Methods, Figure 1f and Supplementary Figures 4–7). The complex rearrangements 126 
included: focal amplifications with BFB pattern (11/129, 9%); focal amplifications 127 
<5Mb-wide with irregular copy number amplification steps (26/129, 20%); focal 128 
amplifications 5–10 Mb-wide with symmetric copy number amplification steps (10/129, 129 
8%); double minute-like patterns (3/129, 2%); and subtelomeric BFBs (1/129, 1%) 130 
(Supplementary Figure 7). The chromothripsis and BFB/complex rearrangement event 131 
frequencies were in a similar range to that described by Nones et al [18] – 33% and 27%, 132 
respectively. Kataegis rates were lower than that previously reported (19/22 = 86%), 133 
likely due to our more stringent criteria for calling (Methods). An enrichment of C>T and 134 
C>G mutations was observed in kataegis regions, as previously reported [24] 135 
(Supplementary Figure 5).  136 

Hence, this is a heterogeneous cancer dominated by copy number alterations and 137 
large scale rearrangements. Clinically meaningful genomic subgroups relevant for 138 
therapy are not immediately apparent from these analyses. 139 
 140 
 141 
RTK receptors and their targets are pervasively disrupted in EAC  142 

 143 
Next we examined the genomic data to understand possible reasons for the 144 
disappointing results seen with many of the trials targeting growth factor receptors. 145 
Resistance to RTK therapy generally results from co-amplifications of alternative RTKs 146 
or amplification/activation of downstream mitogenic pathways. In our cohort we 147 
observed widespread gene amplification across multiple RTKs, as well as downstream 148 
within the MAPK and PI3K pathways. Such patterns were similar among 149 
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endoreduplicated and non-endoreduplicated samples, as well as in a panel of cell 150 
models (Fig. 2a, 2b).  151 

When considering high level amplifications (GISTIC cut-off greater than 2), we  152 
observe similar rates to those reported previously for EGFR and ERBB2 [25, 26]. ERBB2 153 
was the most amplified RTK (22/129 patients = 17%), followed by EGFR (14/129 154 
patients = 11%). Other commonly over-expressed RTKs included MET and FGFR.  All 155 
these receptors are targeted in clinical trials with ongoing recruitment (see URLs). When 156 
considering lower level amplifications across these RTKs and downstream signaling 157 
pathways (GISTIC > 1), these are highly prevalent and may still have relevance for 158 
disappointing trial results. 159 

We used expression data for available cases to check the consequences of the 160 
observed gains/losses at the transcriptional level for key amplified genes. The genes 161 
falling in amplified/gained regions show an increased expression compared to those in 162 
lost/deleted regions, confirming the observations from the WGS data (Fig. 2c). This, 163 
together with results from IHC staining of matched cases, suggests phenotypic relevance 164 
of the genome-level findings (Fig. 2d). 165 

Overall, 40% of the samples have both receptor gain and downstream activation of at 166 
least one gene, 43% RTK gain alone, and 2% have downstream activation alone (Fig. 2e). 167 
We only see a single RTK gain, without gains or amplifications in the MAPK or PI3K 168 
pathways, in 9% of tumors. The observed co-amplification patterns are unlikely to be 169 
biased by locus positioning, as the inspected RTKs have a varied distribution on 170 
chromosomes; hence they appear to be selected for.  171 

We therefore surmised that tailored RTKi combination therapy might be beneficial in 172 
some cases and decided to explore this in in vitro model systems. Since copy number 173 
gain events were seen most commonly in ERBB2, EGFR, MET and FGFRs, a panel of small 174 
molecular inhibitors was selected to target these RTKs. As expected, a single agent did 175 
trigger a cytotoxic effect in cell lines with a gain at that locus, but only in the micromolar 176 
range (Fig. 2g). In cell lines with an ERBB2 and a MET amplification, a significant 177 
reduction in cell proliferation was observed when both RTKs were inhibited with a GI50 178 
down in the nanomolar range, for example OE33 (Fig. 2f, 2g, Table 1). A similar finding 179 
was observed in FLO-1 (EGFR/MET copy gain) and OAC-P4C (ERBB2/FGFR2 180 
amplification) when treated with EGFRi/METi and ERBB2i/FRFGi combinations, 181 
respectively. These results suggest that a combination of RTK inhibitors tailored to the 182 
amplification profile might offer a clinical therapeutic strategy. Nevertheless, the 183 
complexity and diffuse patterns of these alterations provide a distinct challenge in the 184 
stratification of patients for therapy. 185 
 186 
Mutational signatures uncover distinct etiology in EAC 187 

 188 
In view of the heterogeneity and RTK-resistance mechanisms, we sought alternative 189 
therapeutic insights into the data using mutational signature analysis in a three-base 190 
context via the non-negative matrix factorization (NMF) methodology described by 191 
Alexandrov et al [27]. We also used the recently described pmsignature [28] and 192 
SomaticSignatures [29] for comparison. These methods are based on different statistical 193 
frameworks and therefore some differences are to be expected; nevertheless the same 194 
key signature patterns were observed with similar-sized patient subgroups expressing 195 
the dominant signature types (Supplementary Notes, Supplementary Figures 8–12). Six 196 
signatures were prominent (Supplementary Figures 13–14): S17, the hallmark signature 197 
of EAC [16, 17] dominated by T>G substitutions in a CTT context and possibly associated 198 
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with gastric acid reflux – here renamed S17A; a previously uncharacterized variant of 199 
this signature combining a relatively higher frequency of T>C substitutions with the 200 
classical T>G pattern found in S17, which we call S17B; S3, a complex pattern caused by 201 
defects in the BRCA1/2-led homologous recombination pathway; S2, C>T mutations in a 202 
TCA/TCT context, an APOBEC-driven hypermutated phenotype; S1, C>T in a *CG context, 203 
associated with aging processes; and an S18-like signature, C>A/T dominant in a 204 
GCA/TCT context, formerly described in neuroblastoma, breast and stomach cancers 205 
(Fig. 3a). The exploration of a seven-base signature context using pmsignature yielded 206 
an A/T base dominance at the -3 and -2 positions for the S17 signature, but no other 207 
striking  preferences for nucleotide combinations at the 2nd and 3rd bases for any of the 208 
other signatures (Supplementary Figure 15). Overall, this suggests that the bases 209 
immediately adjacent to the position where the mutation occurs exert the main bias, 210 
with a potentially more complex mechanism for the S17 signature.  211 

When considering the dominant mutation signatures on a per-patient basis, three 212 
subgroups of patients became apparent: C>A/T dominant (age, S18-like), DNA Damage 213 
Repair (DDR) impaired (BRCA), and mutagenic (predominantly S17A or S17B) (Fig. 3a). 214 
We chose the descriptor mutagenic because the mutation rate was significantly higher in 215 
this subgroup (Welch’s t-test p = 0.0007; Supplementary Figure 16). The robustness of 216 
the subgroups was ensured through consensus clustering and confirmed by silhouette 217 
statistics (Methods, Supplementary Figures 17–18). We also validated our findings in an 218 
independent cohort of 87 samples [18] and show that: when we apply the NMF method 219 
the same dominant signatures (S1, S2, S3, S17, S18-like) are observed; and when we 220 
perform clustering three subgroups emerge which are of similar composition and 221 
proportions to those seen in the original cohort (Methods, Fig. 3b compared with Fig. 222 
3a). Furthermore, the total mutational burden is again consistently higher in the 223 
mutagenic subgroup of the validation cohort. No cellularity bias or batch effect was 224 
observed among subgroups (Supplementary Figure 19).  225 

To test whether spatial sampling might have induced a bias in the predicted 226 
signatures, we inspected three additional patients who had multiple samples taken. The 227 
mutational patterns showed remarkable consistency across all three biopsies, especially 228 
regarding the dominant signature (Fig. 3c).  229 

We next examined whether the defined subgroups presented similarities in terms of 230 
genomic characteristics. All three subgroups showed a similar degree of heterogeneity 231 
in copy number alterations by chromosomal arm (Supplementary Figure 20), and the 232 
RTK co-amplification profiles were fairly similar among subgroups (Supplementary 233 
Figure 21). Of note, the C>A/T dominant subgroup had a two-fold higher frequency of 234 
ERBB2/MET co-amplifications, but this did not reach statistical significance. 235 

The rearrangement patterns in the three subgroups denoted differences in genomic 236 
stability. In particular, unstable genomes were less frequent in the C>A/T dominant 237 
subgroup and most frequent in the DDR impaired subgroup [11, 18] (Supplementary 238 
Figure 22). When examining SV signatures using the NMF framework (Methods), the 239 
C>A/T dominant subgroup also had lower levels of large-scale duplications and an 240 
increased frequency of focal interchromosomal translocations, which suggest mobile 241 
element insertion events (Supplementary Figure 23). The DDR impaired subgroup 242 
seemed to have the largest degree of genomic instability, though SV signatures were 243 
overall rather heterogeneous. No recurrently altered genes (in >10% of the cohort) 244 
were over-represented in any of the three subgroups after multiple testing correction, 245 
nor were there any differences in TP53 or ERBB2 status among the subgroups to account 246 
for the differences in genomic stability.  247 
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The clinical characteristics of the three subgroups did not differ significantly 248 
(Supplementary Table 5, Supplementary Figure 24), implying that the classification, and 249 
hence spectrum of mutation patterns, does not vary with smoking, age, sex, tumor 250 
histopathological grade, tumor stage,  response to chemotherapy, overall or recurrence–251 
free survival etc. Hence, the mutation signature profiles seem to be capturing a different 252 
type of information compared with current clinical classification methods. 253 

 254 
Evidence of DNA damage repair deficiency in EAC 255 

 256 
 Next we investigated what aspects of the DNA damage response were defective in the 257 

DDR impaired subgroup. Although a BRCA signature was recovered, there were only 3 258 
nonsynonymous mutations and 3 germline variants (non-intronic) in either BRCA1 or 2 259 
in a total of 5 out of 18 patients, suggesting that other mechanisms were largely 260 
responsible for this signature (Supplementary Tables 6 and 7). We thus assessed the 261 
mutation rates across more than 450 genes associated with DDR, as previously 262 
described in a pan-cancer analysis [30] (Fig 4, Methods). We found that there was a 4.3-263 
fold enrichment of samples with alterations in homologous recombination (HR) 264 
pathways in the DDR impaired subgroup compared to the others (95% CI [1.47, 12.56]). 265 
It is therefore likely that a pathway-level disruption of HR contributes to the BRCA-like 266 
mutational signature rather than mutations of BRCA genes.  267 

The analysis of DDR genes in the whole cohort unsurprisingly showed that the most 268 
mutated pathway was TP53 (Supplementary Figure 25), and this was consistent among 269 
subgroups (Fig. 4a), as were the amplification and deletion patterns (Supplementary 270 
Figure 26). In addition, more than 24% of the genomes had defects in chromatin 271 
remodelling, comprising recurrently mutated genes like ARID1A (8%) and SMARCA4 272 
(8%) (Fig. 4b). ARID1A is also recruited to DNA double strand breaks (DSB), where it 273 
facilitates processing to single strand ends [31]. Defects in ARID1A impair this process 274 
and may sensitise cells in vitro and in vivo to PARP inhibition (PARPi) [31].  275 

 276 
 277 
Neoantigen and CD8 profiles in the mutagenic subgroup  278 

 279 
Modulation of the cytotoxic T cell response using monoclonal antibodies against the 280 
Programmed Death Receptor or Ligand (PD-1 and PD-L1 inhibitors), as well as those 281 
targeting CTLA4 (Ipilimumab) have shown promise in the treatment of solid tumors 282 
[32–34]. The recent literature suggests that both numbers of mutations and total 283 
neoantigen burden have been coupled with significantly better clinical responses to 284 
immunotherapy [35–37]. 285 

We found that the mutagenic subgroup, whose observed signature may be due to 286 
gastric acid reflux, harbored a significantly higher nonsynonymous mutational burden, 287 
as well as higher levels of neoantigen presentation (Welch’s t-test p = 0.0007 and 288 
Wilcoxon rank-sum test p << 0.0001, respectively; Fig 5a and Supplementary Figure 16). 289 
This is in keeping with that observed for lung cancer and metastatic melanoma, with a 290 
1.5-fold higher median neoantigen burden in this subgroup versus the rest – similar to 291 
the two-fold ratio reported by Rizvi et al [35, 38]. Using available RNA expression data 292 
we observed a significantly higher number of neoantigens expressed in this subgroup 293 
compared to the rest (Wilcoxon rank-sum test p-value = 0.042, Fig. 5a). 294 

In recent studies, an enriched population of pre-existing CD8+ T cells was shown to 295 
predict a favorable outcome from PD-1 blockade therapy [39, 40]. We found a higher 296 
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density of CD8+ T cells in a subset of available samples from the mutagenic signature 297 
subgroup compared with samples from the other subgroups (Fig. 5a, 5b). 298 
 299 
Treatment responses in mutational signature subgroups 300 
 301 
Given the complexity of the RTK landscape and the apparent need to profile each patient 302 
to determine the optimal combination of RTK inhibitors, we hypothesised that the more 303 
homogeneous profile of mutational signatures might be a more clinically applicable 304 
starting point to guide therapy decisions. To start to test this hypothesis, we used newly 305 
derived cell line models from patients in the OCCAMS consortium with an available 306 
germline reference sequence from which we could derive the signatures:  OES127, DDR 307 
impaired profile; MFD, mutagenic profile; CAM02 C>A/T dominant profile (Fig. 6a). For 308 
the DDR impaired profile we hypothesised that PARPi, with or without a DNA-damaging 309 
agent such as Topotecan, might be beneficial [31, 41, 42]. Topoisomerase I (Topo1) is an 310 
enzyme required for DNA replication and when inhibited in combination with Olaparib 311 
it has been shown to generate synthetic lethality in BRCA deficient cases [43, 44]. 312 
Unexpectedly, no cytotoxic effect was observed when Olaparib or Topotecan was used 313 
as single reagent, however, a marked synergistic effect was shown when Topotecan was 314 
combined with Olaparib for OES127 (DDR impaired group), but not for the other 315 
primary cell lines (Fig. 6b, Supplementary Table 8). 316 

Next we tested the efficacy of Wee1/Chk1 inhibitors given the high frequency of TP53 317 
mutation in this disease [45, 46]. Several recent studies revealed that pharmacological 318 
inhibition of G2/M-phase checkpoint regulators Wee1 and Chk1/2 resulted in an 319 
antitumorigenic effect in some highly mutated cancers [47, 48]. We therefore 320 
hypothesised that inhibition of mitotic checkpoints would be cytotoxic in EAC and that 321 
this might be more apparent in cells with a high mutation burden [49, 50]. As expected, 322 
a cytotoxic effect for these drugs was observed to some extent in all of our primary cell 323 
lines, but the sensitivity was increased in the CAM02 and MFD lines in comparison with 324 
the TP53 WT line OES127 (Fig. 6c, Supplementary Table 9). In the MFD cells with a 325 
mutagenic signature, there was a 25-fold and 10-fold increased sensitivity in response 326 
to the Wee1 and Chk1/2 inhibitor, respectively, compared with the CAM02 cells from 327 
the C>A/T dominant subgroup. 328 

These experimental data provide a starting point from which to evaluate therapeutic 329 
options derived from mutational signatures, especially as primary model systems more 330 
closely resembling human disease and with stromal components become available [51, 331 
52]. 332 
 333 
  334 

 335 
DISCUSSION 336 

 337 
Whole-genome sequencing of 129 EAC patients has unveiled a high prevalence of large-338 
scale alterations that may play an important role in the development of this cancer. 339 
Similarly to ovarian, breast and lung cancers which have been described as ‘copy 340 
number driven’ [53], relatively few genes were recurrently point-mutated (except  341 
TP53), but there were frequent recurrent amplifications in sites harbouring oncogenes, 342 
deletions of important cell cycle components (CDKN2A, CDKN2B) and rearrangements of 343 
genes like RUNX1, frequently translocated in leukemias [54]. The highly heterogeneous 344 
landscape explains the difficulties encountered to date in finding suitable avenues for 345 
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tailored therapies. 88/262 registered esophageal trials (see URLs) target RTKs and 346 
mitogenic signalling pathways with remarkably little clinical efficacy. The genomic and 347 
in vitro analyses performed here suggest that the high prevalence of co-amplification of 348 
RTKs and downstream mitogenic pathway genes is likely to explain these disappointing 349 
results.  350 

Although all six mutational signatures are seen to some extent in most patient tumors, 351 
three distinct dominant subtypes, namely DDR impaired, C>A/T dominant, and 352 
mutagenic, point to specific etiological factors or genetic instabilities dominating the 353 
development of any individual’s EAC. We hypothesise that the insights obtained from 354 
mutational signatures could be harnessed for future studies to investigate the potential 355 
of tailored therapies to complement the current treatment options as summarized in 356 
Figure 7. 357 

In the DDR impaired subgroup with an enrichment for HR dysfunction, a synthetic 358 
lethality approach may prove useful. Indeed, HR scarring is a good a biomarker for DDR 359 
targeted treatment [55], being well established in breast and ovarian cancer and more 360 
recently also reported in gastric tumors [56]. HR dysfunction renders tumors sensitive 361 
to platinum-based chemotherapy and PARPi, which has started to make a survival 362 
impact in other BRCA-related tumors [57]. Indeed, we also observe some increased 363 
sensitivity to platinum-based chemotherapy in the DDR impaired subgroup 364 
(Supplementary Figure 27). PARPi in combination with irradiation has shown to be 365 
potent in HR scarred tumors [58] and our data from a primary line with a DDR signature 366 
suggests that PARPi in combination with a DNA damaging agent might be beneficial.  367 

Expression of PD-L1 has been demonstrated in gastroesophageal tumors at all stages, 368 
and therefore PD-L1 based immunotherapy might be an attractive therapeutic avenue to 369 
explore [59]. Both the nonsynonymous mutation burden and the neoantigen level, as 370 
well as CD8+ cell infiltration, have been shown to be good biomarkers in predicting 371 
response to immunotherapy in both smoking-related non-small cell lung cancer and 372 
melanoma [35, 36, 40, 59]. In keeping with these tumors which result from chronic 373 
exposure to mutagens (smoking and UV irradiation, respectively), we observe similar 374 
features in our mutagenic cohort containing an ‘acid’ signature. This type of genomic 375 
classification has also been proposed in other tumor types for patient stratification for 376 
immunotherapy [60] and warrants further investigation in this cancer. Similarly, 377 
Chk/Wee1 inbitors may be promising tools for future studies in highly mutated, p53-378 
inactive tumours [47, 48]. 379 

Patients in the C>A/T dominant subgroup would continue to be treated with 380 
conventional chemotherapy until more progress is made, e.g. with synthetic lethality 381 
approaches combined with radiotherapy or mutant TP53 reactivating drugs [61-63]. 382 
Alternatively, combined RTK inhibitors (especially ERBB2 and MET, given their 383 
prevalence in this subgroup) may be beneficial and combined MEK and Akt inhibition 384 
might be worthy of consideration given the low levels of amplifications/activation seen 385 
downstream in the MAPK and PI3K pathways [64].   386 

One practical question that arises is how this approach could be implemented 387 
clinically. Despite the decreasing costs of WGS, it is still expensive and signatures are 388 
problematic to derive from whole-exome data [27].  However, lower coverage whole-389 
genome (10x), or even shallow (1x) genome sequencing could provide a cost-effective, 390 
high-throughput alternative for signature-based stratification and we have  shown using 391 
simulations down to 10x that we can confidently retrieve dominant signatures at lower 392 
coverage (Supplementary Figure 28). Moreover, while designing custom gene panels 393 
would pose serious difficulties in such a heterogeneous disease, mutational signature-394 
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based classification would enable us to bypass the tumor heterogeneity bottleneck by 395 
providing a genome-wide, spatially-independent classification strategy (Fig. 3c). 396 

For subsequent individual patient classification, we propose a quadratic 397 
programming approach whereby we predict exposures to the six mutational signatures 398 
without having to estimate a large set of parameters (as with the classical NMF 399 
algorithm) and use the dominant signature pattern for patient assignment 400 
(Supplementary Notes). Figure 7 illustrates this fast and effective way of classifying new 401 
patients. This methodology is of course not without limitation: the age, S18-like and 402 
APOBEC signatures are currently grouped together, but in a much larger cohort a 403 
distinct ‘age’ or ‘APOBEC’ subgroup might emerge. Similarly, signatures S17A and S17B 404 
may merge in a much larger cohort, as was the case for signatures S1A and S1B [27].  It 405 
should be noted that algorithms for defining signatures are evolving with improved 406 
speed of computation [28] and there is inherent variation in sample categorization 407 
between methods. Methodology is also being developed to accurately identify signatures 408 
de-novo in single patients, which we expect will offer promising alternatives for patient 409 
stratification.  410 

In summary, we have uncovered possible reasons for the lack of efficacy in 411 
molecularly targeted trials and present a novel genomic classification which links 412 
etiology to patient stratification with potential therapeutic relevance. Further studies 413 
will be needed for pre-clinical validation prior to implementation in trials, as well as to 414 
understand the extent to which this genomic distinction is maintained downstream, at 415 
the level of the transcriptome, proteome and cellular phenotype. 416 

 417 
  418 
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Figure 1. Recurrent genomic events in the cohort (n = 129). The top panel highlights 733 
the total number of protein-coding genes affected by copy number or structural changes 734 
(above the 0 axis), and point mutations or indels (below the 0 axis), respectively, for 735 
every patient (depicted on the X-axis). (a) The top rearranged genes, excluding fragile 736 
sites, containing structural variant hotspots and recurrent in >10% of patients. 737 
*INK4/ARF comprises the CDKN2A/2B locus. ‘Interchr trans’ = interchoromosomal 738 
translocation. (b) Fragile sites rearranged in at least 20% of the patients. (c) Mobile 739 
element (ME) insertions detected by structural variant analysis, plotted on a log2 scale. 740 
Grey tiles correspond to cases without any evidence of ME insertions. (d) Loci that are 741 
significantly amplified/deleted according to GISTIC2.0 and that are recurrent in >10% of 742 
the patients. The most extreme copy number alteration within the locus is shown for 743 
each patient (see Supplementary Tables 2 and 3 for lists of genes in such loci). Only 744 
amplification and deletions are counted for the frequency histogram. (e) Genes altered 745 
by nonsynonymous SNVs/indels, deemed significantly mutated by MutSigCV. Loss of 746 
heterozygosity (LOH) regions are indicated in black rectangles when the gene also 747 
presents a mutation, indicating likely loss of function. (f) Presence of genomic 748 
catastrophes. (g) Cellularities, estimated by histopathology (H) or computationally using 749 
ASCAT (A). All samples sequenced have passed the histopathological cellularity cut-off 750 
of 70%. The total frequency of a specific gene alteration or event in the cohort is shown 751 
on the right-hand side for each panel. 752 
 753 
Figure 2. RTK copy number profiling and responses to targeted RTK therapy 754 
(n=129). (a) RTK copy number gains/losses in the patient cohort and  cell models. The 755 
score refers to: amplifications (2), homozygous deletions (–2), relative gains/losses 756 
(+1/–1) (Methods). Columns correspond to samples, ordered by the average ploidy. 757 
Samples with average ploidy ≥ 3 are highlighted as potentially whole-genome duplicated. 758 
(b) Copy number alterations in key genes of downstream pathways (c) Expression of 759 
RTKs and downstream key genes in samples with gains (light red) versus losses (light 760 
blue) of respective genes. The number of samples varies depending on the availability of 761 
cases with gain/loss (indicated in brackets). * marks p-values <0.05 after multiple 762 
testing correction. The solid horizontal line within the box represents the median. The 763 
interquartile range (IQR) is defined as Q3–Q1 with whiskers that extend 1.5 times the 764 
IQR from the box edges. (d) IHC staining of selected samples displaying consequences of 765 
copy number loss/gain in ERBB2 and MET. The GISTIC score (CN) is marked. (e) 766 
Breakdown of major resistance mechanisms to RTK-based monotherapy. “Amplification” 767 
denotes anything with a score ≥1. (f) Growth curve of OE33 cells after 72-hour exposure 768 
to Lapatinib, Crizotinib and in combination. Mean values as percentage of DMSO treated 769 
cells and ±SD for three experiments. Olaparib in combination was 1μM. (g) The effects of 770 
Lapatinib, Crizotinib and in combination on the cell lines with varying RTK status. Error 771 
bars represent the standard deviation. * indicates p-values <0.05. 772 
 773 
Figure 3. Mutational signature-based clustering reveals differences in disease 774 
etiology in the cohort and is spatially consistent within a single tumor. (a) The heat 775 
map highlights the sample exposures to six main mutational signatures, as identified in 776 
the cohort (n=120) using the NMF methodology. The strength of exposure to a certain 777 
signature may vary from 0% to 100% (on a color scale from grey to red). Three main 778 
subgroups can be observed from the clustering based on the predominant signature: 779 
C>A/T dominant (S18-like/S1 age) – orange, 32% samples; DDR impaired (S3-BRCA) – 780 
purple, 15% samples; and mutagenic (S17A/B dominant) – green, 53% samples. The 781 
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TP53, ERBB2 status, and catastrophic event distribution in the corresponding genomes 782 
are highlighted below (no significant difference observed among subgroups). The total 783 
mutational burden is significantly higher in the mutagenic subgroup. Consensus 784 
clustering was used for the heat map (Methods). b) Validation of the mutational 785 
signature-based clustering in an independent cohort (n=87). Unsupervised hierarchical 786 
clustering (Pearson correlation distance, Ward linkage method) reveals three main 787 
subgroups, similar to the ones in the discovery cohort: (1) DDR impaired (S3-BRCA) 788 
dominant – purple, 22% of the cohort; (2) C>A/T dominant (S18-like/S1 age) – orange, 789 
25% of the cohort; (3) mutagenic (S17A/B dominant) – green, 53% of the cohort. The 790 
total SNV burden is also highlighted, confirming higher abundance in the mutagenic 791 
subgroup. c) Mutational signature contributions in three cases with multiple sampling 792 
from the same tumor. The relative exposures to the 6 signatures are highlighted on a 793 
grey-to-red gradient for each case. The group assignment is based on the dominant 794 
signature. 795 
 796 
Figure 4. DNA  damage repair pathways altered through nonsynonymous 797 
mutations/indels in the cohort. (a) For each of the three defined subgroups, the 798 
percentage of patients harboring defects in the different DDR-related pathways is shown. 799 
Only nonsynoymous mutations in genes mutated in the cohort significantly more 800 
compared to the expected background rate and predicted to be potentially damaging to 801 
the protein structure (Methods) have been considered in the analysis. (b) HR, CR and 802 
CPF genes altered in the three subgroups (the numbers in the gradients indicate how 803 
many patients have mutations in the respective gene). AM, alternative mechanism for 804 
telomere maintenance; BER, base excision repair; CPF, checkpoint factor; CR, chromatin 805 
remodelling; CS, chromosome segregation; FA, Fanconi anaemia pathway; HR, 806 
homologous recombination; MMR, mismatch repair; NER, nucleotide excision repair; 807 
NHEJ, non-homologous end joining; OD, other double-strand break repair; TLS, 808 
translesion synthesis; TM, telomere maintenance; UR, ubiquitylation response. 809 
 810 
Figure 5. Neoantigen burden is significantly higher in the mutagenic subgroup and 811 
associates with an increased CD8+ T-cell density. (a) From left to right: Neoantigen 812 
burden compared among the 3 mutational signature subgroups shows significant 813 
differences. A two-sided Welch’s t-test was used to compare the mutagenic group to the 814 
rest; Expression data available for a subset of the samples (25 from the mutagenic 815 
subgroup and 21 from the others) reveals that the number of expressed potential 816 
neoantigens is significantly higher in the mutagenic subgroup (Wilcoxon rank-sum test 817 
p = 0.042); Numbers of CD8+ T cells per mm2 observed in patients. Patients were 818 
grouped into the mutagenic group and BRCA+C>A/T dominant group (n = 10 for each 819 
group). (b) Two representative images of CD8 IHC staining from each group 820 
(magnification 200x, scale bar, 100m). 821 
  822 
Figure 6. Treatment response in different mutational signature groups. (a) Three 823 
cell lines, OES127, MFD and CAM02 have been derived, each representative of a distinct 824 
signature-dominant subgroup: DDR impaired (OES127), mutagenic (MFD) and C>A/T 825 
dominant (CAM02). (b) Growth curves of OES127 cell lines after 72-hour exposure to 826 
Olaparib, Topotecan and in combination. Mean values as a percentage of DMSO treated 827 
cells and ±SD for three experiments are shown. Olaparib used in combination was kept 828 
at 1μM. (c) Growth curve of MFD cell lines after 72-hour exposure to MK-1775 and in 829 
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AZD-7762. Mean values as a percentage of DMSO treated cells and ±SD for three 830 
experiments are shown.  831 
 832 
Figure 7. Proposed subclassification of EAC based on mutational signatures 833 
informs etiology and, consequently, potential tailored therapies to be further 834 
investigated for the disease. Patients are currently treated uniformly, but 835 
classification based on mutational signatures may enable targeted treatments that 836 
would complement classical therapy routes and potentially achieve more durable 837 
responses. The highlighted box (right) exemplifies classifying new patients into the 838 
defined etiological categories based on mutational signatures using a quadratic 839 
programming approach (see Methods). The bars highlight the relative contributions of 840 
the six expected signatures to the observed mutations in 7 new tumors (not part of the 841 
129 sample cohort). The dominant signature is indicative of the group to which the 842 
sample should be assigned.  843 
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Table 1. In vitro cytotoxicity of RTKi as single or combined reagents in EAC cell 844 
lines. Key RTK amplification status and drug targets are shown. Bold text indicates that  845 
a synergistic effect of the combination treatment was observed.    846 
 847 
Cell line RTK status RTKi GI50 (95% CI) (nM) AUC 

OE33 ERBB2/MET Amp 

Lapatinib (EGFR/ERBB2) 3.92 x103 (3.16–4.87 x103) 195.7 

Crizotinib (MET) 317.3 (166.3–605.4) 108.8 

Lapatinib + Crizotinib 6.56 (2.42–17.84) 47.0 

SK-GT-4 ERBB2 Amp/MET Gain 

Lapatinib (EGFR/ERBB2) 3.72 x103 (2.27–6.08 x103) 173.9 

Crizotinib (MET) 3.47 x103 (2.90–4.15 x103) 183.2 

Lapatinib + Crizotinib 530 (273.1–1029) 120.0 

OAC-P4C ERBB2/FGFR2 Amp 

Lapatinib (EGFR/ERBB2) 2.28 x103 (1.34–3.90 x103) 159.1 

AZD-4547(FGFR1/2/3) 3.82 x103 (3.32–4.40 x103) 194.7 

Lapatinib + AZD-4547 373.2 (260.9–533.7) 104.8 

FLO-1 EGFR/MET Gain 

Lapatinib (EGFR/ERBB2) 11.64 x103 (7.80–17.39 x103) 212.0 

Crizotinib (MET) 1.90 x103 (1.51–2.39 x103) 159.3 

Lapatinib + Crizotinib 243.4 (78.0–759.5) 109.0 

OES127 ERBB2 Amp/MET Gain 

Lapatinib (EGFR/ERBB2) 1.14 x103 (0.68–1.90 x103) 139.6 

Crizotinib (MET) 3.09 x103 (2.35–4.05 x103) 173.4 

Lapatinib + Crizotinib 587.7 (450.5–766.7) 117.5 

  848 
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ONLINE METHODS 1 
 2 

Ethical approval, sample collection and DNA extraction 3 
 4 

The study was registered (UKCRNID 8880), approved by the Institutional Ethics 5 
Committees (REC 07/H0305/52 and 10/H0305/1), and all subjects gave individual 6 
informed consent. Samples were obtained from surgical resection or by biopsy at 7 
endoscopic ultrasound. Blood or normal squamous esophageal samples at least 5 cm 8 
from the tumor were used as a germline reference. All tissue samples were snap frozen 9 
and before DNA extraction, a hematoxylin and eosin stained section was sent for 10 
cellularity review by two expert pathologists. Cancer samples with a cellularity ≥ 70% 11 
were submitted for whole-genome sequencing. DNA was extracted from frozen 12 
esophageal tissue using the AllPrep kit (Qiagen) and from blood samples using the 13 
QIAamp DNA Blood Maxi kit (Qiagen).  14 

A total of 129 cases (matched tumor-normal) were sequenced. True esophageal and 15 
gastroesophageal (GOJ) type 1 and 2 tumors (according to Siewert classification) were 16 
used. All GOJ type 3 tumors (14 in total) were excluded from the analysis.  17 
 18 
Whole-genome sequencing analysis 19 

 20 
A single library was created for each sample, and 100-bp paired-end sequencing was 21 
performed under contracts by Illumina and the Broad Institute to a typical depth of at 22 
least 50x for tumors and 30x for matched normals, with 94% of the known genome 23 
being sequenced to at least 8x coverage and achieving a Phred quality of at least 30 for 24 
at least 80% of mapping bases. Read sequences were mapped to the human reference 25 
genome (GRCh37) using Burrows-Wheeler Alignment (BWA) 0.5.9 [65], and duplicates 26 
were marked and discarded using Picard 1.105 (see URLs). As part of an extensive 27 
quality assurance process, quality control metrics and alignment statistics were 28 
computed on a per-lane basis. 29 

The FastQC package was used to assess the quality score distribution of the 30 
sequencing reads and perform trimming if necessary. 31 

Samples were examined for potential microsatellite instability (MSI) using 32 
computational tools, and five cases with potential MSI were subsequently excluded from 33 
the analysis, as previously performed in other studies [16] (Supplementary Notes and 34 
Supplementary Table 10). 35 
 36 
Somatic mutation and indel calling 37 
 38 
Somatic mutations and indels were called using Strelka 1.0.13 [66]. SNVs were filtered 39 
as described in Supplementary Table 11. Functional annotation of the resulting variants 40 
was performed using Variant Effect Predictor (VEP release 75) [67]. 41 

Significantly mutated genes were identified using MutSigCV [23]. 42 
 43 
Copy number and loss of heterozygosity analysis 44 

 45 
For patient-derived samples, absolute genome copy number after correction for 46 
estimated normal-cell contamination was called with ASCAT-NGS v2.1 [68], using read 47 
counts at germline heterozygous positions estimated by GATK 3.2-2 [69]. 48 
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Cellularity, expressed as the relative proportion of tumor and normal nuclei, was also 49 
obtained using ASCAT. It was distributed as follows: 18% of samples had cellularity 50 
<0.3; 71% of samples between 0.3 and 0.7; 11% of samples ≥ 0.7. 51 

Significantly amplified/deleted regions in the cohort were identified using GISTIC2.0 52 
[22], after correcting the copy numbers for ploidy (total copy number of the segment 53 
divided by the average estimated ploidy of each sample). GISTIC2.0 was run on an input 54 
defined as the log2 of such corrected copy number values, with gain (-ta) and loss (-td) 55 
thresholds of 0.1 and sample centering prior to analysis. Copy number change 56 
thresholds considered for downstream analysis were: amplifications, GISTIC score  ≥2; 57 
deletions, ≤–2. Loss of heterozygosity (LOH) was defined as ASCAT-estimated minor 58 
allele copy number of 0. 59 

A whole-genome duplication event was considered to have occurred in a sample if the 60 
average estimated ploidy by ASCAT was ≥ 3, similar to the cut-offs suggested in [70]. 61 

For cell lines, copy number calling was performed using Control-FREEC [71]. 62 
 63 
RTK copy number profiling 64 

To examine the landscape of copy number alterations in RTKs and downstream key 65 
genes (Fig. 2), a score from -2 to 2 was used to denote: deletions (-2), losses (-1), gains 66 
(+1), amplifications (+2). For the patient derived samples, copy numbers estimated 67 
using ASCAT were subsequently classified according to GISTIC2.0 using the same 68 
scoring scheme. For the cell models, a GISTIC-equivalent score was derived by dividing 69 
the estimated copy numbers by Control-FREEC by the average ploidy of each cell line, 70 
and classifying regions ≥2 as amplified (equivalent score = 2), regions ≤–2 as deleted 71 
(equivalent score = –2), and regions >1 or <1 as gained or lost, respectively (equivalent 72 
scores +1/-1). For the MFD line only the parent tumour was sequenced, so the copy 73 
numbers were inferred using ASCAT and GISTIC2.0 as described above. 74 

In Figure 2b, the average copy number value of downstream key genes is highlighted 75 
for each representative gene (e.g. RAS summarizes the copy number landscape of HRAS, 76 
KRAS, NRAS), hence the scores take continuous rather than discrete values as in panel 2a. 77 

 78 
Structural variant and mobile element insertion calling and annotation 79 

 80 
Structural variants were called using BWA-mem for alignment (see URLs), against the 81 
GRCh37 reference human genome, followed by clustering of putative breakpoint 82 
junctions identified by discordant read pairs and split reads using Manta [72]. We then 83 
discarded: SVs overlapping gaps, satellite sequences, simple repeats >1000 basepairs or 84 
extreme read depth regions; and deletions of < 1000bp that were not supported by at 85 
least one split read defining the deletion junction. Small inversions up to 10 kb  were 86 
also discarded as they are generated artefactually in some libraries [73]. Breakpoints in 87 
genes were annotated against Ensembl GRCh37, version 75 [18]. Fragile sites were 88 
annotated from Le Tallec et al [74]. Mobile element insertions and gene rearrangement 89 
hotspots were determined as described in the Supplementary Notes. 90 

 91 
Structural variant-based classification of genomes 92 
 93 

The structural variant-based classification was used to annotate unstable, stable, 94 
locally rearranged and scattered genomes as previously described [11], but with 95 
different cut-offs for stable and unstable genomes, to account for the different genomic 96 
instability landscape in EAC compared to pancreatic cancer: genomes were deemed 97 
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“stable” if the total number of SVs was less than the 5% quantile in the cohort, and 98 
unstable if the number of SVs exceeded the 95% quantile. The criteria for locally  99 
rearranged and scattered genomes were as previously described. 100 
 101 
Mutational signature analysis 102 
 103 
Discovery 104 

Mutational signatures were identified using the NMF methodology described by 105 
Alexandrov et al [27]. Before running the software, common variants in the 1000 106 
genomes database [75] appearing in at least 0.5% of the population were removed, and 107 
samples with cellularity <25% (from ASCAT estimates) were not included, leaving a 108 
total of 120 samples for the analysis. The optimal number of signatures in the dataset 109 
was chosen to balance the signature stability against the Frobenius reconstruction error 110 
(Supplementary Figure 13). To increase confidence in the findings, two other methods 111 
were also used: the R packages pmsignature [28] and SomaticSignatures [29] 112 
(Supplementary Notes and Supplementary Figures  9–12).  113 

To establish which of the two C[T>G]T signatures resembled most the classical S17 114 
signature recorded in the COSMIC database, we used the cosine similarity distance 115 
measure between the probability vectors of these signatures. The signature which we 116 
termed S17A had a higher cosine similarity distance compared to S17B (0.98 versus 117 
0.92), and we hence considered it to be more reflective of the signature reported in the 118 
literature. 119 

Samples in the discovery cohort were clustered by their signature exposures using a 120 
consensus clustering approach [76] (based on Pearson correlation distance with 121 
complete linkage) in order to increase the robustness of the subgroup assignment.  122 
 123 
Validation 124 

The three mutational signature subgroups were validated in an independent cohort 125 
of 87 EAC samples (21 from [18] and 66 independent patients in our  ICGC study post-126 
neoadjuvant therapy and surgery). These had been selected from a slightly larger cohort 127 
after removing low cellularity and MSI positive samples. Within the validation cohort, 128 
the same dominant signatures were inferred using the NMF method, as above. The 129 
signature contributions were estimated based on the six main processes inferred in the 130 
test cohort using quadratic programming (described later in the Methods). 131 
 132 
Multiple sampling 133 

To test the differences in mutational exposures, we used three available cases for 134 
which multiple samples had been collected from the same tumour. We obtained the 135 
mutational exposures for the six described signatures using quadratic programming. 136 

 137 
Structural variant signature analysis 138 

 139 
Similar to inferring mutational signatures, we used the methodology by Alexandrov et al 140 
[27] to discover structural variant signatures in EAC genomes. We classified structural 141 
variants (deletions, inversions, insertions, interchromosomal translocations) by their 142 
size and distribution along the genome. SVs were grouped by size into “small” and 143 
“large”, defined with respect to the 25% quantile length in the cohort for the respective 144 
SV type). To determine the SV distribution along the genome, we assessed the degree of 145 
clustering within 10 Mb windows along the genome. If the SV of interest fell within a 146 
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window of clustered events (where the total number of SVs exceeded 1.5x the 75% 147 
quantile of the total number of events in that genome), then it was deemed a “focal” 148 
event. Otherwise, it was catalogued as “genomically distributed”. These characteristics 149 
defined a total of 14 features to be used for signature discovery (Supplementary Figure 150 
23). 151 

 152 
Identification of catastrophic events 153 

 154 
Kataegis was called in a similar manner to Nones et al [18], by calculating the distance 155 
between consecutive mutations and segmenting the resulting genome-wide signal using 156 
piecewise constant fitting as implemented in the copynumber Bioconductor package [77] 157 
(Supplementary Figure 5). However, acknowledging that the intermutational distance 158 
distribution varies from genome to genome, we did not use a fixed cutoff of 1000 bases 159 
for the mean distance between mutations in kataegis loci, but instead applied a variable 160 
cutoff that was determined as the 1% quantile of the intermutational distances within 161 
the respective genome. 162 

Chromothripsis events were identified in chromosomes containing >10 CN steps, 163 
according to the criteria described by Korbel and Campbell [78] and Nones et al [18]: (a) 164 
clustering of breakpoints; (b) regularity of oscillating CN steps; (c) interspersed loss and 165 
retention of heterozygosity; (d) randomness of DNA segment order and fragment joins; 166 
(e) ability to walk the derivative chromosome. Scripts were developed to assess these 167 
criteria, and the final chromothripsis calls were prioritized through visual inspection 168 
(Supplementary Figure 6).  169 

Regions of clustered inversions were identified as a proxy for BFB and complex 170 
rearrangement events. These were defined by scanning for enrichments of inversions 171 
(1.5x the upper quantile of the total number of events in the genome) within 5-Mb 172 
windows throughout the genome. Visual inspection was used to prioritize those regions 173 
that displayed BFB-like characteristics. Several types of complex rearrangement events 174 
were identified: focal amplifications with BFB pattern (clustered inversions along with 175 
progressive amplification steps primarily on one side of the inversion cluster, i.e. 176 
asymmetric); other focal amplifications within narrow regions <5 Mb (clustered 177 
inversions coupled with copy number amplifications displaying an irregular pattern), 178 
focal amplifications within wider 5–10 Mb regions (clustered inversions and progressive 179 
copy number amplification steps, often with multiple peaks); double minute-like 180 
patterns (clustered inversions at high copy number amplification regions without 181 
evidence of a progressive mechanism); potential subtelomeric BFBs (amplifications 182 
located close to the ends of the chromosomes, coupled with inversion clusters and distal 183 
deletions). See Supplementary Figure 7 for sample illustrations of the patterns 184 
described.  185 
 186 

 187 
DNA damage repair (DDR) analysis 188 

 189 
To assess the alterations in DNA damage-related pathways, we performed an analysis 190 
similar to the one described by Pearl et al [30]. Among the genes involved in defined 191 
DNA damage pathways as described in the paper, we only selected those affected more 192 
often than the expected background of synonymous mutations, similar to the method 193 
described by Puente et al [79]. The probability of a gene being affected by M 194 
nonsynonymous mutations in the cohort follows a poisson binomial distribution and is 195 
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calculated relative to a basal probability depending on the number of nonsynonymous 196 
(𝑛𝑛𝑠) and synonymous (𝑛𝑠) mutations, gene size (L), local mutational density for the 197 

locus (d) and total length of coding regions in the genome (E) as follows: 𝑃𝑛𝑠 =
𝑛𝑛𝑠𝐿𝑑

(𝑛𝑛𝑠+𝑛𝑠)𝐸
 198 

Subsequently, we catalogued those that harboured nonsynonymous somatic 199 
mutations/indels with possible deleterious effect (as predicted by SIFT [80]/PolyPhen 200 
[81]) or copy number alterations (amplifications and deletions using the defined GISTIC 201 
cut-offs) in our cohort. We then compared the mutational load in 16 main pathways 202 
among the defined mutational signature subgroups. 203 

 204 
Neoantigen predictions and analysis 205 

 206 
In order to quantify the neoantigen load in the tumors, we performed the analysis as 207 
described in [35]. We first collected all peptides defined by a 17 amino-acid region 208 
centered on the amino acid which changes upon the mutation. We identified mutant 209 
nonamers with ≤500 nM binding affinity for patient-specific class I human lymphocyte 210 
antigen (HLA) alleles, constituting potential candidate neoantigens. Binding affinities 211 
were predicted using NetMHC-3.4 [82]. We then quantified the peptides that displayed 212 
high affinity binding in tumor, but low or no binding in the respective matched normal 213 
and obtained total counts for each defined mutational subgroup.  The neoantigen burden 214 
in tumours belonging to the different subgroups varied as follows: DDR impaired - an 215 
average of 77 (s.d. = 42.2); C>A/T dominant - an average of 86 (s.d. = 41.3); mutagenic - 216 
an average of 111 (s.d. = 43.9).  The three groups presented unequal variance in terms of 217 
nonsynonymous mutation burden, as shown by pairwise F-tests (p<0.05 after multiple 218 
testing correction using the Benjamini-Hochberg method). To adjust for this, the 219 
mutation burden among subgroups was compared using Welch’s t-test. The neoantigen 220 
load, on the other hand, had similar variance between the mutagenic group and the 221 
other two groups combined (F-test p>0.05), so the Wilcoxon rank-sum test was used to 222 
compare the predicted neoantigen presence in tumors. 223 

To verify that the predicted neoantigens were indeed expressed in the samples, 224 
expression Z-scores were investigated and all peptides with a score higher than the 225 
average in the respective sample were considered expressed. 226 
 227 
Expression profiling 228 
 229 
Purified Total RNA was extracted using the AllPrep DNA/RNA Mini Kit from Qiagen. 230 
Quality of RNA was assessed using the NanoDrop and the Agilent Bioanalyser, and only 231 
samples with RIN>7 were accepted. The Illumina HTv4.0 beadchip was used as platform 232 
for expression analysis. Bead level readings were corrected for spatial artefacts and the 233 
signal per probe ratio was computed. Relative array weights were applied before 234 
quantile normalization for gene expression analysis. 235 

 236 
 237 
  238 



 26 

 239 
For sequencing, purified total RNA was subject to ribosomal depletion using methods 240 
already published [83]. In brief, 195 DNA oligonucleotides (Sigma Life Sciences) were 241 
pooled together in equal molar amounts  and incubated with total RNA Hybridase 242 
Thermostable RNase H (Epicentre). RNaseH-treated RNA was purified using 2.2x 243 
RNAClean SPRI beads (Beckman Coulter LifeSciences) and oligonucleotides removed 244 
using TURBO DNase rigorous treatment. A further purification of the DNase-treated RNA 245 
with 2.2x RNAClean SPRI beads was followed by library preparation using the TruSeq 246 
HT Stranded mRNA kit according to the manufacturers instructions (Illumina) and 247 
generated single end reads using the HiSeq 2500. 248 

For the validation of RTK gains/losses and neoantigen expression, available 249 
expression data for a total of 42 samples were used. To evaluate expression levels for 250 
selected genes, Z-scores were obtained relative to the average expression in the sample 251 
or of the specific investigated gene.  252 

For the validation of neoantigen expression, available RNA-Seq data for a total of 18 253 
samples were used. To evaluate expression levels for selected genes, Z-scores were 254 
obtained relative to the average expression in the sample.  255 
 256 
Cell lines and reagents 257 
 258 
The primary cell line panel was derived from EAC cases included in the ICGC sequencing 259 
study , including MFD (Tim Underwood, Southampton, OCCAMS consortium member), 260 
OES127 (Anna Grabowska, Nottingham, OCCAMS consortium member) and CAM02 261 
(organoid, Mathew Garnett, Cambridge). The MFD line required 10% fetal calf serum 262 
(PAA) in DMEM medium (Invitrogen, ThermoFisher Scientific) and the CAM02 culture 263 
method was as previously described [51]. The feeder layer system was used to expand 264 
OES127 lines. The established EAC lines, SK-GT-4, OAC-P4C, OACM5.1C, and OE33 were 265 
cultured in RPMI medium (Sigma) with 10% fetal calf serum, except for FLO-1, which 266 
was grown in DMEM with 10% fetal calf serum. The identity of all cell lines was verified 267 
by short tandem repeat (STR) profiling and routinely examined for mycoplasma 268 
contamination. 269 

Small molecular inhibitors used for treatment were: Lapatinib, AZD-4547, Olaparib, 270 
MK-1775 and AZD-7762 (BioVision), Crizotinib (LKT Labs) and Topotecan (Cayman 271 
Chemical). Inhibitors were diluted to working concentrations in DMSO (Sigma). 272 
 273 
Immunohistochemistry 274 
 275 
Sections of 3.5μm were stained by a Bond Max autostainer according to the 276 
manufacturer’s instruction (Leica Microsystems). Primary antibodies ERBB2 (1:300, Cell 277 
Signaling Technology), MET (1:300, Cell Signaling Technology), CD8 (1:100, Dako) were 278 
optimised and applied with negative controls. 279 

CD8+ cells were counted manually in two tumour areas of 1 mm2 each (except in one 280 
case where there was sufficient material for one count only) and an average was 281 
calculated. 282 
 283 
Drug sensitivity assays 284 
 285 
The seeding density for each line was optimised to ensure cell growth in the logarithmic 286 
growth phase. Cells were seeded in complete medium for 24 hours then treated with 287 
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compounds at 4-fold serial dilutions for 72 hours. Cell proliferation was assessed using 288 
CellTiter-Glo (Promega). The anchor inhibitors were kept constant at 1M in combination 289 
studies. 290 

The concentrations of a compound causing 50% growth inhibition relative to the 291 
vehicle control (GI50) were determined by nonlinear regression dose-response analysis 292 
and the area under the curve (AUC) was calculated using GraphPad Prism. 293 
 294 
Statistics 295 

 296 
All statistical tests were performed using a Wilcoxon rank-sum test or ANOVA (for 297 
continuous data), and a Fisher exact test or Chi-square test (for count data). Welch’s t-298 
test was used when comparing groups of unequal variance. Multiple testing corrections 299 
were performed where necessary using the Benjamini-Hochberg method. All reported 300 
p-values were two-sided.  301 
 302 
Code availability 303 
 304 
The scripts used to perform the analysis are available upon request. 305 
 306 
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